
On New Sorting-Based Lossless Motion Estimation Algorithms

D. QUAGLIA, M. PERGA, B. MONTRUCCHIO, P. MONTUSCHI

Dipartimento di Automatica e Informatica
Politecnico di Torino

Corso Duca degli Abruzzi, 24 - I-10129 Torino
ITALY

Abstract: - Block motion estimation represents a cpu-intensive task in video encoding and many fast algorithms have
been developed to improve the searching and matching phases. A milestone within the lossless approach is partial distor-
tion elimination (PDE/SpiralPDE) in which distortion is the difference between the block to be coded and the candidate
prediction block. In this paper we show that contributions to distortion can be reliably estimated using the Taylor series
expansion. The approximation method is then used to derive eight new PDE–based algorithms in which the matching order
depends on the magnitude of the estimated distortion contributions. Exhaustive comparisons using several, widely differ-
ent, video sequences show that these algorithms reduce the total encoding time by up to 20% with respect to SpiralPDE,
while the computation for motion estimation is reduced by about 30%. The proposed algorithms are also compared with
other PDE–based lossless approaches known in literature and there is a significant gain over all of them.
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1 Introduction

In video encoding, motion compensation is used to im-
prove the efficiency of the prediction from past or future
frames. Motion estimation is the process of evaluating
similarities between adjacent frames [1–3]. The class of
“block–matching algorithms” is the most frequently used,
especially in coding schemes based on the discrete cosine
transform (i.e., MPEG-1 [4], MPEG-2 [5], MPEG-4 [6],
H.261 [7], H.263 [8], and H.264 [9]). For each block be-
ing coded in the current frame, block–matching methods
find the most similar area in the frame used for prediction.
The displacement between these two blocks is the motion
vector for all pixels of the given coded block. The process
of motion estimation consists of two main sub–tasks: 1)
for each block being coded, finding the most similar can-
didate block in the frame used for prediction (searching
process), and 2) for each candidate block, measuring the
match between the two blocks (matching process), e.g.,
with the sum of absolute differences (SAD). The match-
ing process is nested into the searching process.

The most accurate block matching method is the Full
Search that compares the block being coded with every
possible candidate block in the search window; Full Search
motion estimation requires up to 70% of the encoding time,
thus negatively affecting the performance of hardware and
software encoders. A well–known class of techniques to
speed–up the matching process is named Partial Distor-
tion Elimination (PDE) [10]: since the SAD between two

blocks is obtained by progressively adding partial pixel–
to–pixel differences, then a block comparison can be in-
terrupted if the partial sum becomes greater than the min-
imum value of SAD already found for another candidate
block in the search window. In the PDE approach, the or-
der in which blocks are tested during the searching pro-
cess, affects the speed of the whole estimation; in fact, if a
good prediction is found early, then many more successive
tests have a tighter distortion bound and may be quickly
skipped. For example, SpiralPDE [11] improves the basic
PDE algorithm using a spiral outward trajectory starting
from the center of the search window according to the sta-
tistical distribution of the optimum motion vectors.

In the PDE approach, performance can be significantly
improved if the pixels providing the largest contributions to
SAD are checked first, and this can be best accomplished
by estimating the actual value of pixels and their contribu-
tion to SAD. In [12] four different estimation algorithms
are proposed. The first adapts the checking order in ���������
blocks according to the pixel–level gradient magnitude, the
second applies a top–to–bottom scan of each of the �	�
�
blocks based on the order of their mean gradient magni-
tude, the third uses an adaptive matching scan of �����
blocks based on the order of gradient magnitude, and the
fourth (P4) is a top-to-bottom scan of 
��

 blocks based
on the order of their mean gradient magnitude. P4 gets
the best results. The selection of the pixel order during the
matching phase is also the basis of later works [13, 14]. In
particular, in [14] pixels are checked according to the value



of the gradient computed along to the so–called Hilbert
path.

In this paper we show that contributions to SAD can be
reliably estimated from local information using the Taylor
series expansion. Then we derive ten methods for SAD
estimation and we compare their performance on several,
widely different, test sequences. This work extends [15]
since it provides an exhaustive comparison of the algo-
rithms derived from the Taylor series expansion. Among
the techniques, FFSSG and FFSSDG reduce the total en-
coding time by up to 20% with respect to a reference loss-
less method, the Spiral PDE [11], while the computation
for motion estimation is reduced by about 30%. The pro-
posed algorithms are also compared with other PDE–based
lossless approaches known in literature and there is a sig-
nificant gain over all of them.

The paper is organized as follows. Section 2 theoreti-
cally analyzes SAD behavior using the Taylor series ex-
pansion and describes ten estimation methods. Section 3
reports the experimental results for the proposed algo-
rithms. Finally, conclusions are drawn in Section 4.

