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Abstract: - This paper proposes a knowledge-based approach to manage software warehouses. It is understood 
that knowledge acquisition is the bottleneck for intelligent systems of all kinds. Our research focuses on 
solutions for both theoretical and practical aspects of the bottleneck tasks through the proposed mechanisms of 
randomization, symbolic representation, and grammatical inference.  
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1   Introduction 
 
Based on the concepts and roles of traditional data 
warehouse, the concepts of software warehouse 
were raised [1]. Software warehouse is a special 
store where hundred or thousands of software 
modules are stored, accessed, and potentially 
packaged into meaningful software applications. 
This paper investigates a knowledge based approach 
for the automated management of software 
warehouses. The knowledge-based approach is 
intended to produce packaged solutions i.e. software 
marts that are based on the concepts of traditional 
data marts. A software mart is a repository of 
software assets gathered from operational software 
sources to serve a specific application purpose. The 
key for successfully managing the assets comes 
from the knowledge that directs the transformation 
and grammatical inference to manipulate the 
concerned software assets and their packaging 
processes. 
 
 
2 The Process of Packaging 
Suppose we have previous developed software 
assets in the already classified software libraries or 

software warehouses in the modules of G1, G2, G3. 
Each module consists of a list of potentially reusable 
software parts (e.g. implemented objects). The 
software assets are described as the following:  

 
G1 -> g11, g12, g13  
G2 -> g21, g22, g23 
G3 -> g31, g32, g33 

 
Each software asset is further described by the 
following metrics. For instance,  

 
g11 -> g11S, g11P, g11R, g11I (considered 
as list of the properties for the asset and the 
following symbols were used: S – Scope,  P 
– Purpose, R – Role, I – Interface). 

 
Each property is further decomposed into attribute-
value pairs. For instance,  

 
g11S -> scope, data management 
g11P -> purpose, extraction 
g11R -> role, a primitive function 
g11I -> interface, (in: x, y, z; out: g, w) 

 
The software assets are designed to be orthogonal. 
Each of the specific software assets, i.e. functions, 



 

 

such as g11, g21, g311 etc., are associated with an 
arbitrary number of features (e.g. attribute value 
pairs) that best describe the concerned functions. 
The creators of the software can specify the positive 
and negative examples of the asset’s metric (i.e. 
scope, purpose, role etc) to assist in eventual asset 
retrieval at a later stage. The related software assets 
form the software patterns. These patterns are further 
classified as internally and externally stable intangible 
objects as were used in [2], [3]. The objects deal with 
the conceptual aspects (which are reusable) of software 
development tasks and are identified by their 
respective roles. The roles describe the interface 
aspects of the objects. The intangible layer of the 
reusable object supports the adaptation and 
substantiation of tangible objects which are internally 
adaptable and externally stable following modern 
object-oriented software engineering principles. The 
tangible objects are packaged through the use of glue 
codes. The glue codes describe the behavioural aspects 
of the objects. The roles and glue codes together form 
the connectors of software components. A general 
description for the packaging process (the key for 
application construction) is shown in Figure 1.  

 
 

 
Figure 1: Reusable Assets Identification and 

Packaging 
 

 
In order to support the degree of automation on the 
software warehouse, knowledge needs to be acquired. 
In the following sections, we discuss the bottleneck 
knowledge acquisition issues, as well as the processing 
and manipulations of software assets through symbolic 
representation and grammatical inference activities. 

 
 

3 The Knowledge Acquisition 
Bottleneck 

The knowledge acquisition bottleneck refers to the 
difficulty of capturing knowledge for use in the 
system. Whether the system is used for evaluating 
bank loans, intelligent tutoring, or prescribing 
medical treatments, the question remains: How do 
we obtain the knowledge used by the system (i.e., 
code it) and how do we verify it for mission critical 
applications. For example, the medical rule, IF the 
patient is coughing THEN prescribe cough syrup; is 
usually true. However, an expert medical system 
having this limited medical knowledge would 
prescribe cough syrup to someone whose airway is 
obstructed during the course of a meal say!  It is 
lacking in the more specific rule, IF the patient is 
coughing AND the patient was just eating THEN 
apply Dr. Heimlich's maneuver with certainty factor 
= 0.90.  

