
Applying Strong Components Detection to Max3SAT

DAVID PINTO, ALBINO PETLACALCO, ANDRÉS VÁZQUEZ
Faculty of Computer Science

Benemérita Universidad Autónoma de Puebla,
Edificio 135, Ciudad Universitaria, San Manuel, CP 72570

PUEBLA, PUE. MEXICO.

Abstract: - The problem of maximum satisfiability is an NP-Complete problem, which means that a
deterministic algorithm for solving it in polinomial time does not exist unless P=NP. New methods that find
solutions that approximate optimal solutions are requested. We have developed a heuristic based on strong
components detection, to approximate Max3SAT, that improves the time execution by eliminating leaves nodes.
We have obtained good results even when the size of the problem increases.

Key-Words: - Strong Components, MaxSAT, NP-Problem.

1 Introduction
The problem of maximum satisfiability [1] can be
used for many kinds of problems. In the particular
case of verification of consistency [5] in databases,
the information stored is usually expressed by
implications, which can then be transformed into
formulas. In this way, if the database is inconsistent,
we want to know the minimum number of clauses to
be eliminated in order to recover the consistency. The
wide range of applications of MaxSAT and the fact
that this is a central problem of complexity theory,
makes it an important problem to study.
 Given a formula F in conjuntive normal form
(CNF), the satisfiability problem consists of finding
an assignment that satisfies the formula or indicates if
such an assignment does not exist. When we cannot
find any assignment that satisfies the formula F, we
want to find an assignment such as maximizing the
number of clauses in F; this variant of the
satisfiability problem is known as the maximum
satisfiability problem (MaxSAT). Max3SAT is a
particular instance of MaxSAT, in that it is a problem
based on MaxSAT but only with three literals in each
clause of the formula. It has been shown that
Max3SAT is equivalent to MaxSAT [6].
 Several algorithms have been proposed to solve
SAT and MaxSAT [2], [3]. In this paper we present a
new heuristic to approximate Max3SAT. The method
that we have developed is based on the detection of
strong components [7]. Given an instance F of 3SAT
in 3CNF, we obtain an associated graph G(F) of it,
and a strong component without inconsistency, i.e.,
there is not an arc from x to ∼ x in G(F) for each node
in the component; in order to do this, we used
additional polinomial reductions.
 We have tested the heuristic on large instances,
with 100, 300, 500 variables and 200-500, 300-1200,

1000-2000 clauses respectively and we have obtained
good solutions. These sizes have been considered
because, according to Selman, in these ratios we can
find the most difficult instances of SAT [4].
 This paper has been structured as follows: In
Section 2 we explain the concepts used in the
heuristic. In Section 3 we present how the heuristic
works. In Section 4 we present the results we
obtained. Finally, in Section 5 we present our
conclusions.

2 Background
In order to implement a heuristic for Max3SAT, we
need some basic principles which help us reach our
goals. A brief explanation is provided regarding the
reductions that are used, strong components detection
and an important theorem to guarantee satisfiability.
 These reductions are used to transform a CNF
formula to a graph. Since we used a basic logical
theorem to reach the transformation (related with the
implication logical operator), it is very important to
introduce a section that allows us understand how to
translate a 3CNF formula to a 2CNF one. In the next
subsection we introduce this subject. The subsection
subsequent explains the logical theorem mentioned
below. A brief explanation of strong components
detection is given at subsection 2.3, and in subsection
2.4 we link all of the concepts to provide a sense of
meaning to strong components with satisfiability of
the formula.

2.1 3CNF to 2CNF Reduction
Let F be a formula in CNF. Consider the next
polinomial reduction from 3CNF to 2CNF [8]:

mailto:andrexg@cs.buap.mx

 Let {x1, …,xn} be a set of variables and F have the
form fi ∧ f2 ∧ … ∧ fm where fi = xj1 ∨ xj2 ∨ xj3 , with
i = 1 , … , m and j = 1 , …, n.

 In addition, every fi in F is replaced with gi as
follows (Note that the variable ti is added):

 gi = xj1 ∧ xj2 ∧ xj3 ∧ ti ∧ (∼ xj1 ∨ ∼xj2) ∧ (∼ xj2 ∨ ∼ xj3)
∧(∼ xj3 ∨ ∼xj1) ∧ (xj1 ∨ ∼ ti) ∧ (xj2 ∨ ∼ ti) ∧ (xj3 ∨ ∼ti)

 It is clear from the formulation below that the
formula F is insatisfiable and that the maximum
number of clauses that can be satisfied are 7m.
 Although Papadimitriou proposed this reduction,
we have observed that the added artificial variable
can be eliminated from the transformation from
2CNF. We can then graph the algorithm by
increasing its speed but without decreasing the
quality of the results.
 The resolutions of 2CNF and 3CNF are equivalent,
however, the Max2SAT problem stills lies in NP [9].

