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Abstract: – The purpose of this paper is to distinguish, as much as possible, the
concept of s-convexity from the concept of convexity and the concept of s-convexity
in the first sense from the concept of s-convexity in the second sense. In this respect,
the present work further develops a previous study by Orlicz(1961, [3]), Hudzik and
Maligranda (1994, [1]).
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1 Introduction

Recently, Hudzik and Maligranda ([1]) stud-
ied some classes of functions introduced by
Orlicz ([3]), the classes of s-convex functions.
Although they claim, in their abstract, to be
providing several examples and to be clari-
fying the idea introduced by Orlicz further,
their work leaves plenty of room to build over
the concept.

The old conclusions presented here are:

1. theoretical definitions of convex/s-
convex functions;

2. a theorem which acts as a generator of
s-convex functions.

The new conclusions arisen from this paper
are:

1. a rephrasing of the theoretical defini-
tions of s-convex functions to look more
similar to the definition of convex func-
tion;

2. some new symbols to represent the
classes of s-convex functions;
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3. an identity between the class of 1-
convex functions and the class of con-
vex functions;

4. a conjecture about the the looks of a
s−convex function;

5. some theorems on functions that are s-
convex in both senses;

6. a few other side results that might suit
future work or are, at least, useful to
clarify similarities and differences be-
tween functions that are s-convex in the
first sense and the ones which are s-
convex in the second sense.

The paper is organized as follows: First, in
section 2, we present the usual definition of
both convex and s-convex functions. In sec-
tion 3, we criticize the present presentation of
definitions of s-convex functions. In section
4, we introduce a few new ways of referring
to s-convex functions with views to have a
more mathematical jargon to deal with them.
In section 5, we re-write the definition of s-
convex functions based on our new symbol-
ogy, prove the equivalence between restric-
tions of convex functions and s-convex func-
tions, and present some consequences of the
definition of s-convex functions. In section
6, we recall one theorem on how to generate
s-convex functions, as presented by Hudzik
and Maligranda in [1]. Section 7 brings our
conjecture whilst section 8 presents our con-
clusions.

2 The usual definition

of convexity and s-

convexity

The concept of convexity that is mostly cited
in the bibliography is (as an example, [4]):

Definition 1. The function (f : X− > <f)
2

is called convex if the inequality

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

holds ∀λ ∈ [0, 1], ∀x, y ∈ X such that the
right-hand side is well defined. It is called
strictly convex if the above inequality strictly
holds ∀λ ∈]0, 1[ and for all pairs of dis-
tinct points x, y ∈ X with f(x) < ∞ and
f(y) < ∞.

In some sources, such as [2], convexity is de-
fined only in geometrical terms as being the
property of a function whose graph bears
tangents only under it. In their words,

Citation 1. f is called convex if the graph
lies below the chord between any two points,
that is, for every compact interval J ⊂ I,
with boundary ∂J , and every linear function
L, we have

supJ(f − L) = sup∂J(f − L)

One calls f concave if −f is convex.

The concept of s-convexity, on the other
hand, is split into two notions which are de-
scribed below with the basic condition that
0 < s ≤ 1. ([1])

Definition 2. A function f : [0,∞)− > <
is said to be s-convex in the first sense if
f(ax + by) ≤ asf(x) + bsf(y), ∀x, y ∈ [0,∞)
and ∀a, b ≥ 0 with as + bs = 1.

2here, f means closure of <
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Definition 3. A function f : [0,∞)− > <
is said to be s-convex in the second sense if
f(ax + by) ≤ asf(x) + bsf(y), ∀x, y ∈ [0,∞)
and ∀a, b ≥ 0 with a + b = 1.

3 What are the criticisms

to the present defini-

tion of s-convexity?

• It seems that there is lack of objectivity
in the present definition of s-convexity
for there are some redundant things;

• It takes us a long time, the way the
definition is written now, to work out
the true difference between convex and
s-convex functions;

• So far, we did not find references, in
the bibliography, to the geometry of
an s-convex function, what, once more,
makes it less clear to understand the
difference between an s-convex and a
convex function whilst there are clear
references to the geometry of the con-
vex functions.

