
An Efficient XML Parser Generator
Using Compiler Compiler Technique

KAZUAKI MAEDA
Department of Business Administration

and Information Science, Chubu University
1200 Matsumoto, Kasugai, Aichi 487-8501, JAPAN

Abstract: - This paper describes design issues and experiment results of an efficient XML parser generator,
Xsong. A traditional compiler construction technique is applied to Xsong so that it realizes both expressiveness
and efficiency for parsing XML documents. To compare with the performance of DOM based programs, SAX
based programs and a program generated by Xsong, experiments were designed. The experiments showed that
the program generated by Xsong is faster than the DOM based programs. Moreover, in regard to memory
usages, it is as efficient as the SAX based programs.

Key-Words: - XML, DOM, SAX, Compiler Compiler, Parser Generator, C++, Java, C#

1 Introduction

Due to the growth of the computing power and
the proliferation of the Internet, XML (Extensible
Markup Language) becomes very popular to repre-
sent data in many application fields. XML is de-
signed as a text-based, human-readable, and self-
describing language. In addition, XML is a markup
language derived from SGML (Standard General-
ized Markup Language) so that it can control the
format and the presentation of documents.

XML enables data exchange between different
platforms (computers, operating systems, and pro-
gramming languages) using the characteristics of
platform independence which XML has. For exam-
ple, we can exchange data between applications via
the Internet, or we can extract data from a database
and reuse it with other applications.

The orientation of XML documents is gener-
ally one of two types: document-centric and data-
centric[1, 2]. The target of the document-centric
XML documents is for visual consumption so that
the documents have less structured characteristics.
Books, articles, and E-mails are typical examples
for the document-centric. XHTML[3] is a language
to describe web pages as the document-centric XML
documents.

In contrast to this, the data-centric XML doc-
uments tend to include very granular collections
of data so that it is applied to computer process-
ing and databases storage. For example, bibliogra-
phy data and order forms are typical examples for
the data-centric. The data exchanged with Web
services[4] is mostly the data-centric XML docu-
ment.

XML has gained the prominence within the tech-
nology community in a short time. XML docu-
ments, however, take up lots of space to repre-
sent data that could be similarly modeled using a
binary-format or a simple text file format because
the XML documents are human-readable, platform-
neutral, meta data-enhanced, structured code. It
can be from 3 to 20 times as large as a compara-
ble binary or alternate text file representation[5].
In the worst case, it’s possible that 1G bytes of
database information could expand to over 20G
bytes of XML encoded data.

This paper describes a XML parser generator,
Xsong, which was developed for the data-centric
XML documents. Xsong is both easy to describe
user defined functions and useful to generate effi-
cient codes to parse XML documents1.

Xsong was designed from experiences to develop
a commercial software development tool. The tool
supports client/server application development on a
commercial database management system by Ora-
cle. It stores all the information in XML documents
and generates GUI based Java applications. At the
design phase of the tool, it expected that the size of
XML documents stored by the tool is more than a
few megabytes. Therefore, an efficient XML parser
was desperately needed. DOM and SAX were not
satisfy with the needs because DOM has the poor
performance and SAX has only a few functionality.
As a result of this, Xsong was developed.

1Xsong is available for the document-centered XML doc-
uments. It, however, does not make use of the efficiency
because the document size is comparatively small.

Xsong has the following characteristics.

• The generated program is efficient.

Xsong reads a schema definition of XML doc-
uments and user defined programs, and gener-
ates grammar rules for Antlr (ANother Tool for
Language Recognition) [6]. Antlr is a parser
generator which generates a recursive descen-
dent parser written in a specified program-
ming language. The generated XML parser
using Xsong and Antlr reads XML documents,
and checks their validity in comparison with
the schema definition. Thanks to the compiler
technology, the generated XML parser is as ef-
ficient as a parser using SAX.

• User defined functions are separated from the
schema definition.

