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Abstract

The Tau method, produces approximate polynomial solutions of differential, integral and
integro-differential equations. in this paper extension of the Tau method has been done for the
numerical solution of the general form of linear Fredholm-Volterra Integro-Differential equations.
An efficient error estimation for the Tau method is also introduced. Details of the method are
presented and some numerical results along with estimated errors are given to clarify the method
and its error estimator.
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1 Introduction

In 1981, Ortiz and Samara [1] proposed an op-
erational technique for the numerical solution
of nonlinear ordinary differential equations with
some supplementary conditions based on the Tau
Method [2]. During the recent years considerable
work has been done both in the development of
the technique, its theoretical analysis and numer-
ical applications. The same technique has been
described in a series of papers [3-7] for the case
of linear ordinary differential eigenvalue problems,
in [8-12] for the case of partial differential equa-
tions and their related eigenvalue problems and
in [13] for the iterated solutions of linear oper-
ator equations. The object of this paper is to
present developments of the operational approach
to the Tau Method for the numerical solution of
linear Fredholm-Volterra integro-differential equa-
tions of the second kind together with mixed
supplementary conditions. Special cases of this
method solves Fredholm and Volterra integral and
integro-differential equations separately. An other
special case of this method solves differential equa-
tions with mixed supplementary conditions. In
[15] Yalcinbas and Sezer, have introduced the Tay-
lor series approximation for the solution of such
problems which is a particular case of the Tau
method. In this paper, we consider Ortiz and
Samara’s operational approach to the Tau Method
for differential part of the equation, which leads
to algorithms of remarkable simplicity, while re-
taining the accuracy of results.

The organization of this paper is as follows:
In section 2, we introduce the considered prob-
lem. In part (a) of this section we recall the Tau
Method to obtain a matrix form of differential
part. In parts (b), (c) and (d), converting other
parts of equation to a matrix form is shown. At
the end this section corresponding system of linear
algebraic equations is given. In Section 3 we recall
efficient Tau error estimator. In section 4, some
numerical results are given to clarify the method,
where we have computed the numerical results by
Maple programming and finally section 5 contains
conclusions.

Remark 1.1 It should be noted that existence
and uniqueness of solution of equations is not in-
vestigated in this paper.

2 Fredholm-Volterra integro-
differential equations

Consider the following Fredholm-Volterra integro-
differential equation together with the given
mixed supplementary conditions:

Dy(s) − λ1

∫ b

a
K1(s, t)y(t)dt − λ2

∫ s

a
K2(s, t)y(t)dt = f(s),

s ∈ [a, b] (2.1)

∑nd

k=1

[
c
(1)
jk y(k−1)(a) + c

(2)
jk y(k−1)(b) + c

(3)
jk y(k−1)(c)

]
= dj ,

j = 1, · · · , nd, (2.2)

a < c < b.

Where D is a linear differential operator of or-
der nd with polynomial coefficients pi(s):

D =
nd∑
i=0

pi(s)
di

dsi
,

pi(s) =
αi∑

j=0

pijs
j . (2.3)

If f(s) and Ki(s, t), (i = 1, 2) in (2.1) are not
polynomials, they can be approximated by poly-
nomials to any degree of accuracy (by interpola-
tion or Taylor series or other suitable methods).

Unless otherwise stated, s will always be the
independent variable of the functions which ap-
pear throughout this paper and will be defined
in a finite interval. Moreover suppose that yn(s)
be the Tau Method approximation of degree n for
y(s), so we can write:

pi(s) =
αi∑

j=0

pijs
j = p

i
s (2.4)

f(s) =
n∑

j=0

fjs
j = fs (2.5)

Ki(s, t) =
n∑

p=0

n∑
q=0

k(i)
pq sptq, i = 1, 2 (2.6)

yn(s) =
n∑

j=0

ajs
j = ans (2.7)

where pi = [pi0, · · · , pi,αi
, 0, 0, 0, · · · ], f =

[f0, · · · , fn, 0, 0, 0, · · · ],
an = [a0, · · · , an, 0, 0, 0, · · · ] and s =[

1, s, s2, · · ·
]T are respectively coefficients vectors
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of pi(s), right - hand side of equation (2.1), un-
known coefficients vector and the basis vector.
Without loss of generality we have taken all poly-
nomials of degree n, because if f(s), K1(s, t),
K2(s, t) and yn(s) are respectively of different de-
grees nf , (n1s, n1t), (n2s, n2t) and ny then we can
set

n = max{nf , n1s, n1t, n2s, n2t, ny}.

