

Automated Software Warehouse Management

STUART H. RUBIN
SPAWAR Systems Center

San Diego, CA 92152-5001, USA

WEI DAI
School of Information Systems

Victoria University
PO Box 14428, Melbourne, MC 8001

Victoria, Australia

Abstract: - This paper proposes a knowledge-based approach to manage software warehouses. It is understood
that knowledge acquisition is the bottleneck for intelligent systems of all kinds. Our research focuses on
solutions for both theoretical and practical aspects of the bottleneck tasks through the proposed mechanisms of
randomization, symbolic representation, and grammatical inference.

Key-Words: - Knowledge Acquisition, Symbolic Representation, Randomization, Software Warehouse,
Grammatical Inference, Transformation.

1 Introduction

Based on the concepts and roles of traditional data
warehouse, the concepts of software warehouse
were raised [1]. Software warehouse is a special
store where hundred or thousands of software
modules are stored, accessed, and potentially
packaged into meaningful software applications.
This paper investigates a knowledge based approach
for the automated management of software
warehouses. The knowledge-based approach is
intended to produce packaged solutions i.e. software
marts that are based on the concepts of traditional
data marts. A software mart is a repository of
software assets gathered from operational software
sources to serve a specific application purpose. The
key for successfully managing the assets comes
from the knowledge that directs the transformation
and grammatical inference to manipulate the
concerned software assets and their packaging
processes.

2 The Process of Packaging
Suppose we have previous developed software
assets in the already classified software libraries or

software warehouses in the modules of G1, G2, G3.
Each module consists of a list of potentially reusable
software parts (e.g. implemented objects). The
software assets are described as the following:

G1 -> g11, g12, g13
G2 -> g21, g22, g23
G3 -> g31, g32, g33

Each software asset is further described by the
following metrics. For instance,

g11 -> g11S, g11P, g11R, g11I (considered
as list of the properties for the asset and the
following symbols were used: S – Scope, P
– Purpose, R – Role, I – Interface).

Each property is further decomposed into attribute-
value pairs. For instance,

g11S -> scope, data management
g11P -> purpose, extraction
g11R -> role, a primitive function
g11I -> interface, (in: x, y, z; out: g, w)

The software assets are designed to be orthogonal.
Each of the specific software assets, i.e. functions,

such as g11, g21, g311 etc., are associated with an
arbitrary number of features (e.g. attribute value
pairs) that best describe the concerned functions.
The creators of the software can specify the positive
and negative examples of the asset’s metric (i.e.
scope, purpose, role etc) to assist in eventual asset
retrieval at a later stage. The related software assets
form the software patterns. These patterns are further
classified as internally and externally stable intangible
objects as were used in [2], [3]. The objects deal with
the conceptual aspects (which are reusable) of software
development tasks and are identified by their
respective roles. The roles describe the interface
aspects of the objects. The intangible layer of the
reusable object supports the adaptation and
substantiation of tangible objects which are internally
adaptable and externally stable following modern
object-oriented software engineering principles. The
tangible objects are packaged through the use of glue
codes. The glue codes describe the behavioural aspects
of the objects. The roles and glue codes together form
the connectors of software components. A general
description for the packaging process (the key for
application construction) is shown in Figure 1.

Figure 1: Reusable Assets Identification and

Packaging

In order to support the degree of automation on the
software warehouse, knowledge needs to be acquired.
In the following sections, we discuss the bottleneck
knowledge acquisition issues, as well as the processing
and manipulations of software assets through symbolic
representation and grammatical inference activities.

3 The Knowledge Acquisition
Bottleneck

The knowledge acquisition bottleneck refers to the
difficulty of capturing knowledge for use in the
system. Whether the system is used for evaluating
bank loans, intelligent tutoring, or prescribing
medical treatments, the question remains: How do
we obtain the knowledge used by the system (i.e.,
code it) and how do we verify it for mission critical
applications. For example, the medical rule, IF the
patient is coughing THEN prescribe cough syrup; is
usually true. However, an expert medical system
having this limited medical knowledge would
prescribe cough syrup to someone whose airway is
obstructed during the course of a meal say! It is
lacking in the more specific rule, IF the patient is
coughing AND the patient was just eating THEN
apply Dr. Heimlich's maneuver with certainty factor
= 0.90.