We see from this one small example that 
knowledge acquisition needs to be relatively 
complete, lest there be potentially dire 
consequences. Now suppose that you are a 
knowledge engineer whose task is to write rulebases 
-- each containing thousands of rules for say mission 
critical applications (e.g., flight-control systems, 
medical decision support systems, weapons systems, 
vehicle guidance systems, and many more). It 
should be clear that the task is too difficult for 
human beings given the current state of the art in 
knowledge acquisition. It is just that this software is 
inherently difficult to test. 

We will propose a radically new method for 
cracking the knowledge acquisition bottleneck; but, 
before we do, let us see what the problem really is. 
First, it should be mentioned that we have evolved 
higher-level languages because they are more 
closely aligned with the way in which we think. This 
should come as no surprise. Indeed, the Windows or 
other GUI was developed as a metaphor for our 
spatial-temporal reasoning. After all, we cannot be 
easily taught to read machine code for we are not 
machines.  
 
 
3.1 Mining for Rules 
Data mining also fits into this unified theory of 
intelligence. Solomonoff has done much work in the 
area of grammatical inference [4], [5]. This is the 
induction of grammars from examples. It has been 
proven that for context-free grammars or higher, 
induction must be guided by heuristics. In essence, 
grammatical inference is the randomization of data. 
Given that we succeed in formalizing an expert 
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system having automated knowledge acquisition 
facilities in the form of context-free grammars, it 
follows that data can be mined to create such expert 
systems by building on the work of Solomonoff. 
Note that if the mining process is itself directed by 
expert systems, then it is called directed mining. Just 
as conventional expert systems, such as XpertRule 
(i.e., which we rate at the top of the line), have data 
mining tools available, so too will our strategic 
expert systems. They will be implementations of 
Kurt Gödel's and Gregory Chaitin's theories of 
randomness [6] and Roy Solomonoff's related work 
on grammatical inference [4], [5]. 
 
 
4 Randomization as a Measure of 

Intelligence 
An intelligent system interacts with the user in two 
manners. First, it requests random knowledge be 
supplied where necessary. Second, it asks the user or 
knowledge engineer to confirm symmetric 
knowledge where presented. Note that supplying a 
selection from a pull-down menu is partially random 
and partially symmetric in its component tasks.  

Clearly, if a knowledge engineer can supply the 
requested random or symmetric knowledge, then it 
is through the application of acquired knowledge. It 
follows that if that knowledge can be captured in a 
knowledge-based system(s), then the requested tasks 
can be automated. Furthermore, let our grammar-
based system be used as the shell, which learns the 
knowledge that would otherwise be requested of the 
user or knowledge engineer. An interesting and 
inescapable conclusion follows. That is, the only 
thing not automated would be the acquisition of 
random knowledge by the auxiliary system(s). In 
other words, randomness can be defined along a 
continuum in degrees. What is being claimed is that 
a network of cooperating grammar-based systems 
requests knowledge that is random in proportion to 
the size of its collective randomized knowledge 
bases.  

As more and more knowledge bases are linked in 
a network, then the knowledge needed becomes 
more and more random. For example, the following 
indefinite sequences are observed to occur in 
increasing order of randomness: 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1;  1, 1, 2, 1, 2, 3, 1, 2, 3, 4;  1, 4, 2, 7, 5, 3, 6, 9, 
0, 8. That is, the generating function for each 
successive sequence grows larger and larger until 
the sequence is a fixed point, or truly random. 
Consider the limit. Here, the knowledge bases reach 
some critical finite radius where the knowledge 
embodied cannot be bounded (e.g., as in a finite 

number of rules). At this point, the needed 
knowledge is truly random. Random knowledge is 
analogous to the Schwarzchild radius of a black 
hole, beyond which nothing -- not even radiation -- 
can escape the gravitational pull [7]. For example, 
the system may benefit from knowing that coherent 
light is polarized when reflected off of a magnetized 
surface, or that when heated to the Fermi point iron 
loses all magnetic properties, etc. This exemplifies 
random knowledge. It follows that an example of 
symmetric knowledge is that coherent light is 
oppositely polarized when reflected off of a 
magnetized surface having the opposite N-S 
polarity.  