2.1 Matrix representation for different
parts of (2.1)-(2.2)

(a). Matrix representation for
Dy(s)

The effect of differentiation or shifting (multi-
plication by the current variable s ) on the coef-
ficients an = [a0, a1, · · · , an, 0, 0, 0, · · · ] of a poly-
nomial yn(s) = ans is the same as that of post-
multiplication of an by either the matrix η or the
matrix µ:

d

ds
yn(s) = anηs, and syn(s) = anµs

where

η =


0
1 0

2 0
.. ..

 , µ =


0 1

0 1
0 1
.. ..

 .

Lemma 2.1 The effect of r repeated differentia-
tions or q shifts on the coefficients of a polynomial
yn(s) is equivalent to the post-multiplication of an

respectively by ηr or µq.

The proof follows immediately by induction.

Theorem 2.2 If the operator D and the poly-
nomial yn(s) are of the forms (2.3), (2.7) then
Dyn(s) = anΠs, where

Π =
nd∑
i=0

ηipi(µ). (2.8)

proof: see [1].

(b). Matrix representation for
the Fredholm integral term

It can be seen that

∫ b

a

K1(s, t)yn(t)dt = an Kf s (2.9)

where

Kf =
∑n

q=0 k
(1)
0q vq+1 · · ·

∑n
q=0 k

(1)
n,qvq+1 0 · · ·

...
...

...
...∑n

q=0 k
(1)
0q vq+n+1 · · ·

∑n
q=0 k

(1)
n,qvq+n+1 0 · · ·

...
...

...
...


(2.10)

and so

Kf
lm

=
∑n

i=0 k
(1)
mivi+l+1,

vi+l+1 = bi+l+1−ai+l+1

i+l+1 , l,m = 0, · · · , n.

(2.11)

(c). Matrix representation for
the Volterra integral term

Here the columns of the matrix Kv associated
with Volterra integral term are computed as fol-
lowing:

(Kv)1 =


−

∑n
q=0

1
q+1k

(2)
0q aq+1

−
∑n

q=0
1

q+2k
(2)
0q aq+2

...


(2.12)

and, for m = 2, 3, · · ·
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(Kv)m =

∑m−2
q=0

1
q+1k

(2)
m−q−2,q −

∑n
q=0

1
q+1k

(2)
m−1,qa

q+1

∑m−2
q=1

1
q+1k

(2)
m−q−2,q−1 −

∑n
q=0

1
q+2k

(2)
m−1,qa

q+2

...
1

m−1k
(2)
00 −

∑n
q=0

1
q+m−1k

(2)
m−1,qa

q+m−1

−
∑n

q=0
1

q+mk
(2)
m−1,qa

q+m

...


.

(2.13)

If a = 0 then the columns of Kv are converted
to the following simple forms

(Kv)1 =

 0
0
...

 ,

(Kv)m =



∑m−2
q=0

1
q+1k

(2)
m−q−2,q∑m−2

q=1
1

q+1k
(2)
m−q−2,q−1

...
1

m−1k
(2)
00

0
0
...


,

m = 2, 3, · · · . (2.14)

(d). Matrix representation for
the supplementary conditions

Replacing yn(s) from (2.7) into left - hand side
of (2.2) we have:

nd∑
k=1

[c(1)
jk y(k−1)

n (a)

+c
(2)
jk y(k−1)

n (b) + c
(3)
jk y(k−1)

n (c)]
= anBj (2.15)

where for j = 1, · · · , nd,

Bj =

0!
0!

[
c
(1)
j1 + c

(2)
j1 + c

(3)
j1

]
1!
1!

[
c
(1)
j1 a + c

(2)
j1 b + c

(3)
j1 c

]
+ 1!

0!

[
c
(1)
j2 + c

(2)
j2 + c

(3)
j2

]
...

(nd−1)!
(nd−1)!

[
c
(1)
j1 and−1 + c

(2)
j1 bnd−1 + c

(3)
j1 cnd−1

]
+ · · · + (nd−1)!

0!

[
c
(1)
j,nd−1 + c

(2)
j,nd−1 + c

(3)
j,nd−1

]
nd!
nd!

[
c
(1)
j1 and + c

(2)
j1 bnd + c

(3)
j1 cnd

]
+ · · · + nd!

1!

[
c
(1)
j,nd

a + c
(2)
j,nd

b + c
(3)
j,nd

c
]

...


