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Abstract: - Nonlinear systems are difficult to control and may exhibit chaotic behavior under certain 
parameters selection. Typical example of these systems is the well known Lorenz attractor. In this paper 
passive theory is used to design controllers to a class of minimum phase nonlinear systems. The feedback 
controllers guarantee asymptotic stability of the closed loop system. 
The method is applied to a permanent magnet synchronous motor. Simulation studies of test system are shown 
for both the open and closed loop system behavior show the effectiveness of the proposed controller. 
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1   Introduction 
A key issue in the design of control systems is 
proving that the resulting closed-loop system is 
stable. Linear control theory give attractive control 
tools to linear or linearized plants. Unfortunately 
most practical applications involve nonlinear 
systems which are difficult or impossible to exploit 
linear theory. In the last decades nonlinear theory 
has been developed giving sometimes tools with 
surprisingly good results but these tools do not 
apply in general. These methods are adaptive 
control techniques, feedback linearization [8], 
Lyapunov approach and dissipative methods [1-2] 
providing alternative controller design and 
implementation methodologies guarantying global 
or local stability for classes of nonlinear systems 
[4]. 
In this paper passive control theory for nonlinear 
systems is reviewed and tested in practical 
applications. Passive systems, like linear systems 
containing only dampers or resistors, are stable. In 
this point is important to know when a nonlinear 
system is passive. Passive nonlinear systems enjoy 
the nonlinear analog of the minimum phase 
property. This property in nonlinear systems is the 
stability of zero dynamics. Moreover, the important 
issue in this analysis is to determine when a finite 
dimensional nonlinear system can be rendered 
passive via feedback. In other terms the design 
issue is to identify nonlinear systems that are 
feedback equivalent to passive systems. Results in 

[1] give the necessary condition to answer this 
question. 
Here, there are studied systems having the 
mathematical form of Lorenz strange attractor [7]. 
This well known system exhibit chaotic behavior to 
certain range of parameters selection. Chaotic 
behavior is undesirable in practice. Furthermore, 
stability is the fundamental requirement. Conditions 
of Lorenz system feedback equivalence to a passive 
system are satisfied and the proposed controller is 
given  
Permanent magnet (PM) synchronous motors are 
now very popular in a wide variety of industrial 
applications. When permanent magnets are buried 
inside the rotor core rather than bonded on the rotor 
surface, the motor not only provides mechanical 
robustness but also opens a possibility of increasing 
its torque capability. In a PM synchronous motor 
where inductances vary as a function of rotor angle, 
the 2 phase (d-q) equivalent circuit model is 
commonly used for simulation studies and control 
design [5-6].  
The effectiveness of the controller is shown by 
means of numerical simulations. The paper is 
organized as follows: Section 2 states preliminary 
material of passive and chaotic systems. Section 3 
presents the condition of feedback equivalence to 
passive systems and the proposed controller. In 
Section 4 the PM synchronous motor model is 
derived in closed and closed loop. Section 5 
simulation studies are given and conclusion 
follows. 
 



2   Preliminaries 
Nonlinear chaotic systems ate presented and 
compared to passive systems. Feedback 
equivalence to passive systems is  
 
2.1  Lorenz systems  
Lorenz's system is a three-dimensional, nonlinear 
model. The three variables: x1, x2 and x3 correspond 
to the location of a point in geometric space. 
Lorenz's system, although simple, is actually an 
insolvable problem except by numerical means and 
exhibits chaotic behavior for suitable selection of 
parameters. Lorenz system is described by the 
following equation set 
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2.2  Passive systems  
Let nonlinear systems described by the general 
form 
 

( ) ( )x f x g x u= +!  (2) 

( )y h x=  
 

where nx R∈ , ry R∈ , mu R∈  f,g are smooth 

(i.e. C∞ ) vector fields and h is a smooth mapping. 
Suppose f has at least one equilibrium point. 
Normal form of (2), used in next analysis, is the set 
of eq.   
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Zero dynamics describe the dynamics of the system 
(3) where y=0. A system whose zero dynamics are 
asymptotical stable is called minimum phase 
system [1, 4].  
Let a system states function  V(x) called storage 
function for system (3) and W(x) called Lyapunov 
function. 
Definition 1. [ ] System of the form (3) is called 
passive if  
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t
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Definition 2. W(x) is a Lyapunov function if 
0)( >xW  

0)0( =W  (5) 
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Definition 3. System has the KYP property [4] if 

( ) ( ) ( ) 0fL V x V x f x= ∇ ≤  (6) 
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where L symbol denotes Lie derivative. 
 
