
 1

Tools and patterns in designing multi-agent systems with PASSI

ANTONIO CHELLA1,2, MASSIMO COSSENTINO1, LUCA SABATUCCI1

1ICAR/CNR – Istituto di Calcolo e Reti ad Alte Prestazioni/Consiglio Nazionale delle Ricerche c/o CUC, Viale
delle Scienze, 90128 Palermo, ITALY

2DINFO - Dipartimento di Ingegneria Informatica, Università degli Studi di Palermo

Viale delle Scienze, 90128 Palermo, ITALY

Abstract: In the last years the increasing attention on multi-agent systems (MAS) emphasized the need of a quality software
engineering approach to their design and realization. In this paper we propose a comprehensive approach for the development
of MAS oriented applications that uses a complete design methodology addressing important issues such as ontology
representation, agent collaboration and patterns reuse. The PASSI (Process for Agent Societies Specification and
Implementation) design methodology is supported by a specific design tool, granting a great number of automatisms during
the design, and a pattern repository for the reuse practice; these are determinant in cutting down the time and cost for
developing these systems. During the description of PASSI and its supporting tools, we refer to the most diffused standard for
agents (FIPA - Foundation for Intelligent Physical Agents) and modeling languages (UML and AUML). We will complete
our discussion with some examples of the functionalities offered by these tools.

1 Introduction
Several proposals exist for designing and representing
agent-based systems [3][4] [5][6]. Because research about
agency is still an open topic, some proposed
representations involve abstractions of social phenomena
and knowledge [3][5]. Others address implementation
issues and have higher fidelity models (e.g. [4][6]).
One response to these developments is to treat agent-based
software the same as other types. That is, there is no need
for methods or representations specifically for agent-based
software. We reject this view because it is more natural to
describe agents in a psychological and social language.
As a consequence, we think that design methodologies and
even design tools that we commonly use to design object-
oriented systems are not the best way to work on the
agent-oriented software. Many aspects of the object-
oriented world can be profitably reused but a proper
support of the agents peculiarities is necessary and this
should originate new methodologies and specifically
conceived design tools.
We propose PASSI [8] (Process for Agent Societies
Specification and Implementation) and the tools that
support it (PTK and AgentFactory) as a solution to the
above arguments. This methodology is the result of a long
period of study and experimentation mainly in robotics
[7][9]. It is composed of five models (System
Requirements, Agent Society, Agent Implementation,
Code Model and Deployment Model) which include
several distinct phases. The advantages of using PASSI
rather than other methodologies, derive from the complete

support that is has from PTK and AgentFactory. PTK is an
add-in for a diffused commercial UML-based CASE tool
(Rational Rose) that can enhance the design robustness
and coherence also lowering the designer effort. It
provides a strong support for the code production phase
with the automatic generation of a great amount of code.
AgentFactory is a pattern reuse application that allows the
rapid prototyping of great parts of complex FIPA
compliant systems [10] with a few mouse clicks.
The following sections are organized as follows: in section
two we discuss, with some examples, the support that the
PTK tool provides to the designer during his/hers work
with PASSI. In section three we illustrate our approach to
patterns reuse and how it is supported by the AgentFactory
application. Finally, in section four some conclusions are
drawn.

2 Designing agents with a specific CASE
tool

In the following sections, we will provide a short
description of the contribution offered by the PTK (PASSI
Toolkit) tool in designing a FIPA compliant system using
the PASSI [8] methodology. PASSI is composed of five
models (see Figure 1) that address different design
concerns and twelve steps in the process of building a
model. In PASSI we refer to the most common standards
in software engineering and agents (UML, AUML, FIPA,
XML, RDF). PASSI is the unique methodology that offers
a specific support for robotics with a consistent number of
patterns already present in our repository together with a

 2

complete design process from requirements elicitation to
coding and deployment.

