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Abstract  We formulate novel general models of vector hysteresis. For our model with two 
elementary output states, we establish the novel property of maximal reversal points (analogue of 
the wiping-out property of scalar models), and algorithms for identification of the weight function 
and the switching hypersurfaces. 
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1  Introduction 
The phenomenon of hysteresis is arises in 
many areas of Physics, Engineering, 
Economics, Biology, etc. Originally, 
hysteresis was most extensively studied in 
the context of magnetic hysteresis. It is well 
known that there is, in adition to magnetic 
hysteresis, also optical hysteresis, 
superconducting hysteresis, ecnomic 
hysteresis, hysteresis in biology (e.g. cell 
expresion), mechanical hysteresis (models 
of friction, rheological models, etc.), and 
other manifestations of hysteresis. 
Generally, hysteresis is characterized by 
phenomena of non-local memory, of a 
nature that cannot be modelled by Volterra 
integral equations or Wiener-Volterra series 
due to lack of adequate smoothness and 
scale-invariance (to be explained below).  
The problem of modelling hysteresis when 
the input is a scalar-valued signal was 
initiated in the paper of Preisach and 
continued in the works of Everett, Neel, and 
others. A big step in the study of hysteris 
has been the work of Krasnosel'skii and 
Pokrovskii [4] who provided (among other 
things) a firm rigorous foundation for the 
Preisach model as a strictly mathematical 
operator regardless of the physical 

interpretation of each manifestation of 
hysteresis. 
In many applications, it is necessary to use a 
hysteresis model which accepts vector-
valued input signals. Among many 
applications of vector hysteresis, we 
mention the new technology of 
magnetoresistive random-access memory 
(MRAM), where programming is achieved 
by a vector-valued input signal (time-
varying electric currents along the two 
programming line directions), and 
particularly the Savtchenko switching 
invention. Vector hysteresis has also many 
other applications, for example, mechanical 
systems that contain elements that are 
rheologically modelled as hysteretic 
elements (such as reinforced concrete 
structures) under the effects of complex 
loading induced, e.g., by seismic excitation. 
The extension of the classical Preisach 
model to the vector-valued case is not a 
straightforward matter. There exist many 
models of vector hysteresis, many of which 
are summarized in [5]. Other recent works 
dealing with system-theoretic and control-
theoretic aspects of hysteresis include [1, 2, 
3]. 



In this paper, we define and study a novel 
generalized model of vector hysteresis that 
preserves as many of the features of the 
scalar Preisach model as possible. 
 
 

2  Brief outline of some 
properties of the Preisach model 
The standard Preisach model is described in 
terms of the elementary transducers (non-
ideal relays) and a Borel measure for the 
superposition of elementary transducers. 
For each β>αβα ),,( , the operator αβV , 

acting on continuous functions u(t), has two 
output states, which we may conventionally 
designate as 0 and 1. A switching from 0 to 
1 takes place when u exits from ),( α−∞ , 
and the reverse switching, from 1 to 0, takes 
place when u exits from ),( +∞β . The 
hysteresis operator H is defined by 
 

)d,d()t)(uV(:)t)(Hu( βαµ= αβ
β>α
∫∫         (1) 

 
In case µ is absolutely continuous relative to 
the Lebesgue measure in the αβ-space, the 
hysteresis operator becomes 
 

βαβα= αβ
β>α
∫∫ dd),(w)t)(uV()t)(Hu(    (2) 

 
As established in [5], the Preisach operator 
has, among other important properties, the 
following two: 
(1) the Preisach operator stores only 
information about dominant local extrema of 
the input signal u(t), and every other 
information about u(t) is wiped out; 
(2) the weight function w(α,β) can be 
identified (if it is unknown) on the basis of 
using special types of input signals and 
obtaining the first-order reversal curves. 
In the sequel, we shall be interested in, 
among other things, establishing analogues 
of these two properties for general vector 
hysteresis models that are introduced in this 
paper. 

3  Generalized vector model with 
two elementary output states 
Every model that preserves some essential 
analogies with the Preisach scalar model has 
to represent the hysteretic output as a 
superposition of elementary transducers: 
 

( )( ) ( )( ) ( )Hu t V u t d= ∫Ω γ µ γ                   (3) 

 
where { : }Vγ γ ∈Ω  is the family of 

elementary output operators parameterized 
by a (generally vector-valued) parameter γ, 
and µ is a finite Borel measure on the space 
Ω of parameter values.  
The classical Preisach model has two output 
states for each elementary transducer (non-
ideal relay). For the generalized vector 
model of this section, we take also two 
output states for the elementary transducers; 
we label these states as 0 and 1. We consider 

an open subset G of IRn  and 2 families of 
hypersurfaces (manifolds of co-dimension 1) 

S c S c+ + − −( ), ( )  in G, parameterized by m-
dimensional vector-valued parameters 

c c+ −,  taking values in the sets C C+ −, , 
respectively. We postulate that each 

hypersurface S c± ( ) divides IR S cn \ ( )±  

into two open subsets R c j orj
± =( ), 0 1 . A 

pair ( , )c c+ −  of parameters will be called 
admissible if the following two conditions 
are satisfied: 
 

R c S c R c

R c S c R c

1 1

0 0

± + + + − −

− − − − + +

∪ ⊆

∪ ⊆

( ) ( ) ( );

( ) ( ) ( )
            (4) 

 

The set of all admissible pairs ( , )c c+ −  will 

be denoted by Ω; clearly, Ω ⊆ ×+ −C C .  

