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Abstract: - The problem of maximum satisfiability is an NP-Complete problem, which means that a 
deterministic algorithm for solving it in polinomial time does not exist unless P=NP. New methods that find 
solutions that approximate optimal solutions are requested. We have developed a heuristic based on strong 
components detection, to approximate Max3SAT, that improves the time execution by eliminating leaves nodes. 
We have obtained good results even when the size of the problem increases. 
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1 Introduction 
The problem of maximum satisfiability [1] can be 
used for many kinds of problems. In the particular 
case of verification of consistency [5] in databases, 
the information stored is usually expressed by 
implications, which can then be transformed into 
formulas. In this way, if the database is inconsistent, 
we want to know the minimum number of clauses to 
be eliminated in order to recover the consistency. The 
wide range of applications of MaxSAT and the fact 
that this is a central problem of complexity theory, 
makes it an important problem to study.  
   Given a formula F in conjuntive normal form 
(CNF), the satisfiability problem consists of finding 
an assignment that satisfies the formula or indicates if 
such an assignment does not exist. When we cannot 
find any assignment that satisfies the formula F, we 
want to find an assignment such as maximizing the 
number of clauses in F; this variant of the 
satisfiability problem is known as the maximum 
satisfiability problem (MaxSAT). Max3SAT is a 
particular instance of MaxSAT, in that it is a problem 
based on MaxSAT but only with three literals in each 
clause of the formula. It has been shown that 
Max3SAT is equivalent to MaxSAT [6]. 
    Several algorithms have been proposed to solve 
SAT and MaxSAT [2], [3]. In this paper we present a 
new heuristic to approximate Max3SAT. The method 
that we have developed is based on the detection of 
strong components [7]. Given an instance F of 3SAT 
in 3CNF, we obtain an associated graph G(F) of it, 
and a strong component without inconsistency, i.e., 
there is not an arc from x to ∼ x in G(F) for each node 
in the component; in order to do this, we used 
additional polinomial reductions.  
    We have tested the heuristic on large instances, 
with 100, 300, 500 variables and 200-500, 300-1200, 

1000-2000 clauses respectively and we have obtained 
good solutions. These sizes have been considered 
because, according to Selman, in these ratios we can 
find the most difficult instances of SAT [4]. 
    This paper has been structured as follows: In 
Section 2 we explain the concepts used in the 
heuristic. In Section 3 we present how the heuristic 
works. In Section 4 we present the results we 
obtained. Finally, in Section 5 we present our 
conclusions. 
 

 
2 Background 
In order to implement a heuristic for Max3SAT, we 
need some basic principles which help us reach our 
goals. A brief explanation is provided regarding the 
reductions that are used, strong components detection 
and an important theorem to guarantee satisfiability. 
    These reductions are used to transform a CNF 
formula to a graph. Since we used a basic logical 
theorem to reach the transformation (related with the 
implication logical operator), it is very important to 
introduce a section that allows us understand how to 
translate a 3CNF formula to a 2CNF one. In the next 
subsection we introduce this subject. The subsection 
subsequent explains the logical theorem mentioned 
below. A brief explanation of strong components 
detection is given at subsection 2.3, and in subsection 
2.4 we link all of the concepts to provide a sense of 
meaning to strong components with satisfiability of 
the formula. 

 
 

2.1 3CNF to 2CNF Reduction 
Let F be a formula in CNF. Consider the next 
polinomial reduction from 3CNF to 2CNF [8]: 
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    Let {x1, …,xn} be a set of variables and F have the 
form fi  ∧ f2  ∧  … ∧  fm where fi =  xj1 ∨ xj2 ∨ xj3 , with 
i = 1 , … , m and j = 1 , …, n.    
 