We see from this one small example that
knowledge acquisition needs to be relatively
complete, lest there be potentially dire
consequences. Now suppose that you are a
knowledge engineer whose task is to write rulebases
-- each containing thousands of rules for say mission
critical applications (e.g., flight-control systems,
medical decision support systems, weapons systems,
vehicle guidance systems, and many more). It
should be clear that the task is too difficult for
human beings given the current state of the art in
knowledge acquisition. It is just that this software is
inherently difficult to test.

We will propose a radically new method for
cracking the knowledge acquisition bottleneck; but,
before we do, let us see what the problem really is.
First, it should be mentioned that we have evolved
higher-level languages because they are more
closely aligned with the way in which we think. This
should come as no surprise. Indeed, the Windows or
other GUI was developed as a metaphor for our
spatial-temporal reasoning. After all, we cannot be
easily taught to read machine code for we are not
machines.

3.1 Mining for Rules
Data mining also fits into this unified theory of
intelligence. Solomonoff has done much work in the
area of grammatical inference [4], [5]. This is the
induction of grammars from examples. It has been
proven that for context-free grammars or higher,
induction must be guided by heuristics. In essence,
grammatical inference is the randomization of data.
Given that we succeed in formalizing an expert

G31 G12 G11 G22 G23

G2 G1 G3

Internally and Externally Stable Intangible Modules

Internally Adaptable and Externally Stable Tangible Objects

Flow of Glues

Flow of Roles

Adaptation and Substantiation

system having automated knowledge acquisition
facilities in the form of context-free grammars, it
follows that data can be mined to create such expert
systems by building on the work of Solomonoff.
Note that if the mining process is itself directed by
expert systems, then it is called directed mining. Just
as conventional expert systems, such as XpertRule
(i.e., which we rate at the top of the line), have data
mining tools available, so too will our strategic
expert systems. They will be implementations of
Kurt Gödel's and Gregory Chaitin's theories of
randomness [6] and Roy Solomonoff's related work
on grammatical inference [4], [5].

4 Randomization as a Measure of

Intelligence
An intelligent system interacts with the user in two
manners. First, it requests random knowledge be
supplied where necessary. Second, it asks the user or
knowledge engineer to confirm symmetric
knowledge where presented. Note that supplying a
selection from a pull-down menu is partially random
and partially symmetric in its component tasks.

Clearly, if a knowledge engineer can supply the
requested random or symmetric knowledge, then it
is through the application of acquired knowledge. It
follows that if that knowledge can be captured in a
knowledge-based system(s), then the requested tasks
can be automated. Furthermore, let our grammar-
based system be used as the shell, which learns the
knowledge that would otherwise be requested of the
user or knowledge engineer. An interesting and
inescapable conclusion follows. That is, the only
thing not automated would be the acquisition of
random knowledge by the auxiliary system(s). In
other words, randomness can be defined along a
continuum in degrees. What is being claimed is that
a network of cooperating grammar-based systems
requests knowledge that is random in proportion to
the size of its collective randomized knowledge
bases.

As more and more knowledge bases are linked in
a network, then the knowledge needed becomes
more and more random. For example, the following
indefinite sequences are observed to occur in
increasing order of randomness: 1, 1, 1, 1, 1, 1, 1, 1,
1, 1; 1, 1, 2, 1, 2, 3, 1, 2, 3, 4; 1, 4, 2, 7, 5, 3, 6, 9,
0, 8. That is, the generating function for each
successive sequence grows larger and larger until
the sequence is a fixed point, or truly random.
Consider the limit. Here, the knowledge bases reach
some critical finite radius where the knowledge
embodied cannot be bounded (e.g., as in a finite

number of rules). At this point, the needed
knowledge is truly random. Random knowledge is
analogous to the Schwarzchild radius of a black
hole, beyond which nothing -- not even radiation --
can escape the gravitational pull [7]. For example,
the system may benefit from knowing that coherent
light is polarized when reflected off of a magnetized
surface, or that when heated to the Fermi point iron
loses all magnetic properties, etc. This exemplifies
random knowledge. It follows that an example of
symmetric knowledge is that coherent light is
oppositely polarized when reflected off of a
magnetized surface having the opposite N-S
polarity.