The position of the schema definition is speci-
fied using XPath and user defined functions are
embedded into the XML parser according to
the specified position. As a result, the schema
definition and the user defined functions are
clearly separated.

If the user defined functions are embedded and
merged into the schema definition, it is hard for
human to read and maintain it. Therefore, the
separation of the schema definition and user
defined functions is very important.

• More than one programming languages are
supported.

The schema definition does not depend on a
specific programming language, but user de-
fined functions are written in one of favourite
programming languages. If a user changes
from the programming language to another
one, all the user has to do is to rewritten only
the user defined functions. Currently, three
programming languages (Java, C++, and C#)
are supported.

This paper describes the design issues of Xsong
and experiments to check the performance. In sec-
tion 2, the current major XML parsers will be
briefly discussed. In section 3, the overview of
Xsong, the input and output file will be explained.
Moreover, experiments to compare the performance
of DOM based programs, SAX based programs, and
a program generated by Xsong are described. Fi-
nally, the paper will be summarised.

2 Background

2.1 XML

The key rules of XML syntax are based on an ele-
ment and an attribute. For example, the simplified

research paper information in proceedings is defined
using DBLP Bibliography[7] shown in Figure 1 2.

The element defines structural parts of a docu-
ment by wrapping and labeling. In Figure 1, an
author is defined by wrapping it in a start tag and
an end tag labeled “author.” The attribute is a
name-value pair that qualifies an element. In Fig-
ure 1, an attribute, key, is defined using the name
“key” and the value “conf/robocup/MaedaKT98.”

<?xml version="1.0"?>
<dblp>

<inproc key="conf/robocup/MaedaKT98">
<author>Kazuaki Maeda</author>
<title>Ball-Receiving Skill Dependent on

Centering in Soccer Simulation Games
</title>
<pages>152-161</pages>
<year>1998</year>
<booktitle>RoboCup</booktitle>

</inproc>
</dblp>

Figure 1: An example of DBLP

Schema definition languages are used to specify
XML documents. There are some schema definition
languages, those are DTD, XML Schema[8], and
RELAX NG[9, 10]. In Xsong, RELAX NG is used
because of the simple and powerful language spec-
ification. Figure 2 shows an example of RELAX
NG, that is the specification of the bibliography in
Figure 1.

In the Figure 2, the “dblp” element declaration
specifies the child element “inproc.” Moreover, the
“inproc” element declaration specifies some child
elements, which are “author,” “title,” “booktitle,”
“pages,” or “year.” To specify text data, such as
a name of an author, we can use <text/> in those
element declarations. The “inproc” element also
has an attribute “key.”

2.2 DOM

Most popular approach for XML data processing is
a tree-based manipulation. To process XML doc-
uments, firstly, they are read and parsed to a hi-
erarchical tree of elements and other XML entities
in a main memory. After construction of the tree,
each node can be accessed using tree traversal APIs.
For the standard tree access, the Document Object
Model (DOM) is defined by W3C[11].

DOM provides a language independent definition
to access and modify XML documents. The DOM
APIs deal with the generic structural components
of XML documents. For example, there are many
APIs including

2This example is a part of the XML document used for
experiments in section 4.

<?xml version="1.0"?>
<grammar xmlns=

"http://relaxng.org/ns/structure/1.0">
<define name="dblp">

<element name="dblp">
<zeroOrMore>
<element name="inproc">

<attribute name="key"/>
<zeroOrMore>

<choice>
<element name="author">

<text/>
</element>
<element name="title">

<text/>
</element>
<element name="booktitle">

<text/>
</element>
<element name="pages">

<text/>
</element>
<element name="year">

<text/>
</element>

</choice>
</zeroOrMore>

</element>
</zeroOrMore>

</element>
</define>

</grammar>

Figure 2: RELAX NG Schema Definition for DBLP
bibliography

• appendChild(): to add a node to the end of
the list of children for a specified node,

• getFirstChild(): to get the first child of this
node,

• getNextSibling(): to get the node immediately
following this node, and

• setAttribute(): to set the value of an attribute
for the element.