A consequence of Gödel's Incompleteness 
Theorem [6] is that countably infinite truths are 
recusively enumerable, but not recursive. Thus, the 
universe will forever hold the most widely varied 
knowledge to be discovered. Indeed, as the early 
20th century mathematicians came to discover, this is 
a reason for rejoicing for it is what makes life 
interesting!  

Consider two total computable functions, f, and g. 
We say that they are total because they are defined 
over all members of the domain. They are said to be 
computable because they can be realized by some 
algorithm. In particular, let that algorithm be 
substituted for by a sequence of transformation 
rules, which may be iterated over. Moreover, let A 
and A' represent a pair of symmetric domains. For 
example, A could represent an increasing sort and A' 
could represent a decreasing sort. Let B represent an 
orthonormal or mutually random domain with 
respect to A. For example, B could represent an 
algorithm to invert a matrix. Then, f(A) → A' and 
g(A) → B. It follows that |f| < |A'| and |g| ≥  |B|. 
These relations follow because the fixed point for 
the magnitude of the transformational map is the 
magnitude of the image of transformation itself. 
That is, one can always replace the rule base, g, with 
B' such that B'(A) → B where |B'| ~ |B|. This means 
that mutually symmetric domains are characterized 
by rulebases consisting of fewer, shorter, and more 
reusable rules than are the more random pairs. The 
larger are the domains in the pairing, the more likely 
are they to embed symmetric constructs. We already 
know that the world is neither totally random, nor 
totally symmetric. Indeed, this follows from Gödel's 
Incompleteness Theorem. The degree of symmetry 
increases with scale. Were this not the case, then the 
universe would be random in the limit. (If the degree 
of symmetry didn't change with scale, then the 
notion of chaos would be violated.)  Thus, 
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words, the degree of randomization possible is in 
proportion to the magnitude of the information, 
where there is no upper bound. Also, the processor 
time required to randomize such information is 
unbounded. Such absolute minimal entropy can of 
course never be achieved for it would violate the 
Incompleteness Theorem. However, there is nothing 
to preclude the construction of randomizing systems 
to any desired level of utility.  

 
 

5 Symbolic Representation  
 
This section will bring together the previous ones as 
we begin to develop an algorithm for realizing an 
intelligent system. Let, Qi be domain-specific 
questions that are collectively organized into 
hierarchies. Think of nested pull-down menus. The 
first menu details the top of the hierarchy (e.g., 
chemistry). The next submenu under chemistry say 
offers the choice of inorganic chemistry. Under the 
inorganic chemistry menu we have salts and under 
salts we have domain-specific questions, which 
determine the antecedent predicates. For example, a 
sample question here would be, "Is the salt a 
chloride?" or "Enter the chemical formula for the 
salt:". Replies are posted to the blackboard for 
subsequent processing. Conflict resolution will favor 
the most specific rule.  

The consequent predicates are organized just as 
are the antecedent predicates with one notable 
difference: Instead of questions, which define the 
antecedent predicate primitives; actions, functions, 
or methods define the consequent primitives. For 
example, a sample action here would be, "Dissolve 
the salt in triple-distilled water," or "dissolve ()". 
Predicate definitions are saved in symbol tables 
external to the grammar in the interests of 
efficiency.  

Let us adopt the standard that different levels in 
the hierarchy will be separated by dots (.). That is, a 
dot separates a subclass from its superclass. An 
arbitrary number of levels is allowed. Successive 
integers, starting with one, will be used for the 
representation of all predicates. The same integers 
may be reused at different levels. A simple lookup 
table provides for their translation to text or 
effective code as designated. A distinct grammar is 
used for the antecedent predicates and the 
consequent predicates. The zero integer is reserved, 
since it has no negation. Here are sample primitive 
lookup tables:  

 
 

Anteced
ent 

Grammar Consequent Grammar 

1 Chloride? 1 Add water. 
2 Formula: 2 Dissolve () 

 
Table 1. Primitive Symbol Tables 

 
The symbol 1 represents the question, "Is the salt 

a chloride?" in the antecedent grammar and the 
action, "Dissolve the salt in triple-distilled water," in 
the consequent grammar. The use of the symbol 2 is 
similar.  