The set A=A( , ; , )c c u t+ −  of admissible 
output states of the elementary transducer 

V c cγ γ( : ( , ))= + − is defined as follows: 

 



if u(t) ∈ + +R c1 ( ) , then A:={1}; 

if u t R c( ) ( )∈ − −
0 , then A:={0};        

if u t R c R c( ) ( ) ( )∈ ∩+ + − −
0 1 , then  

A:={0, 1} 
                                                                 (5) 
 
The transducer Vγ  is defined in terms of 4 

variables: the IRn −  valued signal u, the 
initial time t0 , the current time t, and the 

initial output state v A c c u t0 0∈ + −( , ; , ) . 
The time-evolution of the transducer Vγ is 

described in terms of the exit times 
τ τ0 1or  of the signal u from the sets 

R c or R c0 1
− − + +( ) ( ) . The exit time 

τ τ≡ ( , , )u S t  of a signal u that satisfies 

u t S( ) ∈  where S is an open set in IRn  is 
the first time, after time t, that the signal hits 
the boundary of S, specifically 
 
τ( , , ): inf{ ' ( ' ) }u S t t t: u t S= > ∉                (6) 
 
The switching rule for Vγ is: 

 

if ( )( )V u tγ
+ = 0 , and if 

τ τ0 0= + +( , ( ), )u R c t , then 

( )( ' ) ' ,

( )( ) ;

V u t for t t

V u

γ

γ

τ

τ

= < <

=+

0

1

0

0

 

if ( )( )V u tγ
+ = 1, and if 

τ τ1 1= − −( , ( ), )u R c t , then 

0))(uV(

,'ttfor1)'t)(uV(

1

0

=τ

τ<<=

+
γ

γ
 

                                                                (7) 
 
Under the conditions specified in this 
section, and if u  a continuous function of t, 
then each transducer Vγ is well-defined. 

Admissible initial states for ( )( )V u tγ 0  have 

to be chosen so that the resulting function of 
γ is measurable. 

We remark that this model can be extended  
to include a vector output, by making the 
modification of using two linearly 
independent vectors w w0 1, , instead of the 
numbers 0 and 1, as the possible output 
states of elementary transducers.  
 
 

4  Generalized vector model with 
an arbitrary number of output 
states 
We define a vector hysteresis model with an 
arbitrary (finite) set of possible output states 
for the elementary transducers. Let A be the 
set of all possible output states. Otherwise 
the terminology and notation are the same as 
in section 2 above.  
The model is defined through the following 
ingredients (for each γ in Ω): 
 

(i) a collection { : }C Aα α ∈  of open subsets 

of G such that 
α

α

∈
=

A

C GU  ; 

(ii) a partition of each boundary ∂ αC  into 

mutually disjoint sets Sαβ ,  β α∈A \ { } , 

with the property S Cαβ β⊆ . 
 
The admissible output states, when the value 
of the input signal is u0 , comprise those 

α for which u C0 ∈ α . The switching rule 
is: 
 

if ( )( )V u tγ α+ =  and 

u S u C t( ) ( : ( , , ))τ τ τα
αβ

α
α− ∈ = , then 

( )( )V uγ ατ β+ =  

                                                                 (8) 
 
The superposition of the elementary output 
operators Vγ is carried out as in section 3. 

 

 
 



5 Some properties of generalized 
models of vector hysteresis 
We shall examine some properties of 
themodel of section 3. 
The first question we examine is: what is the 
analogue of the wiping-out property of the 
Preisach model? 
The role of local extrema of the input signal 
is played by the reversal points of the input 
signal in the vector case. A reversal point of 
the vector signal u is a point where (i) u(t) 

belongs to the boundary of a set R cj
± ( )  (j=0 

or 1) for some c, and (ii) there exists an ε>0 
such that, for all t' that satisfy 0 ≠ − <| ' |t t ε , 

we have u t R cj( ' ) ( )∈ ± . We also define a 

reversal interval to be an interval [ , ]t t1 2  

such that u t R c t t tj( ) ( ) [ , ]∈ ∀ ∈± ±∂ 1 2  and, 

for some ε>0 we have  
 

)t,t()t,t(t

)c(R)t(u

2211

j

ε+∪ε−∈∀

∈ ±±
               (9) 

 
The role of dominant local extrema is played 
by maximal reversal points, which we define 
now. We introduce a partial order on the sets 

C C+ −,  by the following conditions: 
  

we say that c c1 2
+ +≤  if 

R c R c1 1 1 2
+ + + +⊇( ) ( ) ; 

we say that c c1 2
− −≤  if  

R c R c0 1 0 2
− − − −⊇( ) ( )  

                                                              (10) 
 
When a signal has a non-trivial interval (i.e. 
an interval ]t,t[ 21  with 21 tt < ) of reversal 
points, then we call the elements of that 
interval lingering points. The properties and 
the identification methods described below 
apply to signals without lingering points. 
However, with some modifications, it is 
possible to include cases of lingering points.               