.(2.16)

We refer to B as the matrix representation of
the supplementary conditions and Bj as its jth

column.The following relations for computing the
elements of the matrix B can be deduced from
(2.13):

bij =
i∑

k=1

(i − 1)!
(i − k)!

[
c
(1)
jk a(i−k) + c

(2)
jk b(i−k) + c

(3)
jk c(i−k)

]
,

i, j = 1, · · · , nd

and

bij =
nd∑

k=1

(i − 1)!
(i − k)!

[
c
(1)
jk a(i−k) + c

(2)
jk b(i−k) + c

(3)
jk c(i−k)

]
,

i = nd + 1, nd + 2, · · · , j = 1, · · · , nd.

Hence (2.2) can be written as

anB = d, (2.17)

where d = [d1, · · · , dnd
] is the vector obtained

from the right-hand side of (2.2). Consequently,
using theorem (2.2) and the results of (b), (c)
and (d) parts, we can write the following system
of linear equations instead of (2.1) and (2.2):

{
an(Π − λ1Kf − λ2Kv) = f,

aB = d.
(2.18)

Now setting
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Π̂ = Π − λ1Kf − λ2Kv (2.19)

Gn =
[
B1, · · · , Bnd

, Π̂1, · · · , Π̂n+1−nd

]
(2.20)

and

gn = [d1, · · · , dnd
, f0, · · · , fn−nd

] , (2.21)

(where Π̂i denotes the ith column of Π̂), the
system of equations (2.18) then can be written as

anGn = gn, (2.22)

which must be solved for the unknown coeffi-
cients a0, · · · , an.

Remark 2.3 For λ1 = 0 equation (2.1) is trans-
formed into a Fredholm integro- differential equa-
tion and λ2 = 0, it is transformed into a Volterra
integro- differential equation. For λ1 = λ2 =
0, the equation is transformed into a differential
equation. For nd = 0 and p0(s) = 1, it is trans-
formed into a Fredholm-Volterra integral equation.

3 ERROR ESTIMATION
OF THE TAU METHOD

In this section an error estimator for the Tau
approximate solution of a Fredholm-Volterra
integro-differential equation is obtained. Let us
call en(s) = y(s) − yn(s) as the error function of
the Tau approximation yn(s) to y(s), where y(s)
is the exact solution of (2.1) and (2.2). Hence,
yn(s) satisfies the following problem

Dyn(s) − λ1

∫ b

a
K1(s, t)yn(t)dt

−λ2

∫ s

a
K2(s, t)yn(t)dt = f(s) + Hn(s),

s ∈ [a, b] (3.1)

∑nd

k=1[c
(1)
jk y

(k−1)
n (a) + c

(2)
jk y

(k−1)
n (b)

+c
(3)
jk y

(k−1)
n (c)] = dj ,

j = 1, · · · , nd, (3.2)

a < c < b.

Where Hn(s) is a perturbation term associated
with yn(s) and can be obtained by substituting
yn(s) into the equation

Hn(s) = Dyn(s) − λ1

∫ b

a
K1(s, t)yn(t)dt

−λ2

∫ s

a
K2(s, t)yn(t)dt − f(s). (3.3)

We proceed to find an approximation en,N (s)
to the en(s) in the same way as we did before for
the solution (2.1) and (2.2).

Subtracting (3.1) and (3.2) from (2.1) and
(2.2), respectively, the error function en(s) sat-
isfies the equation

Den(s) − λ1

∫ b

a

K1(s, t)en(t)dt

−λ2

∫ s

a

K2(s, t)en(t)dt = −Hn(s),

s ∈ [a, b] (3.4)

with the homogeneous conditions

nd∑
k=1

[c(1)
jk e(k−1)

n (a) + c
(2)
jk e(k−1)

n (b)

+c
(3)
jk y(k−1)

n (c)] = 0,

j = 1, · · · , nd. (3.5)

Solving this problem in the same way as sec-
tion (2), we get the approximation en,N (s)(N de-
notes the Tau degree of en(s)) . It should be noted
that in order to construct the Tau approximation
en,N (s) to en(s), only the right-hand side of (2.22)
needs to be recomputed, the structure of the co-
efficient matrix Gn remains the same.

4 NUMERICAL EXAM-
PLES

In this section, we report on numerical results
of some examples, selected through integral and
integro-differential equations, solved by the Tau
Method described in this paper. We calculated
with 15 and 20 digits of accuracy with Maple pro-
gramming.