2.2 2CNF to Graph Reduction
Another reduction [8] that we have to consider is the
following one:
 Given a formula F, we construct a graph G(F)
where there is an arc from node x to node y iff there is
a clause (∼x ∨ y) or (y ∨ ∼x) in F. In addition if there
is an arc from x to y, there is an arc from ∼ x to ∼ y
too.
 The reduction below is useful because of its logical
implications regarding its use in obtaining a graph
associated with F after having made the reduction
from 3CNF to 2CNF.

2.3 Strong Components Detection
Based on the reduction below, we used the strong
components detection to find a path in the graph
G(F). This path does not allow inconsistencies, i.e.,
we do not add the node x in the strong component if
earlier we have added the node ∼x. We used the
algorithms proposed by Nuutila [7] to perform it.
Nuutila proposed several algorithms that avoid
redundant computations in the graph.
 The main idea of the algorithm of strong
components detection in a graph G(F) is to define the
variables successor and root for each node in G. For
each node x in G, we perform the transitive closure of
x if x has not been visited yet. At the beginning if the
variable root of x is x itself, a function min(x ; y) is
then defined to determine which node has been
entered first into the method. Then we assign the

node that was entered first to the variable root.
Furthermore for each arc in x we perform the
transitive closure, and the set of successor nodes of x
is stored in the variable successor of the node root of
x. In this way we avoid data replication, thereby
increasing the speed of the algorithm.

2.4 Satisfiability in a Graph
We also used the theorem shown at [8], known as
”Papadimitriou’s reduction”, to guarantee the
satisfiability of F, given the graph that represents it.

 Theorem: F is insatisfiable if a node x in G(F)
exists such that we can find a path from x to ∼ x and
from ∼ x to x.

 We also can build the inverse relation: first we
consider the node x and assign to it the value true if
we have not yet assigned any value in previous steps.
Then we consider the nodes that can be raised from x,
and assign the true value too. In addition, we assign
the value false to the negations of those nodes. We
repeat the step below until all the nodes have some
true value. Eventually each node in G will have a true
value and there will be not path from x to ∼ x in G(F).
The succession of nodes that have each the value true
will satisfy the formula F.

3 The Algorithm
With the definitions and reductions described below,
we developed a heuristic that takes a formula F in
3CNF as input and transforms it into a 2CNF.
Following, a transformation from 2CNF to a graph
G(F) is applied. We then detect the strong
components in G(F) and determine the component
that maximizes the number of clauses satisfied in F.
 The process below generates 2m + 2n nodes for a
problem with n variables and m clauses according to
the reductions that we have mentioned, this because
for each clause ci the reduction adds a new variable ti.
In order to improve the performance of the algorithm
and reduce the representation of the formula, we have
introduced some changes. We do not add the nodes ti
and ∼ ti in G. The nodes ti and ∼ ti are leaves nodes
and they do not have any arcs to other nodes. This
process reduces the size of the representation of the
problem from 2m + 2n to 2n.
 We implemented both algorithms, by both adding
and writing the artificial variable. We named RA the
first and RB the second and the results obtained are
shown in the next section.

4 Results
We used the Kullmann’s package [10] to generate
3SAT instances. According to Selman’s empirical
analysis [4] we generated the following groups of
instances: for 100 variables, instances with 200, 300,
400 and 500 clauses, for 300 variables instances with
600, 900, 1200 clauses and for 500 variables
instances with 1000, 1500, 2000 clauses. The results
that we report in this paper are the average result of
these instances.
 According to the formulation of the heuristic we
explained in the section above, we tested both
heuristics, RA and RB. We both included and omitted
the variable ti using the instances mentioned above
and obtained the following results:
 In Table 1 we show the time average in minutes of
the heuristics with 100 variables. The difference in
time is remarkable; RB obtains results of the same
instances in seconds while RA takes minutes.

TABLE 1

RUNNING TIME AVERAGE - 100 VARIABLES

In Tables 2, 4 and 6 we show that the results for both
algorithms RA and RB are the same, giving evidence
that the improvement of the algorithm seems to be
correct. Future work should verify this hypothesis.

TABLE 2
SATISFIED CLAUSES PERCENT - 100 VARIABLES

In Figure 1 we show a graphical view of the time
differences between both algorithms with instances of
100 variables.
In Table 3 we show the time average in minutes of
the heuristics with 300 variables. The difference in
time, as with 100 variables, is notable; RB also
obtains results of the same instances in seconds while
RA takes minutes.