2 Analysis and estimation of the
SAD

Block matching methods find the most similar candidate
block in the frame used for prediction; to measure the
match between the two blocks the most frequently used
criterion is the sum of absolute differences (SAD) which is
traditionally defined as
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where
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is the position of the macroblock being coded,
�

is
the candidate motion vector, * is the block width/height,���� � �+	,"$


is the luminance intensity of the pixel
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in the
block with position

�
in the frame at time . and � � &
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is the luminance intensity of the pixel
� �+	,"$


in the candidate
prediction area situated at position

�0/1�
in the frame at time2 .

The PDE approach uses the partial sum of differences to
eliminate impossible candidates before the complete calcu-
lation of the SAD. As shown in (2), the partial sum of dif-
ferences
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is computed until it becomes equal

to or greater than the minimum SAD already found (with
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(2)
In particular, in (2) matching process is performed row by
row and the test is performed after every row. If this con-
dition becomes true for cedf* , the candidate vector

�
is

rejected without further computations.

The order in which pixels within a block are picked up
to compute the SAD, affects the speed of the motion es-
timation; in fact, if the highest contributions to SAD are
found early, then the distortion bound may be reached af-
ter a small number of differences and the partial sum can
be stopped.

Equation (1) can be rewritten as (3) in which the top-
to-bottom row-by-row matching order is replaced by the
generic order

�
(being a summation, SAD does not change

with this order). In (3) and in the following equations we
omit

� �!	#"$

after ���� since

�g� c 

provides the same meaning.
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The PDE approach shown in (2) can be rewritten as in (4)
in which m is the number of differences needed to reach�3�1�on � p .
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In this context, matching optimization consists in find-
ing a matching order

�
such that the highest contributions

to SAD are checked first and, therefore, the average num-
ber of differences needed to reach

�3��� n � p is kept small.
SpiralPDE can be considered the simplest version of this
approach since it uses a top-to-bottom row-by-row scan as
shown in (2); for this reason we use SpiralPDE as the com-
parison term of our algorithms. To further improve match-
ing, it is necessary to have much more information about
the pixel values of the candidate blocks; in this work we
detail the relationship between the pixel values in a block
and those in the adjacent blocks (i.e., for other candidate
vectors).

2.1 Taylor series expansion of the distortion

Using the notation of (1) let u �-�A	��+	#"v

be the distortion

function, which depends on the candidate vector and the
pixel (i,j) as follows:
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We are interested in estimating the behavior of u �-�A	��+	,"$

with different values of the candidate vector

�
. If the value

of u is known for a given vector (e.g., for the null vectorw
), then we can approximate its value in the neighborhood

by means of the Taylor series expansion reported in (6).
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Equation (6) suggests that the magnitude of the differ-
ences in the center of the search window together with their



Table 1. The set of algorithms derived from Taylor series expan-
sion.

Name Approximation used to evaluate � <UB$@CTC@ VXD
FFSSL

Q=RS <UT @-VXD
FFSSD � <��=@ TC@ V D
FFSSG � \ Q=RS <UTC@ VXD�� <UBlY�� D
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differential term can provide some information about pixel
differences for other candidate vectors (e.g., vector

�
). For

example, given two points at position
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(in the coordinate system of the block) we have that
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Since we aim at finding the matching order in which the
highest contributions to SAD are checked first, we have
to estimate the greater between u �-�A	���
W	,"�
 


and u � �P	h��
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through the behavior of this function for other candidate
vectors. In particular, if in the center of the search window
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then, according to (7) and (8), we assume that
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In other words, the matching order that minimizes the
number of computations in the center of the search win-
dow may also be effective for other candidate vectors.

Considering (5), we further approximate (6) through the
Taylor series expansion of the luminance �A�� �-�+	,"$


as fol-
lows

u � �P	h�+	,"$
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(12)

2.2 The proposed algorithms

We have considered various ways of approximate u �-�A	��+	,"$

by combining the terms of (6) and (12). The name of each
algorithm and the approximation used are reported in Ta-
ble 1. Luminance values and differences are considered for
all pixels in the center of the search window and positions
are sorted in decreasing order of the value of the estimate.

Table 2. Video sequences used in tests.
Seq. N. Name Frames Type

1 Carphone 382 QCIF
2 Claire 494 QCIF
3 Container 300 QCIF
4 Foreman 300 QCIF
5 Glasgow 749 QCIF
6 Grandmother 869 QCIF
7 Miss America 150 QCIF
8 Mother & Daughter 960 QCIF
9 News 300 QCIF

10 Salesman 448 QCIF
11 Silent 300 QCIF
12 Suzie 150 QCIF
13 Trevor 150 QCIF

14 Bream 0 300 CIF
15 Bream 1 300 CIF
16 Foreman 299 CIF
17 Hall 300 CIF
18 Bus 150 CIF
19 Flower Garden 250 CIF
20 Mobile & Calendar 250 CIF
21 Tempete 250 CIF

22 Mobile & Calendar 80 CCIR-601
23 Table Tennis 82 CCIR-601

The sequence of sorted positions is then used as the match-
ing order for the other candidate vectors of the search win-
dow (which are tested in spiral order as in SpiralPDE). We
use ��� � ��� blocks and comparisons with

����� n � p �t�K

are

performed every eight positions.
The proposed algorithms require a sorting phase in

which a vector of 256 positions must be sorted by the value
of the distortion estimate which is in the range (0,255).
This fixed range allows the use of a fast sorting technique
with linear complexity based on counting sort [16]; ac-
cording to this technique each key value is used as the ad-
dress in a sparse vector which is then compacted using fast
copying routines.