A consequence of Gödel's Incompleteness
Theorem [6] is that countably infinite truths are
recusively enumerable, but not recursive. Thus, the
universe will forever hold the most widely varied
knowledge to be discovered. Indeed, as the early
20th century mathematicians came to discover, this is
a reason for rejoicing for it is what makes life
interesting!

Consider two total computable functions, f, and g.
We say that they are total because they are defined
over all members of the domain. They are said to be
computable because they can be realized by some
algorithm. In particular, let that algorithm be
substituted for by a sequence of transformation
rules, which may be iterated over. Moreover, let A
and A' represent a pair of symmetric domains. For
example, A could represent an increasing sort and A'
could represent a decreasing sort. Let B represent an
orthonormal or mutually random domain with
respect to A. For example, B could represent an
algorithm to invert a matrix. Then, f(A) → A' and
g(A) → B. It follows that |f| < |A'| and |g| ≥ |B|.
These relations follow because the fixed point for
the magnitude of the transformational map is the
magnitude of the image of transformation itself.
That is, one can always replace the rule base, g, with
B' such that B'(A) → B where |B'| ~ |B|. This means
that mutually symmetric domains are characterized
by rulebases consisting of fewer, shorter, and more
reusable rules than are the more random pairs. The
larger are the domains in the pairing, the more likely
are they to embed symmetric constructs. We already
know that the world is neither totally random, nor
totally symmetric. Indeed, this follows from Gödel's
Incompleteness Theorem. The degree of symmetry
increases with scale. Were this not the case, then the
universe would be random in the limit. (If the degree
of symmetry didn't change with scale, then the
notion of chaos would be violated.) Thus,

lim| | | '|
| |

lim| | | |
| |

A A
f

A B
g

→ ∞ = → ∞
F
HG

I
KJ → ∞. In other

words, the degree of randomization possible is in
proportion to the magnitude of the information,
where there is no upper bound. Also, the processor
time required to randomize such information is
unbounded. Such absolute minimal entropy can of
course never be achieved for it would violate the
Incompleteness Theorem. However, there is nothing
to preclude the construction of randomizing systems
to any desired level of utility.

5 Symbolic Representation

This section will bring together the previous ones as
we begin to develop an algorithm for realizing an
intelligent system. Let, Qi be domain-specific
questions that are collectively organized into
hierarchies. Think of nested pull-down menus. The
first menu details the top of the hierarchy (e.g.,
chemistry). The next submenu under chemistry say
offers the choice of inorganic chemistry. Under the
inorganic chemistry menu we have salts and under
salts we have domain-specific questions, which
determine the antecedent predicates. For example, a
sample question here would be, "Is the salt a
chloride?" or "Enter the chemical formula for the
salt:". Replies are posted to the blackboard for
subsequent processing. Conflict resolution will favor
the most specific rule.

The consequent predicates are organized just as
are the antecedent predicates with one notable
difference: Instead of questions, which define the
antecedent predicate primitives; actions, functions,
or methods define the consequent primitives. For
example, a sample action here would be, "Dissolve
the salt in triple-distilled water," or "dissolve ()".
Predicate definitions are saved in symbol tables
external to the grammar in the interests of
efficiency.

Let us adopt the standard that different levels in
the hierarchy will be separated by dots (.). That is, a
dot separates a subclass from its superclass. An
arbitrary number of levels is allowed. Successive
integers, starting with one, will be used for the
representation of all predicates. The same integers
may be reused at different levels. A simple lookup
table provides for their translation to text or
effective code as designated. A distinct grammar is
used for the antecedent predicates and the
consequent predicates. The zero integer is reserved,
since it has no negation. Here are sample primitive
lookup tables:

Anteced
ent

Grammar Consequent Grammar

1 Chloride? 1 Add water.
2 Formula: 2 Dissolve ()

Table 1. Primitive Symbol Tables

The symbol 1 represents the question, "Is the salt

a chloride?" in the antecedent grammar and the
action, "Dissolve the salt in triple-distilled water," in
the consequent grammar. The use of the symbol 2 is
similar.