The notation, i.j represents the ith superclass, 
which contains the jth subclass. We will adopt the 
convention that j.k aligns with j.k in i.j.k (i.e., right-
justified). This may be termed, subclass 
justification. The rightmost subclass is defined to be 
a primitive. Primitives cannot be subclassed by 
definition. This leads to an expanded definition for 
our symbol table, as follows.  

 
 

Anteced
ent 

Grammar Consequent Grammar 

1 Chloride? 1 Add water. 
2 Formula: 2 Dissolve () 

1.* Salts 1.* Salts 
1.*.* Inorganic 1.*.* Chemistry 

 
Table 2. Hierarchical Symbol Tables 

 
Subclass justification implies that primitives are 

always uniquely identified by a single integer. 
Again, separate tables are maintained for the 
antecedent and consequent grammars because the 
hierarchical definitions may be distinct. The asterisk 
is used to denote any subclass.  

We will use commas to separate multiple items at 
the same level. Negative numbers mean "not". For 
example, 1.-1,-2 in the antecedent grammar is 
interpreted to mean all salts, excluding the chloride 
and excluding the formula questions. The pull-down 
menu for Salts would then be empty. A 
lexicographic order (i.e., -1,-2 rather than -2,-1) is 
imposed to facilitate the pattern matcher. Similarly, 
1,-2 is interpreted to mean including the chloride 
question, but excluding the formula question in the 
antecedent grammar. Again, this interpretation is 
used to determine the entries in the pull-down 
menus at each level of the hierarchy. That is, use 
positive integers if relatively few entries are to be 
included and use negative entries if relatively few 
entries are to be excluded. This itself is a form of 



 

 

randomization. The interpretation of the consequent 
grammar is similar.  
 
 
6 Grammatical Inference 
The next step is to tie the above together by way of 
grammatical inference. To begin with, let us write a 
pair of domain-specific rules and see how they can 
be randomized:  

 
R1: IF the metal is Sodium ∧  
the gas is Chlorine THEN the salt 
is NaCl 
R2: IF the metal is Potassium ∧  
the gas is Fluorine THEN the salt 
is KFl 

 
Now, these are the system rules, but we need to 
transform these rules into a set of questions to elicit 
the required knowledge from the user or knowledge 
engineer in a directed manner. The actions are 
reduced to integers.  

 
Q1: What is the metal having a 
+1 valence?  
Q2: What is the reducing gas 
having a -1 valence?  
A1: NaCl 
A2: KFl 

 
The rules are now:  

 
R1: IF Q1 = Sodium ∧  Q2 = 
Chlorine THEN A1 
R2: IF Q1 = Potassium ∧  Q2 = 
Fluorine THEN A2 

 
Here are the associated symbol tables:  

 
 

Antece
dent 

Grammar Consequent Gramma
r 

1 Sodium 1 A1 
2 Potassium 2 A2 
3 Chlorine 3 Table salt 
4 Fluorine 4 Potassium 

Fluoride 
1.-3,-4 Q1 5 Salt 
2.-1,-2 Q2 1.* Salts 

 
 

Table 3. The Chemical Symbol Tables 
Notice that the (antecedent) integer hierarchies also 
serve as a data dictionary (e.g., 1.3 or 1.4 would be 
disallowed). Now, we are in a position to define a 

rudimentary grammar. We deviate from traditional 
grammar notation in that the reductions are to be 
taken to the right. This is done to be synergistic with 
the appearance of the rules with the rule antecedent 
on the left and the rule consequent on the right. The 
antecedent grammar follows.  

 
1.1 & 2.3 → 1.1 
1.2 & 2.4 → 1.2 

 
The consequent grammar follows. 
 