We can develop programs to read XML data, mod-
ify them, add nodes to them, and delete nodes from
them using DOM implementations (ex. Xerces-
C++[12] and Xerces-J[13]) provided by open source
organizations or companies. Figure 3 is an exam-
ple of a C++ program to count the number of el-
ements. It is a fragment of a test program for the
performance evaluation described in section 4.

DOM has a drawback that entire XML docu-
ments must be loaded in the main memory before
manipulating them. The tree-based approach is
useful for programmers to manipulate XML docu-
ments according to the hierarchical tree structure.
The programs walk through the structure of the

int countChildElements(DOMNode* n) {
DOMNode* cn;
int count = 0;
if(n){
if(n->getNodeType() ==

DOMNode::ELEMENT_NODE)
count++;

for(cn=n->getFirstChild(); cn != 0;
cn=cn->getNextSibling())

count += countChildElements(cn);
}
return(count);

}

Figure 3: A fragment of C++ programs using DOM

XML documents in order to access them so that
entire XML documents must be loaded in the main
memory before the manipulation. When a program
reads large XML documents to use DOM APIs, it
puts a great strain on system resources such as
memory and CPU. Moreover, if we need to con-
vert the XML documents from a DOM representa-
tion to a program specific data structure, memory
shortages are made worse.

This results in that DOM provides much expres-
siveness for processing XML documents, but it con-
sumes a lot of system resources.

2.3 SAX

As an alternative approach, Simple API for XML
(SAX) has been designed[14]. It provides an event-
based processing. Instead of constructing an inter-
nal tree, SAX sends parsing events for basic XML
contents, for example, start of an element, end of
an element, and so on. The events are sent to appli-
cation handlers in exactly the order they are found
in the XML documents. XML documents can be
processed incrementally so that they can discard
information if it is not needed. To deal with the
different events, programmers can construct their
own data structures using event handlers.

Figure 4 is an example of a C++ program to
count the number of elements using SAX. Class
SAXCountHandler overrides the method startEle-
ment in class DefaultHandler, and it increments the
variable elementCount by one.

The SAX parser can be fast with small mem-
ory usage. It provides a lower-level access so that
it puts no strain on system resources even if the
size of XML documents is large. It, however, has
a drawback that it is difficult for programmers to
manage the structure using only parsing events if
the structure of XML documents is complex.

This results in that SAX provides good efficiency
for parsing XML documents, but it needs many
lines of codes for structure-based processing.

class SAXCountHandler: DefaultHandler {
........
public: void startElement(

const XMLCh* const uri,
const XMLCh* const localname,
const XMLCh* const qname,
const Attributes& attrs) {

elementCount++;
}

private: int elementCount;
};

Figure 4: An example of C++ programs using SAX

Figure 5: Data flow for Development of a XML
parser using Xsong

3 Design of Xsong

This section describes a XML parser generator,
Xsong, which supports both expressiveness and ef-
ficiency for parsing XML documents.

3.1 Outline of Xsong

As depicted in Figure 5, Xsong reads two files, a
schema definition file for target XML documents,
and a user defined function file to specify actions
for elements and attributes. It generates a grammar
rule file including the user defined functions. The
generated file is read by Antlr and Antlr generates
an XML parser program written in a specified pro-
gramming language. The generated program not
only checks the grammatical correctness, but also
invokes the user defined functions.

Antlr is one of traditional parser generators.
It generates recursive descent parsers from LL(k)
grammars (k > 1) in Extended Backus-Naur Form
notation. It allows each grammar rule to have pa-
rameters and return values, facilitating attribute
passing during parsing. Antlr converts each rule

to a function (or a method) in a recursive descent
parser. The generated program parses input XML
documents in according with the grammar for the
XML documents. Thanks to the compiler technol-
ogy, it is possible to parse it efficiently.