 In addition, every fi in F is replaced with gi as 
follows (Note that the variable ti is added): 
 
 gi = xj1 ∧ xj2 ∧ xj3 ∧ ti ∧ (∼ xj1 ∨ ∼xj2 ) ∧ (∼ xj2 ∨ ∼ xj3 ) 
∧(∼ xj3 ∨ ∼xj1 ) ∧ (xj1 ∨ ∼ ti ) ∧ (xj2 ∨ ∼ ti ) ∧ (xj3 ∨ ∼ti )  

   
 It is clear from the formulation below that the 
formula F is insatisfiable and that the maximum 
number of clauses that can be satisfied are 7m. 
    Although Papadimitriou proposed this reduction, 
we have observed that the added artificial variable 
can be eliminated from the transformation from 
2CNF. We can then graph the algorithm by 
increasing its speed but without decreasing the 
quality of the results.  
    The resolutions of 2CNF and 3CNF are equivalent, 
however, the Max2SAT problem stills lies in NP [9]. 
 
 
2.2 2CNF to Graph Reduction 
Another reduction [8] that we have to consider is the 
following one: 
    Given a formula F, we construct a graph G(F) 
where there is an arc from node x to node y iff there is 
a clause (∼x ∨ y) or (y ∨ ∼x ) in F. In addition if there 
is an arc from x to y, there is an arc from ∼ x to ∼ y 
too. 
    The reduction below is useful because of its logical 
implications regarding its use in obtaining a graph 
associated with F after having made the reduction 
from 3CNF to 2CNF. 
 
 
2.3 Strong Components Detection 
Based on the reduction below, we used the strong 
components detection to find a path in the graph 
G(F). This path does not allow inconsistencies, i.e., 
we do not add the node x in the strong component if 
earlier we have added the node ∼x. We used the 
algorithms proposed by Nuutila [7] to perform it. 
Nuutila proposed several algorithms that avoid 
redundant computations in the graph. 
    The main idea of the algorithm of strong 
components detection in a graph G(F) is to define the 
variables successor and root for each node in G. For 
each node x in G, we perform the transitive closure of 
x if x has not been visited yet. At the beginning if the 
variable root of x is x itself, a function min(x ; y) is 
then defined to determine which node has been 
entered first into the method. Then we assign the 

node that was entered first to the variable root. 
Furthermore for each arc in x we perform the 
transitive closure, and the set of successor nodes of x 
is stored in the variable successor of the node root of 
x. In this way we avoid data replication, thereby 
increasing the speed of the algorithm. 
 
 
2.4 Satisfiability in a Graph 
We also used the theorem shown at [8], known as 
”Papadimitriou’s reduction”, to guarantee the 
satisfiability of F, given the graph that represents it.  
    
   Theorem: F is insatisfiable if a node x in G(F) 
exists such that we can find a path from x to ∼ x and 
from ∼ x to x. 
 
    We also can build the inverse relation: first we 
consider the node x and assign to it the value true if 
we have not yet assigned any value in previous steps. 
Then we consider the nodes that can be raised from x, 
and assign the true value too. In addition, we assign 
the value false to the negations of those nodes. We 
repeat the step below until all the nodes have some 
true value. Eventually each node in G will have a true 
value and there will be not path from x to ∼ x in G(F). 
The succession of nodes that have each the value true 
will satisfy the formula F. 

 
 

3 The Algorithm 
With the definitions and reductions described below, 
we developed a heuristic that takes a formula F in 
3CNF as input and transforms it into a 2CNF. 
Following, a transformation from 2CNF to a graph 
G(F) is applied. We then detect the strong 
components in G(F) and determine the component 
that maximizes the number of clauses satisfied in F. 
    The process below generates 2m + 2n nodes for a 
problem with n variables and m clauses according to 
the reductions that we have mentioned, this because 
for each clause ci the reduction adds a new variable ti. 
In order to improve the performance of the algorithm 
and reduce the representation of the formula, we have 
introduced some changes. We do not add the nodes ti 
and ∼ ti in G. The nodes ti and ∼ ti are leaves nodes 
and they do not have any arcs to other nodes. This 
process reduces the size of the representation of the 
problem from 2m + 2n to 2n. 
    We implemented both algorithms, by both adding 
and writing the artificial variable. We named RA the 
first and RB the second and the results obtained are 
shown in the next section. 

