
AutoTag: A Web-Based Automatic Document Markup System

SHAZIA AKHTAR, JOHN DUNNION and RONAN G REILLY†
Department of Computer Science

University College Dublin
Belfield, Dublin 4

IRELAND

Abstract: The increasing acceptance of XML as a standard for document markup promises to provide
solutions for the problems of document management and retrieval. However, existing documents must be
converted into XML. In this paper we present the AutoTag system, which automatically converts text
documents into XML. The system has a hybrid architecture, arranging tagged documents on a two-
dimensional Self-Organizing Map (SOM) such that nearby locations contain similar documents, and then
using an inductive learning algorithm to automatically extract and apply auto-tagging rules from the
neighbours of an untagged document. The system is adaptive, so that once a document is tagged in XML,
AutoTag learns from its errors in order to improve accuracy. The automatically tagged documents can
subsequently be categorized on the Self-Organizing Map, further improving the map's resolution. Our
system has been evaluated on a number of different domains, giving good results.

Keywords: Automatic XML markup, self-organising maps, machine learning.

1 Introduction
The recent rapid growth of information resources
has created vast and complex repositories of data.
To store and manage such large amounts of data
requires the development of new systems and
procedures. In addition, the requirement for
systems to be able to search efficiently and
effectively for specific information in growing
data repositories also requires new paradigms for
data management and organization. The increasing
acceptance of XML as a standard for document
markup promises to provide solutions for the
problems of document management and retrieval
from large and highly complex data repositories.
Using XML markup allows authors to structure
raw data, including natural language texts, with
descriptive element tags. XML is not a set of tags
itself: it provides a standard system for browsers
and other applications to recognize the data in a
tag. By using XML as a standard markup
language, search engines can use XML tags to
exploit the logical structure of documents, which
should improve search results, avoid irrelevant
searches and provide more precise listings of the
information available. However, despite the many
benefits offered by the use of XML, large
collections of XML documents still do not exist.
Manual tagging of text documents in XML is
difficult and the time, effort and expense involved
in producing a tagged collection is impractical. For

text documents to be efficiently and effectively
converted into XML, the process of tagging must
be automated. Currently automatic tagging is a
significant challenge. Most systems that have been
developed are limited to certain domains and
require considerable human intervention. In
addressing the problem of automatic tagging, we
present AutoTag, a novel hybrid system that
produces tagged document collections by using a
Self-Organizing Map (SOM) [1], [2] and an
inductive learning algorithm, C5.0 [3], [4], [5].

2 System overview
The hybrid architecture of the AutoTag system
combines the techniques of the SOM and C5.0
algorithms to produce XML tagged documents.
The system architecture is outlined in Figure 1.
The first phase of the system uses the SOM
algorithm to construct a map of tagged documents.
In the second phase, the system automatically
extracts information from the neighbours of an
unmarked document by using the inductive
learning algorithm C5.0. This information is in the
form of rules. These rules, together with text
segmentation heuristics (also derived from the set
of tagged documents) and the rules of the
Document Type Definition (DTD) for the
document, are used to mark up the document into
XML.

mailto:Shazia.Akhtar@ucd.ie

frequency of occurrence of a particular word in the
document. Therefore, each document vector can
be viewed as a weighted word histogram. In the
map formation stage, the set of statistical models
or encoded documents is given as input to the
SOM algorithm to form a document map. We use
SOM_PAK [7] for this purpose. An example of a
map created by the system is given in Figure 2.

Figure 1. AutoTag system architecture.
3 Self-Organising Maps
The SOM algorithm [1], [2] provides a non-linear,
ordered, smooth mapping of high-dimensional
input data onto a low-dimensional array. This
process can be described as follows. Each input
variable is represented as a real vector x(t) where t
is the index or discrete time coordinate. Associated
with each node i in a SOM array is a parametric
model vector mі, the components of which
represent the weights. Using a limited number of
model vectors all features can be represented on
the map with high accuracy. The map algorithm
performs a recursive regression process in which
only a subset of models is processed at every step.
Each vector is updated according to the following
rules:
mi(t+1) = mi(t) + α(t)[x(t) - mi(t)] for each i ∈ Nc(t)
mi(t+1) = mi(t) otherwise
where t = 0, 1, 2, … is the discrete time co-
ordinate, the factor α(t) ∈ [0, 1] is a scalar defining
the relative size of the learning step and Nc(t) is
the neighbourhood distance between the ith and
cth model vectors. This process produces a
smoothing effect on the model vectors in a certain
neighbourhood and the process of continued
learning results in a global ordering of the map.