Figure 1. The models and phases of the PASSI methodology

Our work about PTK, starts from the consideration that
most commercial CASE tools are only object-oriented. We
believe that the support of an agent-oriented CASE tool
can simplify the MAS designer’s work, increase the reuse
of code (through a database of agents/tasks patterns), and
permit the automatic production of a considerable part of
the code. Moreover, our tool helps untrained users to
follow a proper software engineering approach.
The philosophy underling the work with PTK is that
designing a MAS corresponds to instantiate a meta-model
of the multi-agent system that fulfills the requirements of
the specific problem. For this reason, specific choices (for
example the designation of the agents and their
functionalities) have a direct consequence on the other
steps of the process. The result of this approach is that the
different diagrams that constitute the final result of
designing with the PASSI methodology are gradually
composed by the author and the PTK tool in their
interaction. Some of these diagrams are totally dependent
by the designer, some are automatically built by the tool
and others are partially composed by the tool and then
completed by the designer. The add-in can also produce a
report of the entire design in a Microsoft Word format.
Together with the diagrams, the document will contain
textual descriptions and some tables summarizing the
agents, their behaviors, roles, communication, ontology,
etc.
In the following we will report some examples that briefly
illustrate the main features of PTK (the PASSI ToolKit).
We do not intend to provide an unique complete design
case study but just some scenarios describing how the
designer can take advantage from the use of a design
methodology and a CASE tool specifically conceived to
support it.
The discussion is therefore articulated into a series of
subsections dealing with the main PASSI phases and
describing in each of them, both the designer work and the
tool contribute.

2.1 Domain Description and Agent
Identification phases

We describe requirements in terms of use case diagrams,
and as a result, the Domain Description phase is a
functional description of the system composed of a
hierarchical series of use case diagrams. Stereotypes used
here come from the UML standard. Suppose that our
system is very simple and it is represented by the three use
cases of Figure 2.

User

Payment System

Catalog
Simple Shop <<include>>

<<include>>

Showcase <<Agent>>

Catalog

Cashier
<<Agent>>

User

Payment System Simple Shop

<<include>><<communicate>>

Figure 2. Three different phases of a toy system design. Up
on the left the Domain Description with three use cases, on

the right the agent identification phase with the PTK context
menu and finally down the resulting A.Id. diagram

Looking at the specific functionalities we can decide how
to distribute them into several different agents (Agent
Identification phase). For example we can decide to group
use cases SimpleShop and Catalog in the same agent
(Showcase) and implement the functionality described by
use case PaymentSystem in another agent (Cashier). Each
agent will be responsible to provide the system with the
functionalities described in its use cases.
PTK helps us in performing this agent identification
operation using a context menu (see Figure 2). In the
resulting diagram (Agent Identification), the two identified
agents are represented as packages containing the
assigned use cases. This diagram has been automatically
composed by PTK using the information provided in the
previous steps.

2.2 Roles Identification phase
This phase occurs early in the requirements analysis since
we now concern more with an agent’s externally visible
behavior rather than its structure – only approximate at
this step. Roles identification is based on exploring
scenarios arising from the Agents Identification diagram.
Scenarios are depicted using UML sequence diagrams
where each object represents a role; an agent may
participate in different scenarios playing distinct roles in
each of them. It may also play distinct roles in the same

 3

scenario. Roles described in this phase contribute to build
the model of the system and the tool being aware of them
(and of their belonging to some agents) will use this
information to build part of the following diagrams (for
example these roles will be reported in the Roles
Description diagram).

2.3 Task Specification phase
At this step, for each agent we focus on its behavior in
order to decompose it into simpler tasks. Tasks generally
encapsulate some functionality that forms a logical unit of
work.
A Task Specification diagram summarizes what the agent
can do, ignoring information about roles that an agent
plays when carrying out particular tasks.
For every agent in the model, we draw an UML activity
diagram that is made up of two swim-lanes. The one from
the right-hand side contains a collection of activities
symbolizing the agent’s tasks, whereas the left-hand side
one, contains some activities representing the other
interacting agents.
The support provided by PTK in working with these
diagrams consists in automatically synchronizing the
diagrams of different agents; in fact, if describing agent A
the designer introduces a communication involving the
behavior X of the agent B, this behavior will be
automatically reported to the agent B Task Specification
diagram. This ensures an high level of consistency among
the different diagrams and representations of agents.

2.4 Ontology Description phase
An agent-based system may achieve its semantic richness
through explicit ontologies, or domain-specific
terminologies and theories. In order to detail the resulting
ontology of the solution we introduce the O.D. (Ontology
Description) phase that is composed of two sub-phases: in
the first, the D.O.D. (Domain Ontology Description)
diagram, we describe the ontology of the domain
representing the involved entities through classes; in the
second, the C.O.D. (Communication Ontology
Description) diagram, the focus is on the agents’
knowledge and the communicative relationships among
these agents.