 



4 Results 
We used the Kullmann’s package [10] to generate 
3SAT instances. According to Selman’s empirical 
analysis [4] we generated the following groups of 
instances: for 100 variables, instances with 200, 300, 
400 and 500 clauses, for 300 variables instances with 
600, 900, 1200 clauses and for 500 variables 
instances with 1000, 1500, 2000 clauses. The results 
that we report in this paper are the average result of 
these instances.  
    According to the formulation of the heuristic we 
explained in the section above, we tested both 
heuristics, RA and RB. We both included and omitted 
the variable ti using the instances mentioned above 
and obtained the following results: 
    In Table 1 we show the time average in minutes of 
the heuristics with 100 variables. The difference in 
time is remarkable; RB obtains results of the same 
instances in seconds while RA takes minutes. 
 

 
TABLE 1 

RUNNING TIME AVERAGE - 100 VARIABLES 

 
In Tables 2, 4 and 6 we show that the results for both 
algorithms RA and RB are the same, giving evidence 
that the improvement of the algorithm seems to be 
correct. Future work should verify this hypothesis. 

 
 

TABLE 2 
SATISFIED CLAUSES PERCENT - 100 VARIABLES 

 
In Figure 1 we show a graphical view of the time 
differences between both algorithms with instances of 
100 variables. 
In Table 3 we show the time average in minutes of 
the heuristics with 300 variables. The difference in 
time, as with 100 variables, is notable; RB also 
obtains results of the same instances in seconds while 
RA takes minutes. 
 
 
 
 

 
Fig. 1 

 
In Figure 2 we show a graphical view of the 
percentage of satisfied clauses of both algorithms 
with instances of 100 variables. 

Clauses RA RB
200 1.63 0.01
300 4.69 0.02
400 9.46 0.03
500 22.31 0.03

 
Fig. 2 - 100 variables 

 
    In Figure 3 we show a graphical view of the time 
differences between both algorithms with instances of 
300 variables. 
 

TABLE 3 Clauses RA RB
200 99.1 99.1
300 98.27 98.27
400 97.63 97.63
500 96.72 96.72

RUNNING TIME AVERAGE - 300 VARIABLES 
 

 

Clauses RA RB
600 48.4 0.54
900 98.37 1.76
1200 476.84 2.74

TABLE 4 
SATISFIED CLAUSES PERCENT- 300 VARIABLES 

 
Clauses RA RB

600 98.95 98.95
900 98.37 98.37

1200 97.67 97.67  
 
 
 



 
Fig. 3 

 
In Figure 4 we show a graphical view of the 
percentage of satisfied clauses of both algorithms 
with instances of 300 variables. 
 

 
Fig. 4 - 300 variables 

 
In Figure 5 we show a graphical view of the time 
differences between both algorithms with instances of 
500 variables. 
 

TABLE 5 
RUNNING TIME AVERAGE - 500 VARIABLES 

 
 
 

TABLE 6 
SATISFIED CLAUSES PERCENT - 500 VARIABLES 

 
Fig. 5 

 
In Figure 6 we show a graphical view of the satisfied 
clauses percent of both algorithms with instances of 
500 variables. 
 

Fig. 6 - 500 variables 
 
In Table 5 we show the time average in minutes of 
the heuristics with 500 variables. The difference in 
time, as with 100 and 300 variables, is notable; RB 
also obtains results of the same instances in seconds 
while RA takes minutes. 
 
 Clauses RA RB

1000 51.05 3.49
1500 143.44 6.42
2000 373.89 8.49

5 Conclusions 
We have developed a heuristic based on strong 
components detection to Max3SAT that improves the 
time execution by eliminating leaves nodes, and the 
results obtained are good even when the size of the 
problem increases. The heuristic inputs a formula F 
in CNF and transforms it into a graph G(F), then 
detects the strong components in  G(F) to thereby 
determine the component that maximizes the number 
of clauses satisfied in F. 

Clauses RA RB
1000 98.94 98.94
1500 98.33 98.33
2000 97.72 97.72

    We have improved the performance of the 
algorithm reducing the representation of the formula 



when we translate it into a graph, thereby avoiding 
adding the artificial variable (generated by the 
reduction from 3CNF to 2CNF) as leaves nodes in the 
graph. 
    As can be seen in Section 4, the new algorithm 
obtains the same number of clauses satisfied, but the 
running time decreases. 
   Future work should mathematically verify that this 
hypothesis is true. 
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