3 Experimental results

The proposed algorithms have been compared with other
methods using 23, widely different, standard sequences. In
Table 2 for each of them are reported an identification num-
ber (used in the Figures), the commonly–used name, the
number of frames and the image size (QCIF, CIF, CCIR-
601). Chosen sequences cover several motion possibilities,
ranging from slow motion (e.g., Claire and Grandmother)
to large motion (e.g., Foreman). For some sequences tests
have been done using more than one image size.

Tests have been performed using a modified version of



the standard MPEG-2 encoder [10] with search window
��� �	� w for QCIF and � w ��� w for both CIF and CCIR-601.
The size of the search window is the same for both P and
B pictures.

The performance of the proposed algorithms are com-
pared with SpiralPDE, which is a traditional PDE ap-
proach, and P4 [12] which achieves the best results among
sorting–based algorithms known in literature.
Simulation results are reported using two metrics:

� the mean number of checked pixels per block used to
compute the partial distortion. In particular, in Fig. 2
and 5 the number of pixels is expressed as the fraction
of checked pixels with respect to SpiralPDE;

� total cpu time needed to encode the sequence. Since
encoding time varies widely with the sequence, we
report the fraction of encoding time with respect to
SpiralPDE.

While the mean number of checked pixel is a measure for
the motion estimation phase only, total encoding time re-
flects the actual gain achieved by the algorithm in a not
optimized implementation. In fact, both the proposed algo-
rithms and P4 require additional computational effort with
respect to SpiralPDE because of the gradient evaluation
(not present in all the algorithms) and the sorting phase.
In all the Figures, results are reported as a function of the
sequence number defined in Table 2; to provide a reference
point for all the Figures, results about FFSSG are always
reported (thick line).

First, we show results for the algorithms using only sin-
gle terms of (6) and (12), i.e., FFSSL, FFSSG, FFSSD, and
FFSSGoD (Fig. 1, 2, and 3). Fig. 1 reports the mean num-
ber of checked pixels per block for FFSSG, FFSSL, FFSS-
GoD, and FFSSD compared with P4 and SpiralPDE. Fig. 2
reports the reduction of the number of checked pixels with
respect to SpiralPDE for FFSSG, FFSSL, FFSSGoD, FF-
SSD, and P4. Fig. 3 reports the reduction of the encoding
time with respect to SpiralPDE for FFSSG, FFSSL, FFSS-
GoD, FFSSD, and P4.

Then, we have considered all the other algorithms ob-
tained combining in all ways two terms of (6) and (12).
Such algorithms are FFSSGL, FFSSDGoD, FFSSDG, FF-
SSGoDL, FFSSDL, and FFSSGGoD (Fig. 4, 5, and 6).
Fig. 4 reports the mean number of checked pixels per block
for FFSSG, FFSSGL, FFSSDGoD, FFSSDG, FFSSGoDL,
FFSSDL and FFSSGGoD algorithms. Fig. 5 reports the
reduction of the number of checked pixels with respect to
SpiralPDE for FFSSG, FFSSGL, FFSSDGoD, FFSSDG,
FFSSGoDL, FFSSDL, and FFSSGGoD. Fig. 6 reports the
reduction of the encoding time for each sequence with re-
spect to SpiralPDE for FFSSG, FFSSGL, FFSSDGoD, FF-
SSDG, FFSSGoDL, FFSSDL, and FFSSGGoD.

The exhaustive comparison of the algorithms based on
Taylor series expansion shows that FFSSG provides the
best results reducing the total encoding time by up to 20%
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Fig. 1. Mean number of checked pixels per block as a function of
the sequence. FFSSG, FFSSL, FFSSGoD, and FFSSD are com-
pared with P4 and SpiralPDE.

with respect to SpiralPDE, while the computation for mo-
tion estimation is reduced by about 30%. The comparison
between FFSSG and FFSSGoD experimentally shows the
validity of the approximation of the gradient of distortion
with the gradient of luminance; this clarifies the use of such
approximation in [15].

4 Conclusions and future works

We have presented a general method to estimate SAD
contributions in block–matching motion estimation algo-
rithms, based on the Taylor series expansion. The approx-
imation method has been used to derive ten PDE–based
algorithms (eight new) in which matching order depends
on the magnitude of the estimated SAD contributions. Us-
ing several, widely different, video sequences, we have
compared the performance of the proposed algorithms with
SpiralPDE, which is a traditional PDE approach, and state–
of–the–art sorting–based algorithms known in literature.
Experimental results show that FFSSG and FFSSDG re-
duce the total encoding time by up to 20% with respect to
SpiralPDE, while the computation for motion estimation is
reduced by about 30%. Future work will aim to apply the
proposed approximation method to the even more demand-
ing motion compensation scheme of H.264.
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