The notation, i.j represents the ith superclass,
which contains the jth subclass. We will adopt the
convention that j.k aligns with j.k in i.j.k (i.e., right-
justified). This may be termed, subclass
justification. The rightmost subclass is defined to be
a primitive. Primitives cannot be subclassed by
definition. This leads to an expanded definition for
our symbol table, as follows.

Anteced
ent

Grammar Consequent Grammar

1 Chloride? 1 Add water.
2 Formula: 2 Dissolve ()

1.* Salts 1.* Salts
1.*.* Inorganic 1.*.* Chemistry

Table 2. Hierarchical Symbol Tables

Subclass justification implies that primitives are

always uniquely identified by a single integer.
Again, separate tables are maintained for the
antecedent and consequent grammars because the
hierarchical definitions may be distinct. The asterisk
is used to denote any subclass.

We will use commas to separate multiple items at
the same level. Negative numbers mean "not". For
example, 1.-1,-2 in the antecedent grammar is
interpreted to mean all salts, excluding the chloride
and excluding the formula questions. The pull-down
menu for Salts would then be empty. A
lexicographic order (i.e., -1,-2 rather than -2,-1) is
imposed to facilitate the pattern matcher. Similarly,
1,-2 is interpreted to mean including the chloride
question, but excluding the formula question in the
antecedent grammar. Again, this interpretation is
used to determine the entries in the pull-down
menus at each level of the hierarchy. That is, use
positive integers if relatively few entries are to be
included and use negative entries if relatively few
entries are to be excluded. This itself is a form of

randomization. The interpretation of the consequent
grammar is similar.

6 Grammatical Inference
The next step is to tie the above together by way of
grammatical inference. To begin with, let us write a
pair of domain-specific rules and see how they can
be randomized:

R1: IF the metal is Sodium ∧
the gas is Chlorine THEN the salt
is NaCl
R2: IF the metal is Potassium ∧
the gas is Fluorine THEN the salt
is KFl

Now, these are the system rules, but we need to
transform these rules into a set of questions to elicit
the required knowledge from the user or knowledge
engineer in a directed manner. The actions are
reduced to integers.

Q1: What is the metal having a
+1 valence?
Q2: What is the reducing gas
having a -1 valence?
A1: NaCl
A2: KFl

The rules are now:

R1: IF Q1 = Sodium ∧ Q2 =
Chlorine THEN A1
R2: IF Q1 = Potassium ∧ Q2 =
Fluorine THEN A2

Here are the associated symbol tables:

Antece
dent

Grammar Consequent Gramma
r

1 Sodium 1 A1
2 Potassium 2 A2
3 Chlorine 3 Table salt
4 Fluorine 4 Potassium

Fluoride
1.-3,-4 Q1 5 Salt
2.-1,-2 Q2 1.* Salts

Table 3. The Chemical Symbol Tables
Notice that the (antecedent) integer hierarchies also
serve as a data dictionary (e.g., 1.3 or 1.4 would be
disallowed). Now, we are in a position to define a

rudimentary grammar. We deviate from traditional
grammar notation in that the reductions are to be
taken to the right. This is done to be synergistic with
the appearance of the rules with the rule antecedent
on the left and the rule consequent on the right. The
antecedent grammar follows.

1.1 & 2.3 → 1.1
1.2 & 2.4 → 1.2

The consequent grammar follows.

1.1 → 1.3 | 1.5
1.2 → 1.4 | 1.5

Here is how the grammars would operate: If you

were to start by asking Q1 and answering with the
metal sodium, then the system would ask you if the
reducing gas were chlorine. If so, then it would
inform you that you have table salt, or salt. If not,
then the system would superclass chlorine and ask
you for another reducing gas having a -1 valence.
Since the data dictionary tells us that this can only
be chlorine or fluorine, then it in effect asks you if
the reducing gas is fluorine. If not, then the system
would direct you to specify and classify a proper
gas, if any. If so, then NaFl is as yet unknown by the
system. That is, 1.1 & 2.4 does not match any
antecedent in the segmented rule base. The
knowledge engineer is thus asked to specify a
consequent, which is also acquired in the consequent
symbol table, if necessary -- say, 1.6. The same
process occurs if a more general rule is matched
(i.e., one whose antecedent is covered by the
context), which produces an incorrect action(s). The
new antecedent rule is thus:

1.1 & 2.4 → 1.6 | 1.5

A special start symbol, A, is introduced to define
those rule consequents that are already primitives:

A → 1.6 | 1.5

Thus, the antecedent grammar now appears as:

1.1 & 2.4 → A
1.1 & 2.3 → 1.1
1.2 & 2.4 → 1.2

The updated consequent grammar now appears as:

A → 1.6 | 1.5
1.1 → 1.3 | 1.5
1.2 → 1.4 | 1.5

Observe from the antecedent grammar that if the
metal sodium were first specified, then there would
now be ambiguity in what to suggest next -- chlorine
or fluorine. Here, fluorine would be presented first
as it was part of the most recently acquired rule. Of
course, if the metal potassium were first specified,
then fluorine would automatically be presented first,
since there is no ambiguity at this point. Notice
again that the system has learned to improve its
behavior on the basis of experience.

Next, these grammars are to be subjected to
randomization operations -- each one distinct from
the other. As it turns out, these grammars are already
random. Thus, we introduce an abstract antecedent
grammar instance and proceed from there. The
consequent grammar is randomized similarly. Let
the abstract antecedent grammar instance be defined
as follows.

1.1 & 2.2 & 2.3 → A
1.1 & 2.2 & 2.4 → 1.1
1.2 & 2.2 & 2.4 → 1.2

This instance can be randomized as follows.

B → 1.1 & 2.2
B & 2.3 → A
B & 2.4 → 1.1
1.2 & 2.2 & 2.4 → 1.2

Notice now that the randomization operation is also
ambiguous. This implies the need for heuristics in
randomizing a context-free grammar. The following
is an alternative randomization.

C → 2.2 & 2.4
1.1 & 2.2 & 2.3 → A
1.1 & C → 1.1
1.2 & C → 1.2

Different degrees of randomization will be

obtained depending on the order of reductions. Here,
the B and C substitutions yield equivalent degrees of
randomization. Exhaustive search is needed to
minimize the resultant grammar. Fortunately, the
grammar need not be minimized because the extra 1
or 2 percent compression does not improve
performance any more than that and it does cost
orders of magnitude more computing time.

Observe how the randomized grammars allow
subsequences to be matched that need not match the
prefix (e.g., C → 2.2 & 2.4). Here, given 2.2, 2.4
would be suggested in the absence of a more
specific match. 2.3 would not be suggested because
2.2 requires 1.1 as a prefix for this case.

In practice, array-based pointers would point to Cs
definition. The letter definitions are recursively
subject to randomizations where possible. The
inference engine will match the productions and
where necessary superclass them. It is not necessary
to maintain separate grammars for this purpose as
the 'primitive' grammar is the most informative.

7 Conclusion
We have proposed solutions to overcome the
knowledge acquisition bottleneck to support an
automated software warehouse application. Several
technical issues regarding the effective use of the
acquired knowledge on software assets through
symbolic representations were discussed. The
solutions focus on representation, randomization,
grammatical inference, and transformational aspects
of the technical challenges.

References:

[1] H. Dai, W. Dai, G. Li. Software Warehouse: Its

Design, Management and Application,
International Journal of Software Engineering
and Knowledge Engineering, 2004 (to appear).

[2] M.E. Fayad, Accomplishing Software Stability,

Communications of the ACM, Vo. 45, No. 1,
January 2001, pp 95-98.

[3] M.E. Fayad, and A. Altman, Introduction to

Software Stability, Communications of the ACM,
Vo. 44, No. 9, September 2001, pp 95-98.

[4] R. Solomonoff, “A new method for discovering

the grammars of phrase structure languages,”
Proc. Int. Conf. Inform. Processing, UNESCO
Publ. House, Paris, France, pp. 285-290, 1959.

[5] R. Solomonoff, “A formal theory of inductive

inference,” Inform. Contr., vol. 7, pp. 1-22 and
224-254, 1964.

[6] G.J. Chaitin, “Randomness and mathematical

proof,” Scientific Amer., vol. 232, no. 5, pp. 47-
52, 1975.

[7] C.T.J. Dodson and T. Poston, Tensor Geometry,

2d ed., New York, NY: Springer-Verlag, Inc.,
1997.

	San Diego, CA 92152-5001, USA
	Grammatical Inference