2.4.1 The Domain Ontology Description
Our domain ontology is described in terms of concepts
(entities of the domain), predicates (stating the value of
properties of domain entities) and actions (that can be
operated in the domain). We represent these elements and
their relationships using an UML class diagram (called
D.O.D., Domain Ontology Description, in the PASSI
methodology). In Figure 3 we can see part of the ontology
of a robotics surveillance application. The
GenericComponent concept (concepts have a yellow fill-
color) in this figure represents an element of the

environment that the robot can see during its exploration.
About an instance of this concept (for example the
GenericComponent identified by the ID = 12) we could
express a proposition (IsIntruder predicate, blue filled)
stating if it is an intruder or not. We can similarly
introduce actions and relate them to the concepts they will
affect (for example the Localize action regards the act of
localizing the position of a specific GenericComponent in
the environment).

Figure 3. An example of Domain Ontology Diagram (DOD)
representing part of the ontology of a robotics application

Once the ontology design is completed, PTK offers a
wizard to generate the corresponding RDF, and it is also
possible to export the diagram in the XMI format.

2.4.2 The Communication Ontology Description
The Communication Ontology Description (COD) phase
is the next PASSI step. In the COD we describe the
agents’ knowledge and their communications with a class
diagram.
Each FIPA communication is characterized by three
elements: (1) the ontology (portion of knowledge
exchanged); (2) the agent interaction protocol (that
designates the sequence of communicative acts); and the
content language (the language used to code the message
content).
PTK offers a great support in composing diagrams like
these. Agents and (some) communications are
automatically introduced by the tool starting from the
results of the R.Id. (sequence diagrams describing
scenarios) and T.Sp. (activity diagrams describing the
behavior of each agent) phases. A class is introduced for
each identified agent, and a relationship is drawn among
the agents involved in the exchange. The designer can
complete the specification of each communication using
the form described in Figure 4. There he/she can select:

• a name for the communication;

 4

• an interaction protocol from the list of
communication patterns included in the
repository;

• the ontology of the communication from the
elements defined in the DOD;

• the content language (if he/she adopts RDF then
the automatic generation of a lot of code will be
available);

• the task that in each agent will deal with this
communication (the list of tasks comes from the
tasks defined in the T.Sp. phase).

As a consequence of the ontology selected by the designer,
it will be possible for PTK to define the proper data
structure that in each agent can store it.

Figure 4. This form is used to set the communication

properties (interaction protocol, ontology, content language
and involved tasks)

When the Communication Ontology Description phase is
completed, the designer can export the RDF code of each
message and moreover, PTK will generate the necessary
code (specific for the FIPA agent platform used) to deal
with the communication (this also includes the conversion
JAVA data structure/RDF/JAVA data structure, of
information exchanged by agents).

2.5 Roles Description and Protocols Definition
phases

The Roles Description (RD) phase models the lifecycle of
an agent taking into account its roles, the collaborations it
needs and the conversations it is involved in. The RD
phase yields a collection of class diagrams in which
classes are used to represent roles. Each agent is
symbolized by a package containing roles’ classes. Role
are obtained composing several tasks in the resulting
complex behavior. In this diagram we also report change
of roles, communications and dependencies among agents.
Many of these elements are again automatically introduced

by PTK and usually the designer has only to introduce a
few of them.
Commonly, we only use standard FIPA interaction
protocols. In this case the designer does not need to
perform the Protocols Definition phase (done with AUML
if necessary).

2.6 Agents Structure and Behavior Definition
The Agent Structure Definition phase produces several
class diagrams logically subdivided into two views: the
multi-agents and the single-agent view. In the former, we
call attention to the general architecture of the system and
so we can find agents and their tasks in it. In the latter, we
focus on each agent’s internal structure, revealing all the
attributes and methods of the agent class together with its
inner tasks’ classes.
It is interesting to note that both of these diagrams are
automatically built by the PTK using the information
coming from the previous steps (and some knowledge
about the class structure and organization of the agents
that are typically different among the FIPA platform
implementations); this ensures an high level of coherence
between the implementation level of abstraction and the
previous stages of the design.
The next phase is the Agent Behavior Description that
produces several diagrams subdivided into the multi-agent
and the single-agent views. In the former, we draw the
flow of events by methods invocation and the messages
exchange. In the latter, we feature the agent behaviors’
methods.