4 New Symbology

• In this paper, we mean that f is an
s-convex function in the first sense by
saying that f ∈ K1

s ;

• We use the same reasoning for a func-
tion g, s-convex in the second sense and
say then that g ∈ K2

s ;

• We name s1 the generic class constant
for those functions that are s-convex in
the first sense;

• We name s2 the generic class constant
for those functions that are s-convex in
the second sense.

5 The first few new re-

sults

5.1 Re-writting the definition

of s-convex function

It is trivial to prove that a, b ∈ [0, 1] is a
consequence of the present definition of s-
convexity.

Lemma 5.1. If f ∈ K1
s or f ∈ K2

s then

f(au + bv) ≤ asf(u) + bsf(v)

with a, b ∈ [0, 1], exclusively.

Proof. We present the proof for K1
s only,

since the proof for K2
s is analogous.

For K1
s : We first prove that it is not the case

that a > 1 and b > 1. Supposing that it is
the case that a > 1 and b > 1, that implies
having

a = 1 + ε

b = 1 + δ

as + bs = 1, 0 < s ≤ 1

Therefore,

(1 + ε)
1
n + (1 + δ)

1
n = 1, 1 ≤ n < +∞

As x
1
n is a decreasing function of n, for x > 1,

and, as n− > +∞, the above result is not
verified, being as + bs > 1, k(a > 1 ∧ b > 1).
Secondly, we prove that it is not the case
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that a > 1 and b < 1, or vice-versa, just by
re-analyzing the previous case again. There-
fore, k(a < 1 ∧ b > 1) ∧ k(a > 1 ∧ b < 1).
Thirdly, we conclude that it must be the case
that (a ≤ 1∧ b ≤ 1). But since the definition
of s-convexity uses a, b ≥ 0, we have that

a, b ⊂ [0, 1]

With this, we may re-write the definitions of
s-convexity in each of the senses as being:

Definition 4. A function f : X− > <
is said to be s-convex in the first sense if
f(λx + (1− λs)

1
s y) ≤ λsf(x) + (1− λs)f(y),

∀x, y ∈ X and ∀λ ∈ [0, 1] where X ⊂ <+.

Definition 5. A function f : X− > < is
said to be s-convex in the second sense if
f(λx + (1 − λ)y) ≤ λsf(x) + (1 − λ)sf(y),
∀x, y ∈ X and ∀λ ∈ [0, 1] where X ⊂ <+.

6 The classes K1
1 , K2

1 , and

convex coincide when

the domains are re-

stricted to <+

Theorem 6.1. The classes K1
1 , K2

1 , and
convex are equivalent when the domain is re-
stricted to <+.

Proof. Just a matter of applying the defini-
tions.

Natural implication: All 1−convex functions
are convex.

7 Some natural conse-

quences of the defini-

tion of s-convex func-

tions

Theorem 7.1.

f ∈ K1
s =⇒ f

(
u + v

2
1
s

)
≤ f(u) + f(v)

2

Proof. Simply consider the case where as =
bs = 1

2
.

Theorem 7.2.

f ∈ K2
s =⇒ f

(
u + v

2

)
≤ f(u) + f(v)

2s

Proof. Simply consider the case where a =
b = 1

2
.

Theorem 7.3. For a function that is both
s1 and s2-convex, there is a perfect bijection
between the set of (a’s,b’s) used in s1 and the
set of (a’s, b’s) used in s2.

Proof. Each a may be written as an as
1 and

each b as a bs
1 and vice-versa. This happens

because a, b ∈ [0, 1], s ∈ [0, 1](each 1
s
-root in

(0, 1) will give us a number in (0, 1)).

Theorem 7.4. If a function belongs to both
K1

s and K2
s , then

f(a1u+b1v) ≤ as
1f(u)+bs

1f(v) ≤ as
2f(u)+bs

2f(v)

for some {a1, b1, a2, b2} ⊂ [0, 1] and such that
it occurs to each and all of them.