3.2 Input of Xsong

An input of Xsong is a schema definition file writ-
ten in RELAX NG. The reason why RELAX NG
was chosen is that it enables simple description to
define the schema of XML documents. For exam-
ple, the schema definition of DBLP bibliography
has already described in Figure 2.

We can describe actions to elements and at-
tributes at the user defined function. In the user
defined functions, there are some rules to specify
the functions. A rule is composed of three parts,
those are a keyword, an XPath expression, and a
fragment of programs. Using the XPath expres-
sion, the position of the schema definition is speci-
fied and the fragment of programs is embedded into
the specified position.

For the keyword, either “startOf” or “endOf” is
specified in consideration of the following;

• If “startOf” is specified and the position in
XPath is an element, the program is invoked
just after the specified start tag is read.

• If “endOf” is specified and the position in
XPath is an element, the program is invoked
just after the specified end tag is read.

• If “startOf” is specified and the position in
XPath is not an element, the program is in-
voked just before the specified data is read.

• If “endOf” is specified and the position in
XPath is not an element, the program is in-
voked just after the specified data is read.

Figure 6 is an example of the rule for specifying
to increase the value of the variable elemCount by
one.

startOf //element { elemCount++; }

Figure 6: An example of user defined rules

Figure 7 is another example for specifying to
print all text contents. In the rule, $$ is a special
variable for a text content.

endOf //text { printf("%s",$$); }

Figure 7: Another example of user defined rules

Figure 8 is a more complex example for specify-
ing to print data in the form “author=.....” when
an element “author” is read. The XPath expres-
sions describe that a value of an attribute “name”
in an element is “author.”

startOf //element[@name="author"]
{ printf("author="); }

endOf //element[@name="author"]/text
{ printf("%s",$$); }

endOf //element[@name="author"]
{ printf("\n"); }

Figure 8: An example to print author names

3.3 Grammar Rules as Output

Figure 9 describes a fragment of grammar rules for
Antlr. It is generated by Xsong from the schema
definition (Figure 2) and the user defined functions
(Figure 8). In the grammar rules,

• inproc element is a rule to analyze the element
“inproc” and the child elements with an action
for increasing the variable elemCount by one.

• inproc attr is a rule to analyze the attribute
“key.”

• inproc body is a rule to analyze contents be-
tween the start tag and the end tag.

• inproc content is a rule to define the element
“inproc” has zero or many elements of “au-
thor,” “title,” “booktitle,” “pages,” or “year,”
or character symbols.

inproc_element :
BGN_inproc (inproc_attr)* inproc_body
{ elemCount++; }
;

inproc_attr :
Attr_key EQ attrValue
;

inproc_body :
CLS inproc_content END_inproc
;

inproc_content :
(author_element | title_element
| booktitle_element | pages_element
| year_element | CHAR)*
;

Figure 9: An example of grammar rules for Antlr

After Xsong generates the grammar rules, Antlr
reads the rules and generates a XML parser pro-
gram in a specified programming language (C++,
Java, and C# are currently supported).

4 Experiments for Perfor-
mance Comparison

To check the performance improvement, experi-
ments were designed with the following conditions:

Computer: Compaq Evo N200 with Mobile Pen-
tium III 700MHz and 192M bytes of memory

OS: Red Hat Linux 9 (kernel 2.4.20), Windows
2000 SP4

Programming language: C++ (gcc 3.2.2), Java
(1.4.2 03), C# (.NET and Mono 0.30.1)

XML parser: Apache Xerces-C++ Version
2.2.0[12], Apache Xerces-J Version 2.4.0[13]

Ten test data+ Ten XML documents with vari-
ous sizes
1M bytes, 2M bytes, 3M bytes, 4M bytes,
5M bytes, 6M bytes, 7M bytes, 8M bytes,
9M bytes, and 10M bytes

The test data were extracted with appropriate
sizes from DBLP Bibliography[7] (more than
130M bytes in total). Figure 1 is a fragment
of the XML test data, and Figure 2 is a frag-
ment of the RELAX NG to define the XML
documents.