1.1 → 1.3 | 1.5 
1.2 → 1.4 | 1.5 

 
Here is how the grammars would operate: If you 

were to start by asking Q1 and answering with the 
metal sodium, then the system would ask you if the 
reducing gas were chlorine. If so, then it would 
inform you that you have table salt, or salt. If not, 
then the system would superclass chlorine and ask 
you for another reducing gas having a -1 valence. 
Since the data dictionary tells us that this can only 
be chlorine or fluorine, then it in effect asks you if 
the reducing gas is fluorine. If not, then the system 
would direct you to specify and classify a proper 
gas, if any. If so, then NaFl is as yet unknown by the 
system. That is, 1.1 & 2.4 does not match any 
antecedent in the segmented rule base. The 
knowledge engineer is thus asked to specify a 
consequent, which is also acquired in the consequent 
symbol table, if necessary -- say, 1.6. The same 
process occurs if a more general rule is matched 
(i.e., one whose antecedent is covered by the 
context), which produces an incorrect action(s). The 
new antecedent rule is thus:  

 
1.1 & 2.4 → 1.6 | 1.5 

 
A special start symbol, A, is introduced to define 
those rule consequents that are already primitives:  

 
A → 1.6 | 1.5 

 
Thus, the antecedent grammar now appears as:  

 
1.1 & 2.4 → A 
1.1 & 2.3 → 1.1 
1.2 & 2.4 → 1.2 

 
The updated consequent grammar now appears as:  

 
A → 1.6 | 1.5 
1.1 → 1.3 | 1.5 
1.2 → 1.4 | 1.5 



 

 

Observe from the antecedent grammar that if the 
metal sodium were first specified, then there would 
now be ambiguity in what to suggest next -- chlorine 
or fluorine. Here, fluorine would be presented first 
as it was part of the most recently acquired rule. Of 
course, if the metal potassium were first specified, 
then fluorine would automatically be presented first, 
since there is no ambiguity at this point. Notice 
again that the system has learned to improve its 
behavior on the basis of experience.  

Next, these grammars are to be subjected to 
randomization operations -- each one distinct from 
the other. As it turns out, these grammars are already 
random. Thus, we introduce an abstract antecedent 
grammar instance and proceed from there. The 
consequent grammar is randomized similarly. Let 
the abstract antecedent grammar instance be defined 
as follows.  

 
1.1 & 2.2 & 2.3 → A 
1.1 & 2.2 & 2.4 → 1.1 
1.2 & 2.2 & 2.4 → 1.2 

 
This instance can be randomized as follows.  

 
B → 1.1 & 2.2 
B & 2.3 → A 
B & 2.4 → 1.1 
1.2 & 2.2 & 2.4 → 1.2 

 
Notice now that the randomization operation is also 
ambiguous. This implies the need for heuristics in 
randomizing a context-free grammar. The following 
is an alternative randomization.  

 
C → 2.2 & 2.4 
1.1 & 2.2 & 2.3 → A 
1.1 & C → 1.1 
1.2 & C → 1.2 

 
Different degrees of randomization will be 

obtained depending on the order of reductions. Here, 
the B and C substitutions yield equivalent degrees of 
randomization. Exhaustive search is needed to 
minimize the resultant grammar. Fortunately, the 
grammar need not be minimized because the extra 1 
or 2 percent compression does not improve 
performance any more than that and it does cost 
orders of magnitude more computing time.  

Observe how the randomized grammars allow 
subsequences to be matched that need not match the 
prefix (e.g., C → 2.2 & 2.4). Here, given 2.2, 2.4 
would be suggested in the absence of a more 
specific match. 2.3 would not be suggested because 
2.2 requires 1.1 as a prefix for this case.  

In practice, array-based pointers would point to Cs 
definition. The letter definitions are recursively 
subject to randomizations where possible. The 
inference engine will match the productions and 
where necessary superclass them. It is not necessary 
to maintain separate grammars for this purpose as 
the 'primitive' grammar is the most informative.  
 
 
7   Conclusion 
We have proposed solutions to overcome the 
knowledge acquisition bottleneck to support an 
automated software warehouse application. Several 
technical issues regarding the effective use of the 
acquired knowledge on software assets through 
symbolic representations were discussed. The 
solutions focus on representation, randomization, 
grammatical inference, and transformational aspects 
of the technical challenges. 
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