Proof. It follows from the bijection proved
before. For each a2, b2 such that a2 + b2 = 1,
it corresponds a1, b1 such that as

1 + bs
1 = 1

and a2 ≥ a1, b2 ≥ b1 since {a, b} ⊂ [0, 1].
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Theorem 7.5. If a function belongs to both
K1

s and K2
s and its domain coincides with its

counter-domain then the composition f(f) is
s2
1-convex.

Proof. f(a1u + (1 − as
1)

1
s v) ≤ as

1f(u) + (1 −
as

1)f(v) =⇒ f(as
1f(u) + (1 − as

1)f(v)) ≤
(as

1)
sf(f(u))+(1−as

1)
sf(f(v)) = as

2f(f(u))+
bs
2f(f(v))

Theorem 7.6. f : I− > <, I ⊂ [0,∞), f
being a convex, non-negative function, then
∀s ∈ (0, 1], f is s2-convex.

Proof.
a + b = 1

f(ax + by) ≤ af(x) + bf(y) ≤ asf(x) +
bsf(y)

8 A new conjecture

Taking into account the relationship between
as and a, we may wonder whether the follow-
ing is true or not:

Conjecture 1. f is called s−convex if the
graph lies below the ‘bent chord‘ between any
two points, that is, for every compact interval
J ⊂ I, with boundary ∂J , and every linear
function L, we have

G(s) ≥ supJ(f − L) ≥ sup∂J(f − L)

9 Conclusions

In this paper, we proved that s-convexity
may be stated in a very similar way to con-
vexity, as written below:

Definition 6. the function (f : X− > <f)
3

is called convex if the inequality

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

holds ∀λ ∈ [0, 1], ∀x, y ∈ X.

For 0 < s1, s2 ≤ 1,

Definition 7. A function f : X− > < is
said to be s1-convex if the inequality

f(λx + (1 − λs)
1
s y) ≤ λsf(x) + (1 − λs)f(y)

holds ∀λ ∈ [0, 1], ∀x, y ∈ X such that
X ⊂ <+.

Definition 8. A function f : X− > < is
said to be s2−convex if the inequality

f(λx + (1 − λ)y) ≤ λsf(x) + (1 − λ)sf(y)

holds ∀λ ∈ [0, 1], ∀x, y ∈ X such that
X ⊂ <+.

The own re-definition of s-convexity included
our new way of referring to s-convex func-
tions by creating class-like symbology for
them:

• K1
s for the class of s-convex functions

in the first sense, some s;

• K2
s for the class of s-convex functions

in the second sense, some s;

• K0 for the class of convex functions;

• s1 for the constant s, 0 < s ≤ 1, used
in the first definition of s-convexity;

3here, f means closure of <
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• s2 for the constant s, 0 < s ≤ 1, used
in the second definition of s-convexity.
thirdly, we pointed out that the class of
1-convex functions is just a restriction
of the class of convex functions, that is,
when X = <+,

K1
1 ≡ K2

1 ≡ K0

In fourth, we introduced the following side-
theorems:

Theorem 9.1. For a function that is both
s1 and s2-convex, there is a perfect bijection
between the set of (a’s,b’s) used in s1 and the
set of (a’s, b’s) used in s2.

Theorem 9.2. If a function belongs to both
K1

s and K2
s , then

f(a1u+b1v) ≤ as
1f(u)+bs

1f(v) ≤ as
2f(u)+bs

2f(v)

for some {a1, b1, a2, b2} ⊂ [0, 1] obeying K1
s

and K2
s rules, and such that it occurs to each

and all of them.

Theorem 9.3. If a function belongs to both
K1

s and K2
s and its domain coincides with its

counter-domain then the composition f(f) is
s2
1-convex.

Theorem 9.4. f : I− > <, I ⊂ [0,∞), f
being a convex, non-negative function, then
∀s ∈ (0, 1], f is s2-convex.

In fifth we bring our conjecture as a prospec-
tive future work:

Conjecture 2. f is called s−convex if the
graph lies below the ‘bent chord‘ between any
two points, that is, for every compact interval
J ⊂ I, with boundary ∂J , and every linear
function L, we have

G(s) ≥ supJ(f − L) ≥ sup∂J(f − L)
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