Seven test programs They count the number of
elements in the XML documents,

• using DOM with Xerces-C++, is written
in C++ and executed on Linux,

• using DOM with Xerces-J, is written in
Java and executed on Linux,

• using SAX with Xerces-C++, is written
in C++ and executed on Linux,

• using SAX with Xerces-J, is written in
Java and executed on Linux,

• using class XmlDocument, is written in
C# and executed under Mono on Linux,

• using class XmlDocument, is written in
C# and executed under .NET on Win-
dows 2000, and

• using Xsong, is generated by Xsong, writ-
ten in C++ and executed on Linux.

These programs were executed ten times, and
check the memory usage and the execution
time.

The results of the experiment, from the view-
point of memory usage, are shown in Figure 10. To
check the details, Figure 11 depicts three test pro-
grams with the least memory usage.

The figures show that the program in C++ using
DOM consumes quite a lot of memory. Surprisingly,
the program consumes about 140M bytes of mem-
ory when it parses 4M bytes of XML documents.
When the DOM based program parses more than
7M bytes of the XML documents, it aborted due to
lack of memory.

Figure 10: Experiment results (memory usage)

Figure 11: Experiment results of top three (memory usage)

The figures also show that the programs in both
C++ and Java require less memory usage. The
program generated by Xsong can be executed under
less memory than SAX based programs.

The results of the experiment from the viewpoint
of execution time, are shown in Figure 12. Figure
13 depicts top three test programs with the least
execution time usage to check the details.

The figures show that the programs using DOM
take much time in comparison with the programs
using SAX. In the case of the program in C++ using
DOM, the performance drastically decreased when
the size of the XML document was more than 4M
bytes. In comparison with Figure 10, the program
might exhaust the physical memory.

The figures show that the program using Xsong
can be executed in equivalent execution time to
SAX based programs

These results show the good performance of
Xsong from the point of view of both memory usage
and execution time in comparison with DOM and

SAX.

5 Conclusion

This paper described an efficient XML parser gener-
ator Xsong and experiment results to check the per-
formance. Xsong realizes both expressiveness and
efficiency for parsing XML documents. The experi-
ment results showed the good performance from the
point view of memory usage and execution time.

References

[1] Akmal B. Chaudhri, Awais Rashid, and
Roberto Zicari ed., XML Data Management,
Addison Wesley (2003).

[2] Ronald Bourret, XML and Databases,
http://www.rpbourret.com/xml/
XMLAndDatabases.htm.

Figure 12: Experiment results (execution time)

Figure 13: Experiment results of top three (execution time)

[3] W3C, XHTML 1.0 The Extensible
HyperText Markup Language,
http://www.w3.org/TR/xhtml1/.

[4] W3C, Web Services,
http://www.w3.org/2002/ws/.

[5] Zap Think, The ”Pros and Cons” of XML, Zap
Think Research Report (2001).

[6] ANTLR Parser Generator Translator Genera-
tor Home Page, http://www.antlr.org/.

[7] DBLP Bibliography,
http://www.informatik.uni-trier.de/?ley/db/.

[8] W3C, XML Schema,
http://www.w3.org/XML/Schema/.

[9] OASIS, RELAX NG Specification,
http://www.oasis-
open.org/committees/relax-ng/spec-
20011203.html.

[10] James Clark, RELAX NG Home page,
http://www.relaxng.org/.

[11] W3C DOM Working Group,
Document Object Model (DOM),
http://www.w3.org/DOM/.

[12] The Apache Foundation, Xerces C++ Parser,
http://xml.apache.org/xerces-c/.

[13] The Apache Foundation, Xerces2 Java Parser
Readme, http://xml.apache.org/xerces2-j/

[14] SAX,http://www.saxproject.org/.

[15] Mono, http://www.go-mono.org/.