A  reversal point is said to be maximal if the 

corresponding value of c±  is maximal 
relative to the partial order defined above. 
The analogue of the wiping-out property for 
the model introduced in this paper is: if the 
signal u has no lingering part, then  the 
hysteresis operator of section 3 of this paper 
stores information only about the maximal 
reversal points, and all other information is 
wiped out. 
The second question we wish to address is 
the issue of identification. For the vector 
hysteresis model of section 3, there are two 
identification problems: 
(I) identification of the measure 

(distribution) µ if the hypersurfaces )c(S ±±  
are known; 
(II) identification of the hypersurfaces 

)c(S ±±  if the parameter sets −+ C,C  are 
known (or conventionally defined) but the 
hypersurfaces themselves, as well as the 
measure µ, are unknown. 
The solution of the first identification 
problem is based on the solution of the 
corresponding problem for the Preisach 
model. If there exists a curve (k) in G that 

intersects all surfaces )c(S ±±  transversally, 
and intersects each such hypersurface at one 
single point. The restriction of the operator 

γV  to signals that take values in (k) is, 

under certain conditions to be stated below, 
an operator of the Preisach type. To show 
this, we observe that the curve (k) intersects 
the two families of hypersurfaces at points 
which we conventionally denote by α (for 

the family ++++ ∈Cc),c(S ) and β (for the 

family −−−− ∈Cc),c(S ). Now we need an 
assumption: 
(A) The parameters α, β defined above, 
corresponding to admissible values of 

)c,c( −+ , have no crossover, i.e. each 

admissible α is on the same side (relative to 
an orientation on the curve (k)) of the 
corresponding β. 
 



In that case, each admissible α divides 
(k)\{ α} into two relatively open parts (in the 
relative topology of (k) inherited from the 
set G) and the corresponding β lies in one of 
those parts; denote that part by )k( α . 

Similarly, each β divides (k)\{α} into two 
relatively open subsets, and we denote by 

)k( β  that part that contains α. In this way, a 

switching from 0 to 1 occurs when u exits 
from )k( α , and, symmetrically, a switching 

from 1 to 0 occurs when u exits from )k( β . 

But this is precisely the definition of a scalar 
KMPP operator. Consequently, the standard 
identification methods for scalar Preisach 
hysteresis, developed in [5], can applied. 
We remark here that, without the 
assumption of no crossover, the 
identification method of [5] can still be 
modified to identify µ. 
The second identification problem can be 
solved if, in addition to the previous 
assumptions, we postulate the existence of 

two families of curves 2,1i),k( i =σ  
parameterized by a vector-valued parameter 

σ, so that each 2,1i),k( i =σ  intersects the 
two (now presumed unknown) families of 

hypersurfaces )c(S ±±  transversally, and 

also each )k( 1
1σ intersects each )k( 2

2σ  

transversally. Further, we postulate that each 

of the two families 2,1i),k( i =σ  fill up the 
entire set G. Then each point in G can be 
represented as an intersection of some 

)k( 1
1σ  with some )k( 2

2σ . On each curve of 

each of the two families 2,1i),k( i =σ , we 
label all its points as 

)(),();(),( 2211 σβσασβσα . 
On each curve of the first family, by using 
the identification method for a scalar 
Preisach model, we estimate the weight 
function 2,1i),,,(w ii =βασ (assuming µ is 
absolutely continuous relative to the 
Lebesgue measure on the αβ-space). If the 
same point in G can be represented both as 

),,( 1 βασ  and ),,( 2 βασ , then the values of 

1w  and 2w  should be equal at that point. 
The system of 2 equations 
 

c),,(w),,(w 211 =βασ=βασ                (11)  
 
can be solved, in principle, for each value of 
c, to give some solution 
 

)c,,(g),c,,(g 212211 σσ=βσσ=α        (12) 
 
The hypersurfaces described by these two 
families of equations are the wanted 

)c(S ±± . 
 

6 Conclusions 
We have introduced a general model of 
vector hysteresis that possesses interesting 
analogues of the properties of the standard 
(scalar) Preisach model. We have 
established an anlogue of the wiping-out 
property, which in our model becomes the 
maximal reversal point property. The 
identification problem for our problem is 
qualitatively different from the case of the 
standard Preisach model, as it involves not 
only the identification of a measure (used in 
the superposition of elementary transducers) 
but also the identification of two families of 
hypersurfaces that determine the model. We 
have established methods for the solution of 
both identification problems. We have also 
extended the general vector hysteresis model 
to the case of an arbitrary number of 
elementary output states. 
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