Documents are clustered on the self-organizing
map using the WEBSOM algorithm [6], which
consists of three stages. In the pre-processing
stage, all non-textual information is removed from
the text, and all words are stemmed to their basic
forms. The most rarely occurring words are also
removed. In the document encoding stage, the
documents are encoded by forming statistical
models. Each document is represented as a real
vector in which each component represents the

Figure 2. A SOM of different document collections.
Shades of grey are used to show document density:
lighter shades indicate higher density.

4 C5.0
C5.0 [4] is the latest version of C4.5 [3], the
extension of Quinlan’s famous inductive learning
ID3 algorithm [5]. These algorithms are used to
induce classifications models from the data in the
form of decision trees or rule sets. The ID3
algorithm uses criteria of gain, which is defined in
terms of entropy. Entropy is used to measure the
amount of information in a node in a decision tree.
For a training set S, the entropy of S, or Info(S), is
defined as the measure of the average amount of
information required to identify the cases in S and
is given by the following formula:

Info(S) = -p log2p � n log2n
where p is the proportion of positive examples in S
and n is the proportion of negative examples.
When the training set S is partitioned according to
the outcome of a test attribute A, we can find the
expected information as the weighted sum over the
subsets as follows:

Info(S, A) = ∑Si/S × Info(S) for i = 1, …, n.
The term Gain(S, A) is a measure of the
information gained by partitioning S according to
the test attribute A and is defined as follows:

Gain(S, A) = Info(S, A) - Info(S)
In C4.5 and C5.0, the notion of gain ratio is
introduced:

GainRatio(S, A) = Gain(S, A) / SplitInfo(S, A)
where SplitInfo(S, A) is the information due to the
split of S on the basis of A and is given by the
following formula:

SplitInfo(S, A) = ∑(Si/S × log2(Si/S))
for i = 1, …, n.

5 The auto-tagging process
The auto-tagging process (the second phase of the
AutoTag system) has two main modules, a rule
extraction module and a tagging module. The
process is shown in Figure 3. The rule extraction
module learns rules from a collection of tagged
documents using an inductive learning approach
[8]. Training examples are collected from a set of
valid XML documents. These documents are from
a specific domain and their markup is valid and
complies with the rules of a single Document Type
Definition (DTD). An XML document can be
represented as a tree-like structure with a root
element and other elements nested in the root.
Only elements containing text are considered
appropriate for our auto-tagging process. Each
training instance corresponds to a leaf element
containing text from the collection of tagged
documents. The text enclosed between the start
and end tags of all occurrences of each element is
encoded using the fixed-width feature vector.
These encoded instances are used subsequently for
learning the rules. Thirty-one features, such as
word count, character count, etc, are used to
encode the training instances. The system pre-
classifies the encoded instances by the tag name of
the element. These pre-classified encoded
instances are used by the system to learn
classifiers for the elements with that tag name. The
learned classifiers are later used in the process of
auto-tagging. We use the C5.0 learning algorithm
to learn classifiers. The advantages of this learning
algorithm are that it is very fast, it is not sensitive
to missing features, it can deal with large numbers
of features and it is incremental. C5.0 is best suited
for our system because our system deals with
documents from different domains, so some of the
features are not relevant to the documents of all
domains. Sets of rules are generated in a given
domain from a collection of tagged documents and
are used to tag the text documents from the same
domain.

The second module creates a tagged version of
an untagged text document. The untagged
document should be from the same domain as the
documents used for learning the rules. For the
auto-tagging of a text document, it is segmented
into pieces of text using a variety of heuristics.
These heuristics are derived from the set of
training examples. By applying the rules of the
DTD, the rules extracted by using C5.0 algorithm
and the text segmentation heuristics, the
hierarchical structure of the document is obtained
and a tagged version of a text document is
generated.