2.7 Code Generation and Reuse
The PTK add-in can generate the code for all the skeletons
of the agents, tasks and other classes included in the
project. It does not use the standard Rational Rose
functionality since we also want to allow the reuse of
patterns coming from our repository.
The pattern repository consists of a series of reusable
portions of agents and tasks. For example the designer can
take from this archive a generic agent (that has the
capability of registering itself to the basic platform
services) and he/she can introduce it in the actual project.
The repository also includes a list of tasks that can be
applied to existing agents. For example we have tasks
dedicated to deal with the initiator/participant roles in the
most common communications. When a pattern is
introduced in the design, not only some diagrams (like the
structural and behavioral one of the implementation level)
are updated but the resulting code also contains large
portions of inner parts of methods; the result is an highly
affordable and quick development production process.
More functionalities are provided by the AgentFactory
application (see next section) that will be integrated with
the future releases of PTK.

 5

3 The use of patterns in the design
Many researchers have proposed to expand the traditional
pattern model towards the agent paradigm [1][2][9].
In our approach, we aim to largely apply a properly
defined concept of agent pattern and we built an
application (AgentFactory) that supports it. AgentFactory
can, very quickly, create complex multi-agent systems
using a large repository and can also provide the design
documentation of the composed agents. The tool can work
online as a web-based application1, but can also be used as
a stand alone application.
Our patterns result from the composition of three different
aspects of a multi-agent system:

1) the static structure of one or more agent(s) or
parts of them (i.e. behaviors),

2) the description of the dynamic behavior
expressed by the previous cited elements

3) the programming code that realizes both the
static structure (skeletons) and the dynamic
behavior (inner parts of methods) in a specific
agent platform context.

In the following sub-section we will report a pattern of
agent and we will use it to demonstrate the functionalities
of our AgentFactory tool.

3.1 An example of pattern: the Explorer agent
The pattern we are going to analyze is a mobility pattern
that allows the exploration of a remote platform with the
intent to search for some information. A typical scenario
that illustrates the aim of this pattern is represented by web
searching, where an agent has to recover some data from a
remote platform; using this pattern, the agent does not
move itself into the remote platform but it delegates this
work to an explorer agent. The pattern (Figure 5) includes
two collaborating agents: the base and the explorer agent.
The base agent has the ability of creating one or more
explorer agents, giving to each of them the address of a
remote platform. The explorer agent can move to the
target platform and eventually perform some kind of
searching (operation not provided by this pattern). When
the explorer has found the information in the remote
platform it forwards the data to the base agent and then
terminates itself.

1 Available at: http://mozart.csai.unipa.it/af/

Figure 5. The explorer pattern consists in a base agent who
delegates to another (called explorer) the task of moving to

another platform in order to search for some kind of
information

Both the explorer agent and the base agent require the
ability to communicate according to a specific protocol, in
order to exchange the collected data. Because the protocol
is not specified in this pattern, this feature should be
obtained by the application of a communication pattern.

3.2 The AgentFactory Tool
The AgentFactory tool allows the automatic generation of
the pattern code for both the JADE and FIPA-OS that are
among the most diffused FIPA compliant agent platforms.
This has been obtained using a meta-pattern language
description of the elements of our pattern repository.
All of the features of each agent/tasks pattern (that can be
different from one platform to the other), are named with a
meta-label. For example the agent super-class that is
named “AgentShell”, becomes “Agent” in the JADE code
instantiation and “FIPAAgent” in the FIPA-OS one. When
the tool generates the code, it applies a pre-transformation
in which all the meta-labels are substituted by the correct
names.
As we know, the application of a pattern to an existing
system causes a significant change in its structure, and this
often implies other modifications in order to join the new
elements with the existing ones. This is another of the
features offered by our tool: patterns are completed by a
collection of constraints that describe how the target
system has to be changed in order to correctly accept the
new parts.

 6

Figure 6. The AgentFactory tool during the composition of

the code for the Explorer pattern

In Figure 6, we can see the AgentFactory tool during the
code generation phase for the Explorer pattern. We
completed the system using the FIPARequest pattern in
order to introduce the communication capability in both
the agents.
What should to be considered is that with a few mouse
clicks and selecting the Explorer and FIPARequest
patterns, in a few seconds we can produce an application
composed of two agents, six classes and about 190 lines of
code (including comments). The documentation of that is
provided by an UML class diagram (structure of the
system) and UML activity diagram (behavior of the
system).