For the examples 2 − 4, we have reported, in
Tables 1 − 3, the values of exact solution y(s),
Tau approximate solution yn(s), absolute error
|y(s) − yn(s)| and estimation error (denoted by
exact, Tau, Tau-err and Esti.-err, respectively) at
selected points of the given interval.

Remark 4.1 It should be noted that, for the ex-
amples 2 and 4 we have used a two variate Taylor
expansion to approximate their kernels.
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EXAMPLE 1. ([15],example(1))

sy′′(s) − sy′(s) + 2y(s) −
∫ 1

0

(s + t)y(t)dt

−
∫ s

0

(s − t)y(t)dt =

1
12

s4 − 1
6
s3 − 1

2
s2 − 13

6
s +

17
12

,

0 ≤ s ≤ 1

y(0) = 1

y′(0) − 2y(1) + 2y(0) = 1.

where nd = 2, a = 0, b = 1, p0(s) = 2, p1(s) =
−s, p2(s) = s, λ1 = λ2 = 1, K1(s, t) = s + t,
K2(s, t) = s − t and f(s) = 1

12s4 − 1
6s3 − 1

2s2 −
13
6 s+ 17

12 Here c can be taken any number between
a and b.

We approximate the solution y(s) by the Tau
approximate

y2(s) = a0 + a1s + a2s
2 (4.1)

with n = 2.
Then using relations, stated at the parts

(a), (b), (c) and (d) of section 2, for a (n + 1) ×
(n + 1) matrix, we obtain the following matrices

Π =

 2 0 0
0 1 0
0 2 0

 ,Kf =

 1
2

1
2 0

1
3

1
2 0

1
4

1
3 0

 ,

Kv =

 0 0 1
2

0 0 0
0 0 0


B =

 1 0
0 −1
0 −2


with

f =
[

f0 f1 f2

]
=

[
17
12 − 13

6 − 1
2

]
,

d =
[

d1 d2

]
=

[
1 1

]
.

Now using relations (2.16)−(2.18), we find the
system of equations (2.19) as follows:

[
a0 a1 a2

]  1 0 3
2

0 −1 − 1
3

0 −2 − 1
4

 =
[

1, 1, 17
12

]

and its solution

a2 =
[

a0 a1 a2

]
=

[
1 1 −1

]
.

Substituting the elements of this vector into
(4.1) we obtain the solution

y2(s) = 1 + s − s2

which is the exact solution.
EXAMPLE 2. ([14], example(b) )

y′(s) = 1 + 2s − y(s) +
∫ s

0

s(1 + 2s)et(s−t)y(t)dt,

0 ≤ s ≤ 1

y(0) = 1.

The exact solution is y(s) = es2
. For numerical

results see table 1.
EXAMPLE 3. ([15], example(3) )

y′(s) +
∫ s

0

y(t)dt = 1, 0 ≤ s ≤ 1

y(0) = 0.

The exact solution is y(s) = sin(s). For nu-
merical results see table 2.

EXAMPLE 4. ([15],example(4))

y′′(s) + sy′(s) − sy(s) = es − 2sin(s)

+
∫ 1

−1

sin(s)e(−ty(t)dt,

−1 ≤ s ≤ 1

y(0) = 1

y′(0) = 1.

The exact solution is y(s) = es. For numerical
results see table 3.
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TABLE 1. Numerical results of Example(2)

n = 10
s exact Tau Tau − err Esti. − err

0.00 1 1 0 0
.20 1.04081077 1.04081077 5.72156e − 12 5.68889e − 12
.40 1.17351087 1.17351085 2.38451e − 08 2.33017e − 08
.60 1.43332941 1.43332623 3.18608e − 06 3.02331e − 06
.80 1.89648088 1.89637596 1.04921e − 04 9.54437e − 05
1.00 2.71828183 2.71666667 1.61516e − 03 1.38889e − 03

n = 15
0.00 1 1 0 0
.20 1.04081077 1.04081077 1.63300e − 16 1.62540e − 16
.40 1.17351087 1.17351087 1.08446e − 11 1.06522e − 11
.60 1.43332941 1.43332941 7.28709e − 09 6.99680e − 09
.80 1.89648088 1.89648013 7.51118e − 07 6.98103e − 07
1.00 2.71828183 2.71825397 2.78602e − 05 2.48016e − 05

n = 20
0.00 1 1 0 0
.20 1.04081077 1.04081077 1.00000e − 19 3.60219e − 22
.40 1.17351087 1.17351087 4.46000e − 17 4.40759e − 17
.60 1.43332941 1.43332941 3.39914e − 13 3.29740e − 13
.80 1.89648088 1.89648088 1.95219e − 10 1.84852e − 10
1.00 2.71828183 2.71828180 2.73127e − 08 2.50521e − 08