The tagged document produced by the system
can be validated against the DTD by using any
XML parser. However, XML processors can only
validate the syntax of an XML document and do
not recognize the content; therefore a human
expert is required to evaluate the accuracy of the
auto-tagging process.

Figure 3. The auto-tagging process.

6 Experiments
For our experiments, we have used collections of
documents from a number of different domains.
These include letters from the MacGreevy Archive
[9], [10], a database of employee records,
Shakespearean plays [11], poems from the Early
American Digital Archives [12] and scientific
journal articles [13].

Figure 4 contains the unmarked text of a letter
from the MacGreevy Archive. The marked-up
version of the letter is in Figure 5. The markup
produced by our system is mostly correct; the only
incorrectly tagged text is that underlined in Figure
5, between the <INSIDEADDRESS> and
</INSIDEADDRESS> tags. The DTD used to
mark up the letters in the MacGreevy Archive is
given in Figure 6.

An example of the application of the AutoTag
system to a poem from the Early American Digital
Archives is given in Figure 7.

Figure 4. An unmarked letter from the MacGreevy
Archive.

<?xml version="1.0"?>
<!DOCTYPE LETTER SYSTEM "LETTER.dtd" >
<LETTER>
<INSIDEADDRESS>
5 Cotham Park
Bristol 6<LINEBREAK/>
</INSIDEADDRESS>
<DATE>September 1955</DATE>
<SALUTATION>Dear Tom,</SALUTATION>
<BODY>
<PARA>I fear my letter to you from Paris was
not a full answer to your letters abut
Eupalinos and
I did not enclose Wallace Stevens' letter to
you. Here it is. I am terribly sorry and all
the more
deeply because I just — at last — had got at
this whole complex (which I must explain to
you
more fully [?now]) and was reading for the
first time some of Wallace Stevens own poems
(some
of which are beautiful — though I have not
found the two dedicated to you) when the news
came
of his death — if you have not had it yet it
will be a great

…

Figure 5. The marked-up version of the letter in Figure
4.

<!ELEMENT LETTER (INSIDEADDRESS,
 DATE, SALUTATION, BODY,
 CLOSING, SIGNATURE?)>
<!ELEMENT INSIDEADDRESS (#PCDATA |
 LINEBREAK)*>
<!ELEMENT LINEBREAK EMPTY>
<!ELEMENT DATE (#PCDATA)>
<!ATTLIST DATE ALIGN (LEFT | RIGHT)
 "RIGHT">
<!ELEMENT SALUTATION (#PCDATA)>
<!ELEMENT BODY (PARA+)>
<!ELEMENT PARA (#PCDATA)>
<!ATTLIST PARA ALIGN(LEFT |RIGHT|
 JUSTIFY) "LEFT">
<!ELEMENT CLOSING (#PCDATA)>
<!ELEMENT SIGNATURE (#PCDATA)>

Figure 6. XML DTD for letters in the MacGreevy
Archive.

5 Cotham Park
Bristol 6

September 1955

Dear Tom,

I fear my letter to you from Paris was not a
full answer to your letters abut Eupalinos and
I did not enclose Wallace Stevens' letter to
you. Here it is. I am terribly sorry — and all
the more deeply because I just — at last — had
got at this whole complex (which I must
explain to you
more fully [?now]) and was reading for the
first time some of Wallace Stevens own poems
(some
of which are beautiful — though I have not
found the two dedicated to you) when the news
came

…

…
<text>
 <body>
 <div0>
 <head> <title>Upon Some Distemper of
Body</title> </head>
 <lg>
 <l>In anguish of my heart replete
with woes,</l>
 <l>And wasting pains, which best my
body knows,</l>
 <l>In tossing slumbers on my wakeful
bed,</l>
 <l>Bedrenched with tears that flowed
from mournful head,</l>
 <l>Till nature had exhausted all her
store,</l>
 <l>Then eyes lay dry, disabled to
weep more;</l>
 <l>And looking up unto his throne on
high,</l>
 <l>Who sendeth help to those in
misery;</l>
 <l>He chased away those clouds and
let me see</l>
 <l>My anchor cast i' th' vale with
safety.</l>
…

Figure 7. Part of a poem taken from Early American
Digital Archives marked up by the AutoTag system.