Fig. 1

In Figure 2 we show a graphical view of the
percentage of satisfied clauses of both algorithms
with instances of 100 variables.

Clauses RA RB
200 1.63 0.01
300 4.69 0.02
400 9.46 0.03
500 22.31 0.03

Fig. 2 - 100 variables

 In Figure 3 we show a graphical view of the time
differences between both algorithms with instances of
300 variables.

TABLE 3 Clauses RA RB
200 99.1 99.1
300 98.27 98.27
400 97.63 97.63
500 96.72 96.72

RUNNING TIME AVERAGE - 300 VARIABLES

Clauses RA RB
600 48.4 0.54
900 98.37 1.76
1200 476.84 2.74

TABLE 4
SATISFIED CLAUSES PERCENT- 300 VARIABLES

Clauses RA RB

600 98.95 98.95
900 98.37 98.37

1200 97.67 97.67

Fig. 3

In Figure 4 we show a graphical view of the
percentage of satisfied clauses of both algorithms
with instances of 300 variables.

Fig. 4 - 300 variables

In Figure 5 we show a graphical view of the time
differences between both algorithms with instances of
500 variables.

TABLE 5
RUNNING TIME AVERAGE - 500 VARIABLES

TABLE 6
SATISFIED CLAUSES PERCENT - 500 VARIABLES

Fig. 5

In Figure 6 we show a graphical view of the satisfied
clauses percent of both algorithms with instances of
500 variables.

Fig. 6 - 500 variables

In Table 5 we show the time average in minutes of
the heuristics with 500 variables. The difference in
time, as with 100 and 300 variables, is notable; RB
also obtains results of the same instances in seconds
while RA takes minutes.

 Clauses RA RB

1000 51.05 3.49
1500 143.44 6.42
2000 373.89 8.49

5 Conclusions
We have developed a heuristic based on strong
components detection to Max3SAT that improves the
time execution by eliminating leaves nodes, and the
results obtained are good even when the size of the
problem increases. The heuristic inputs a formula F
in CNF and transforms it into a graph G(F), then
detects the strong components in G(F) to thereby
determine the component that maximizes the number
of clauses satisfied in F.

Clauses RA RB
1000 98.94 98.94
1500 98.33 98.33
2000 97.72 97.72

 We have improved the performance of the
algorithm reducing the representation of the formula

when we translate it into a graph, thereby avoiding
adding the artificial variable (generated by the
reduction from 3CNF to 2CNF) as leaves nodes in the
graph.
 As can be seen in Section 4, the new algorithm
obtains the same number of clauses satisfied, but the
running time decreases.
 Future work should mathematically verify that this
hypothesis is true.

References:
[1] S. Cook, The P versus NP Problem, University of

Toronto, 2000.
[2] S. Joy, J. Mitchell, B. Borchers, Solving MAX-

SAT and Weighted MAX-SAT Problems using
Branch-and-Cut, Mathematical Science,
Rensselaer Polytechnic Institute, Troy, NY 2180,
1998.

[3] Selman Bart, Henry A. Kautz, Brahm Cohen,
Local Search Strategies for Satisfatibility Testing,
AT&T Bell Laboratories, 1993.

[4] David Mitchell, Bart Selman, Hector Levesque,
Hard and Easy Distributions of SAT Problems,
Dept. of Computer Science, Simon Fraser
University, AT&T Bell Laboratories, Dept. of
Computer Science, University of Toronto.

[5] Pierre Hansen, Brigitte Jaumard Algorithms for
the Maximum Satisfatibility Problem, Computing
44, pag 279-303 Springer Verlag 1990.

[6] M. Garey and D. Johnson. Computers and
Intractability. W.H. Freeman, 1979.

[7] Esko Nuutila, An experimental study on transitive
clousure representation, Laboratory of

Information Processing Science, Helsinki
University of Technology, Finland, 1996.

[8] Christos H. Papadimitriou, Computacional
Complexity Addison-WesleyPublishing
Company, pag 183 - 187, 1994.

[9] Guillermo Morales Luna, Guillermo De Ita Luna,
Approximation algorithms for MaxSAT, Sección
de Computación Centro de Investigación y
Estudios Avanzados del IPN, Universidad
Autónoma de Puebla, México, 2000.

[10] Oliver Kullmann, First report on an adaptive
density based branching rule for DLL-like SAT
solvers, using a database for mixed random
conjuntive normal forms created using the
Advanced Encryption Standard (AES), Computer
Science Department, University of Wales
Swansea, Swansea, UK, 2002