4 Conclusions
We discussed PASSI, a design methodology for multi-
agent systems, and the support that it can receive by a
specific add-in (PTK, PASSI ToolKit) we produced for
Rational Rose and a repository of patterns supported by
the AgentFactory application. The use of UML with minor
extensions and the focus on highly structured
implementation platforms like JADE or FIPA-OS gave us
the opportunity of providing the designer with a very
helpful support both in the design activity and the code
production phase.
PASSI explicitly pursues the following goals: (i) a great
attention for standards (we used UML, FIPA, XML,
RDF); (ii) providing a complete design process from
requirements elicitation to implementation and
deployment; (iii) a specialization for the design of robotic
applications with the availability of specific robotic
patterns.
The PTK tool guides the designer throughout all the design
work, allowing the automatic compilation of several
diagrams and the generation of the code for the agent
skeletons. The generation of the remaining part of the code
(inner parts of methods) is delegated to a repository

including several patterns of agents and behaviors. Using a
connection with a commercial word-processor (Microsoft
Word) the tool automatically produces the documentation
of the design adopting specific templates prepared for
agent-based systems.
Although this tool offers interesting results our research
goes beyond it and we produced the AgentFactory
application that refers to a more complex and complete
concept of pattern. The pattern is seen in the most
common significance of design pattern but adapted to the
specific demands of agents. The use of several levels of
meta-representations of these patterns allows the
generation of complete agents or of parts of them (also
including the behavioral part of the code) for the FIPA
compliant platforms as Jade or FIPA-OS.
We have completed several projects using the PASSI
methodology and our tools particularly in robotics and
information systems. Experimental results have been very
encouraging and we are now working in the direction of
extending the number of patterns in order to maximize the
possible applications of their repository.

References
[1] Aridor, Y., and Lange, D. B. Agent Design Patterns:

Elements of Agent Application Design. In Proc. of the
Second International Conference on Autonomous Agents
(Minneapolis, May 1998), 108–115.

[2] Kendall, E. A., Krishna, P. V. M., Pathak C. V. and Suresh
C. B. Patterns of intelligent and mobile agents. In Proc. of
the Second International Conference on Autonomous
Agents, (Minneapolis, May 1998), 92–99.

[3] Bernon, C., Gleizes, M.P., Peyruqueou, S., and Picard, G.,
Adelfe, a methodology for Adaptive Multi-Agent Systems
Engineering. Third International Workshop "Engineering
Societies in the Agents World" (ESAW-2002), 16-17
September 2002, Madrid.

[4] Giunchiglia, F., Mylopoulos, J., and Perini, A. The tropos
software development methodology: processes, models and
diagrams. The First International Joint Conference on
Autonomous Agents & Multiagent Systems, AAMAS 2002,
July 15-19, 2002, Bologna, (Italy)

[5] Wooldridge, M., Jennings, N.R., and Kinny, D. The Gaia
Methodology for Agent-Oriented Analysis and Design.
Journal of Autonomous Agents and Multi-Agent Systems.
3,3 (2000), 285-312.

[6] DeLoach, S.A., Wood, M.F., and Sparkman, C.H.
Multiagent Systems Engineering. International Journal on
Software Engineering and Knowledge Engineering 11, 3,
231-258.

[7] Chella, A., Cossentino, M., Pirrone, R., Ruisi, A.: Modeling
Ontologies for Robotic Environments. Proc. of the
Fourteenth International Conference on Software
Engineering and Knowledge Engineering. Ischia, Italy, July
2002

 7

[8] Cossentino M., and L. Sabatucci L., Agent System
Implementation in “Agent-Based Manufacturing and
Control Systems: New Agile Manufacturing Solutions for
Achieving Peak Performance”. M. Paolucci, R. Sacile
Editors. CRC Press. ISBN: 1574443364. April 2004.

[9] Cossentino, M., Sabatucci, L., Chella, A.: A Possible
Approach to the Development of Robotic Multi-Agent
Systems. IEEE/WIC Conf. on Intelligent Agent Technology
(IAT'03). Halifax (Canada). October, 2003.

[10] FIPA – Foundation for Intelligent and Physical Agents –
www.fipa.org