Another example of the markup produced by

our system, an excerpt from A Midsummer Night�s
Dream, is shown in Figure 8. Again, the markup in
this example is largely correct; the only error is the
underlined text, between the <STAGEDIR> and
</STAGEDIR> tags.

As a final example, Figure 9 contains part of a
scientific article marked up by AutoTag. Again,
the incorrectly tagged text, between the <title>
and </title> tags and between the
<orgName> and </orgName> tags, is
underlined.

…
<SCENE>
 <TITLE>SCENE I. Athens. The palace of THESEUS.</TITLE>
 <STAGEDIR>Enter THESEUS, HIPPOLYTA, PHILOSTRATE, and Attendants</STAGEDIR>
 <SPEECH>
 <SPEAKER>THESEUS</SPEAKER>
 <LINE>Now, fair Hippolyta, our nuptial hour</LINE>
 <LINE>Draws on a pace; four happy days bring in</LINE>
 <LINE>Another moon: but, O, me thinks, how slow</LINE>
 <LINE>This old moon wanes! she lingers my desires,</LINE>
 <LINE>Like to a step-dame or a dowager</LINE>
 <LINE>Long withering out a young man revenue. </LINE>
 </SPEECH>
 <SPEECH>
 <SPEAKER>HIPPOLYTA</SPEAKER>
 <LINE>Four days will quickly steep themselves in night; </LINE>
 <LINE>Four nights will quickly dream away the time;</LINE>
 <LINE>And then the moon, like to a silver bow</LINE>
 <LINE>New-bent in heaven, shall behold the night</LINE>
 <LINE>Of our solemnities</LINE>
 </SPEECH>
…

Figure 8. Part of A Midsummer Night's Dream marked up by the AutoTag system.
<?xml version="1.0"?>
<!DOCTYPE article SYSTEM article.dtd">
<article>
 <front>
 <docCiteAs> MRS Internet J. Nitride Semicond. Res. 3, 14.</docCiteAs>
 <cpyrt> 1999 The Materials Research Society</cpyrt>
 <title>Surface Morphology of MBE-grown GaN on GaAs(001) as Function of the N/Ga-
ratio</title>
 <authors>
 <auth>
 <pn>O. Zsebök</pn>
 </auth>
 <auth>
 <pn>J.V. Thordson</pn>
 </auth>
 <auth>
 <pn>T.G. Andersson</pn>
 </auth>
 <aff>
 <orgName>Chalmers University of Technology</orgName>
 </aff>
 </authors>
 <history>
 <date>Tuesday, June 23, 1998</date>
 </history>
 <history>
 <date>Monday, August 24, 1998</date>
 </history>
 <abstract>
 <p>Molecular beam epitaxy growth utilising an RF-plasma nitrogen source was used to
study surface reconstruction and surface morphology of GaN on GaAs (001) at 580 °C.
While both the nitrogen flow and plasma excitation power were constant, the grown layers
were characterised as a function of Ga-flux. In the initial growth stage a (3x3) surface
reconstruction was observed. This surface periodicity only lasted up to a maximum thickness
of 2.5 ML, followed by a transition to the unreconstructed surface. Samples grown under N-
rich, Ga-rich and stoichiometric conditions were characterised by high-resolution scanning
electron microscopy and atomic force microscopy. We found that the smoothest surfaces were
provided by the N/Ga-ratio giving the thickest layer at the (3x3)=>(1x1) transition. The
defect formation at the GaN/GaAs interface also depended on the N/Ga-flux ratio.</p>
 </abstract>
 </front>
 <body>
 <section>
 <heading>Introduction</heading>
 <p>Gallium nitride is one of the most promising materials for optical applications in
the blue range of the visible spectra due to its direct energy band gap of 3.39 eV at
…

Figure 9. Part of a scientific journal article automatically tagged by the AutoTag system.

For the scientific journal articles we have used
additional heuristics specifically devised for this
domain. However, we expect that these heuristics
can be used for articles from most journals. The
tagged articles used as training documents for our
experiments have been downloaded from the
World Wide Web along with the DTD
(article.dtd) devised for these articles. The
XML DTD used for these tagged articles is
complicated and requires the presence of another
DTD (biblist.dtd) devised for references and
bibliographies.