2.3  Feedback equivalence to passive systems  
Based on the properties of passive systems essential 
conditions of feedback equivalence of nonlinear 
systems to passive are studied in next section. In 
particular state feedback controls of the form 

( , )u k x v=  (7) 
where x are the states and v, external input signal, 
are requested to result to a closed loop passive 
system. 
 

3   Main result 
Theorem 1.: If system (3) x=0 is ann equilibrium 
point, has relative degree {1,1, …1} and is weakly 
minimum phase then can be locally feedback 
equivalent to a passive system with proper storage 
function ( )V x  

Proof: see [1]. 
 

Corollary. Feedback control of form  (8) to system 
(3) which satisfies the requirements of Theorem 1 
is a closed loop dissipative system. 
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Application of (8) results to following closed loop 
system. 
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Further linear feedback control to the system 
improves its stability. Taylor approximation near 
equilibrium point gives the convergence condition 
where the Jacobian matrix should be Hurwitz [4]. 
 
 

4   PM synchronous motor model 
The system can be stabilized if the linearised model 
is asymptotic stable (has all the eigenvalues with 
negative real part) 
 
Application to synchronous motor 
Consider a permanent-magnet synchronous motor 
model described as follows [6] 



sqsqmsdsdsdssd iLi
dt

d
LiRu ω−+=   

)( Fsdmmsqsqsqssq iLi
dt

d
LiRu Ψ+++= ω  (10) 

( )( )sdsqsqdssqFw iiLLipt −+Ψ=
2

3
 

( )Lwmm tt
Jdt

d
−+= βωω 1

 

 
where isd, isq are the d, q axes transformed currents, 
usd, usq the transformed input voltages ω m the 
motor angular velocity , tW and tL are the electric 
and external load torques. 
 
In Table 1. there is a list of PM synchronous motor 
parameters used in this analysis. 
 

sR  Stator resistance 

dsL  Direct  axis 
inductance 

sqL  Quadrature axis 
inductance 

mL  Mutual stator, field 
infuctance 

FΨ  Field flux 

p pole number 

β  viscous friction 
constant 

Table 1. List of PM synchronous motor parameters. 
 
 
Since it is a PM synchronous motor, field flux is 
constant. We also consider symmetric construction 
so the inductances dsL , sqL  are equal. 

Converting the equations to state space 
representation we derive 
 

d d q di i i uω= − + +!  
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Considering the case where 0d q Lu u T= = = ,  

4a =  and b= 30 the system exhibits chaotic 
behaviour. 
 
 
Selecting  
 

0d Lu T= =  (12) 

(1 )q qu a i b vω= − − +  

where v is external input signal 
 
PM synchronous motor model results to 

d d qi i iω= − +!  

q q d qi i i b uω ω= − − + +!  (13) 

4( )qiω ω= −!  

 
Selection of b so that Taylor approximation near 
equilibrium point be Hurwitz gives the convergence 
condition of the closed loop system.  
 
 

5   Illustrative example 
In Fig. 1 open loop response of PM synchronous 
motor response is shown with initial conditions 
[1.00 0.00 -1.00] and zero inputs. Parameters were 
selected to produce chaotic behavior which in this 
response is obvious.  
In Fig. 2 feedback was applied and the system was 
simulated from the same initial point. Chaos was 
removed but long transients are present. 
In Fig. 3 gain was changed to produce more 
acceptable response. Suitable parameter selection in 
the feedback controller improves closed loop 
system performance.  
 

 
Fig. 1 Open loop response exhibits chaotic 

behavior (b=30). 
 



. 
Fig. 2.  Stable closed loop output response with 

long transients (b=10). 
 

 
Fig. 3. Stable closed loop output response for 

another selection of b (b=1). 
 
 
 
 

6   Conclusion 
This paper has presented a design method to control 
nonlinear systems to avoid chaotic behavior and to 
guarantee asymptotic stability by feedback. Linear 
control methods can not apply here, so passivity 
theory was used.  
 

The method is general and it was applied to PM 
synchronous motors. Illustrative examples showed 
the effectiveness of the method. These results are 
encouraging towards the applicability of the 
proposed control scheme. 
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