TABLE 2. Numerical results of Example(3)

n = 5
s exact Tau Tau − err Esti. − err

0.00 0 0 0 0
.20 .19866933 .19866933 2.60e − 09 2.54e − 09
.40 .38941834 .38941867 3.24e − 07 3.25e − 07
.60 .56464247 .56464800 5.53e − 06 5.55e − 06
.80 .71735609 .71739733 4.12e − 05 4.16e − 05
1.00 .84147098 .84166667 1.96e − 04 1.98e − 04

n = 10
0.00 0 0 0 0
.20 .19866933 .19866933 1.00e − 10 5.33e − 13
.40 .38941834 .38941834 1.00e − 10 5.28e − 12
.60 .56464247 .56464247 1.00e − 10 1.05e − 10
.80 .71735609 .71735609 2.20e − 09 2.18e − 09
1.00 .84147098 .84147101 2.49e − 08 2.51e − 08

n = 15
0.00 0 0 0 0
.20 .19866933 .19866933 1.00e − 10 5.32e − 13
.40 .38941834 .38941834 1.00e − 10 4.23e − 12
.60 .56464247 .56464247 0 1.41e − 11
.80 .71735609 .71735609 0 3.30e − 11
1.00 .84147098 .84147098 0 6.33e − 11
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TABLE 3. Numerical results of Example(4)

n = 5
s exact Tau Tau − err Esti. − err

−1.00 .36787944 .36657770 1.30e − 03 1.28e − 03
−.80 .44932896 .44908424 2.45e − 04 2.42e − 04
−.60 .54881164 .54884907 3.74e − 05 3.78e − 05
−.40 .67032005 .67037659 5.65e − 05 5.67e − 05
−.20 .81873075 .81875183 2.11e − 05 2.12e − 05
0.00 1 1 0 0
.20 1.22140276 1.22144606 4.33e − 05 4.37e − 05
.40 1.49182470 1.49207429 2.50e − 04 2.52e − 04
.60 1.82211880 1.82288780 7.69e − 04 7.82e − 04
.80 2.22554093 2.22726812 1.73e − 03 1.77e − 03
1.00 2.71828183 2.72133477 3.05e − 03 3.19e − 03

n = 10
−1.00 .36787944 .36787946 2.29e − 08 2.27e − 08
−.80 .44932896 .44932897 7.31e − 09 7.28e − 09
−.60 .54881164 .54881164 2.26e − 09 2.25e − 09
−.40 .67032005 .67032005 1.43e − 10 1.39e − 10
−.20 .81873075 .81873075 2.71e − 102.71e − 10
0.00 1 1 0 0
.20 1.22140276 1.22140276 2e − 09 1.99e − 09
.40 1.49182470 1.49182468 2.02e − 08 2.02e − 08
.60 1.82211880 1.82211868 1.18e − 07 1.18e − 07
.80 2.22554093 2.22554039 5.41e − 07 5.39e − 07
1.00 2.71828183 2.71827972 2.11e − 06 2.10e − 06

n = 15
−1.00 .36787944 .36787944 3.72e − 13 3.67e − 13
−.80 .44932896 .44932896 2.23e − 13 2.19e − 13
−.60 .54881164 .54881164 1.00e − 13 9.75e − 14
−.40 .67032005 .67032005 3.20e − 14 2.90e − 14
−.20 .81873075 .81873075 3.00e − 15 3.06e − 15
0.00 1 1 0 0
.20 1.22140276 1.22140276 0 1.10e − 14
.40 1.49182470 1.49182470 1.70e − 13 1.60e − 13
.60 1.82211880 1.82211880 1.51e − 12 1.51e − 12
.80 2.22554093 2.22554093 1.17e − 11 1.17e − 11
1.00 2.71828183 2.71828183 7.52e − 11 7.50e − 11
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5 conclusions

Most integro-differential equations are usually dif-
ficult to solve analytically. In many cases, it is
required to obtain the approximate solutions. For
this purpose, the Tau method presented in this
paper can be applied. Advantages of the method
are that the solution is expressed as a polynomial,
the error estimator is available and this method is
an exceedingly good approximating method in the
sense that its error for problems with reasonable
solutions, decays exponentially as the degree of
approximation increases [16].
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