7 System evaluation
We use three performance measures to evaluate
the performance of our system:
• The percentage of elements correctly tagged

by the system (Pc);
• The percentage of elements incorrectly tagged

by the system (Pi);
• The percentage of elements not tagged by the

system (Pm).

We have evaluated the performance of our

system on the different domains. A summary of
the results is presented in Table 1.

Domain Pc

Letters from the
MacGreevy Archive 96%

Shakespearean plays 92%

Early American Digital
Archives poems 96%

Scientific journal articles 97%

Table 1. Summary of AutoTag system performance on
different domains.

8 Conclusions
We have described the novel hybrid architecture of
the AutoTag system which has been developed for
the organization of documents and their automatic
markup into XML. Our system uses its self-
organizing capabilities to organize and explore the
XML documents. Furthermore, it provides a
generic tool to automatically markup the
documents by extracting knowledge from
previously marked-up examples. The ability to

learn from markup errors promises to make it even
more effective as a markup tool for use in
producing XML-tagged document collections.

Acknowledgements
The support of the Informatics Research Initiative
of Enterprise Ireland is gratefully acknowledged.
The work was funded under Grant PRP/00/INF/06.

References:
[1] T Kohonen, “Self-Organized Formation of
Topologically Correct Feature Maps”, Biological
Cybernetics, Volume 43, 1982, pp 59-69.
[2] T Kohonen, Self-Organizing Maps, Springer
Series in Information Sciences, 2001.
[3] JR Quinlan, C4.5: Programs For Machine
Learning, Morgan Kaufmann Publishers, San
Mateo, California, 1993.
[4] JR Quinlan, Data Mining Tools See5 and C5.0,
http://www.rulequest.com/see5-info.html, 2000.
[5] JR Quinlan, Discovering rules by induction
from large collections of examples: a case study,
In D Michie (ed), Expert Systems in the Micro-
electronic Age, Edinburgh University Press,
Edinburgh, UK, 1979, pp168-201.
[6] T Kohonen, “Self-Organization of Very Large
Document Collections: State of the Art,” In
Proceedings of ICANN98, the 8th International
Conference on Artificial Neural Networks,
Volume 1, Springer, London, 1998, pp 65-74.
[7] T Kohonen, J Hynninen, J Kangas, J
Laaksonen, SOM_PAK: The Self-Organizing Map
Program Package, Version 3.1, Helsinki
University of Technology, Laboratory of
Computer and Information Science, 1995.
[8] T Mitchell, Machine Learning, McGraw-Hill,
1997.
[9] S Schreibman, The MacGreevy Archive,
http://www.ucd.ie/~cosei/archive.htm, 1998.
[10] S Schreibman, The MacGreevy Archive,
http://www.iath.virginia.edu/macgreevy, 2002.
[11] J Bosak, Shakespeare 2.00,
http://metalab.unc.edu/bosak/xml/eg/shaks200.zip,
1998.
[12] S Schreibman, Early American Digital
Archives, Maryland Institute of Technology,
http://www.mith.umd.edu, 2003.
[13] Openly Informatics, Inc,
http://www.openly.com/efirst, 1999-2000.

† Current address: Department of Computer Science,
National University of Ireland, Maynooth, Maynooth,
County Kildare, Ireland.

http://metalab.unc.edu/bosak/xml/eg/shaks200.zip
http://www.mith.umd.edu/

	1 Introduction
	2 System overview
	3 Self-Organising Maps
	4 C5.0
	C5.0 [4] is the latest version of C4.5 [3], the extension of Quinlan’s famous inductive learning ID3 algorithm [5]. These algorithms are used to induce classifications models from the data in the form of decision trees or rule sets. The ID3 algorithm use
	Info(S) = -p log2p – n log2n
	where p is the proportion of positive examples in S and n is the proportion of negative examples. When the training set S is partitioned according to the outcome of a test attribute A, we can find the expected information as the weighted sum over the sub
	Info(S, A) = ((Si(/(S((Info(S) for i = 1, …, n.
	Gain(S, A) = Info(S, A) - Info(S)
	GainRatio(S, A) = Gain(S, A) / SplitInfo(S, A)
	5 The auto-tagging process
	6 Experiments
	7 System evaluation
	
	
	Domain

	Acknowledgements

