
Requirements Analysis for Graphical Programming and a Practical 
Experience in a System for the Measurement of X-Rays 1 

 
E. GAYTÁN-GALLARDO1,2, F. J. RAMÍREZ-JIMÉNEZ11,2, J. ORTIZ-HERNÁNDEZ3, J. A. 

SEGOVIA DE LOS RÍOS1,2, L. C. LONGORIA-GÁNDARA1 
Instituto Nacional de Investigaciones Nucleares, InstitutoTecnológico de Toluca2, Centro Nacional de 

Investigación y Desarrollo Tecnológico3  
MEXICO 

                                                 
1 X-ray measurement system, is partially supported by International Atomic Energy Agency (ARCAL LIII project). 

 
Abstract:-The methodology presented in this paper provides analysis tasks for the development of systems with 
graphical programming. This methodology is based in requirements engineering, structured analysis, object-
oriented analysis, analysis for reuse and UML notation.  The requirements establish software constraints. The 
software engineer and customers take active roles in requirements analysis, the customer formulates a system 
level description and the software engineer refines the software and builds models that will be treated by 
software.  The structured analysis relies on data modeling and flow modeling to create the bases for an analysis 
engineering activities result in the function, data and behaviour of the software, interfaces with other system 
elements, and model. The object-oriented analysis provides a concrete way to represent the requirements, to 
define the classes, objects, attributes, operations of objects and messages in a system. The analysis for reuse 
searches and creates reusable components. UML notation (Unified Modeling Language) is used for modeling 
the system, UML allows to express an analysis model using a modeling notation. In this work, a study case 
related with the development of a system for the measurement of X-rays is presented. 
 
Key-Words: - Requirements analysis, Graphical programming, X-Rays, UML 
 
1. Introduction  
In systems developed with graphical programming a 
variety of reusable graphic objects can be integrated 
into an evolutionary prototype, it lets to develop 
software more efficiently. To produce complex high-
quality software it is necessary to understand the 
software requirements and it is very important to 
apply the requirements engineering to perform the job 
properly. The analysis of requirements is a process of 
discovery, refinement and modeling. This work 
presents a methodology for requirement analysis of 
graphical programming systems, this methodology 
was obtained from the study of: requirements 
engineering [1], structured analysis, object-oriented 
analysis, analysis for reuse and UML notation.   

 
Graphical programming started with the arrival of 
personal computers and was proposed to solve the 
necessity to have reusable software components for 

measurement and control systems. Hewlett Packard 
[2] and National Instruments develop reusable 
graphical objects.  In 1983, National Instruments 
started a project of a graphical programming 
language, it was based in pictures and was called 
LabVIEW (Laboratory Virtual Instrument 
Engineering Workbench). LabVIEW was invented by 
Jeff Kodosky [3] and it was based in dataflow 
diagrams.  In 1986 the first version was delivered for 
the development of measurement and control systems.  
Software modularity, maintainability, and reusability, 
key benefits of LabVIEW’s hierarchical and 
homogeneous structure, are critically important to 
reducing the effort in software development. The 
pioneering concept of graphical programming, 
coupled with leading-edge computer science, and 
open connectivity to thousands of devices and 
instruments, has made LabVIEW a staple to many 
scientists and engineers.  

mailto:egg@nuclear.inin.mx
mailto:fjrj@nuclear.inin.mx
mailto:ortiz@cenidet.edu.mx
mailto:asegovia@nuclear.inin.mx
mailto:longoria@nuclear.inin.mx


Systems developed with graphical programming can 
apply reusable objects in acquisition, processing and 
signal analysis, too in acquisition and image 
processing, process control, connectivity, etc.  But, to 
produce complex high-quality software with graphical 
programming, it is necessary to apply a software 
process [4]. Requirements analysis is the first 
technical step in the software process.   
 
 
2. Methodology  
 
In the proposed methodology for requirements 
analysis; requirement engineering, structured analysis, 
object oriented analysis, reuse analysis and UML 
graphical notation were analysed and adapted to a 
graphical programming system. The requirements 
analysis starts with the meetings of the software 
developer with the customer and from this interview, 
the requirements specification results and a first 
prototype is proposed. The steps in the proposed 
methodology are:  problem recognition, UML 
modeling (use cases, sequence diagrams, protocols 
and state machines), partitioning, domain analysis, 
prototyping, specification and documentation.  
 
 
2.1 Problem recognition 
In this task the following steps should be applied: 
Step 1. To conduct an interview with the customer, 
asking about overall goals, software objectives, 
benefits and which kind of users of the system. 
Step 2.  To compile the system requirements and 
modeling with use case diagrams.  
Step 3.  To identify system actors and their 
relationship with use cases. 
Step 4.  To describe the problem scenario. 
 
 
2.2. UML modelling 
The heart of software problem solving is the 
construction of a model. The model abstracts the 
essential details of the problem from its usually 
complicated real world. Several modeling tools are 
wrapped under the heading of the UML [5]. The UML 
gives a common vocabulary to deal with software 
problems, it begins with the construction of a model. A 
model is an abstraction of the underlying problem. The 

domain is the actual world from which the problem 
comes. Models consist of objects that interact by 
sending messages. Objects have (attributes) and 
things they can do (behaviours or operations). The 
values of an object's attributes determine its state. At 
the requirement analysis we use the next kinds of 
modeling diagrams: 

 
• Use case diagrams: They describe what a system 

does from the point of view of an external observer. 
The emphasis is on what a system does rather than 
how. Use case diagrams are closely connected to 
scenarios. A scenario is an example of what 
happens when someone interacts with the system. A 
use case is a summary of scenarios for a single task 
or goal. An actor is who or what initiates the events 
involved in that task. Actors simply are roles that 
people or objects play. The connection between 
actor and use case is a communication. Actors are 
stick figures. Use cases are ovals. Communications 
are lines that link actors to use cases. A use case 
diagram is a collection of actors, use cases, and 
their communications.  

• Sequence diagrams: They are interaction diagrams 
that detail how operations are carried out, what 
messages are sent and when. Sequence diagrams are 
organized according to time. The time progresses as 
you go down the page. The objects involved in the 
operation are listed from left to right according to 
the time when they take part in the message 
sequence. 

• Protocols: They are used for modeling behaviour, a 
protocol is a specification of desired behaviour, an 
explicit specification of the contractual agreement 
between the participants in the protocol. A protocol 
comprises a set of participants, each of which plays a 
specific role in the protocol. Each one of such 
protocol roles is specified by a unique name, a set of 
signals that are received by that role as well as the 
set of signals that are sent by the role. 

• State machines: The specification of valid protocols 
sequences is done using standard UML state 
machines 

 
 
2.3 Partitioning 
One of the tasks in this methodology is to divide a 
problem into its constituent’s parts [6]. Establishing a 



hierarchical representation of function or information 
and then partition the uppermost element exposing, 
increasing detail by moving vertically in the hierarchy 
or decomposing the problem by moving horizontally 
in the hierarchy. 
 
 
2.4 Domain Analysis 
Software domain analysis consists of identification, 
analysis and knowledge of the application domain, 
typically for reuse on multiple projects within this 
application domain. The steps in the process are the 
following: 
Step 1. Identification of the domain to be investigated. 
 
Step 2. Identification of reusable graphical objects. 
 
Step 3. Organization of reusable graphical objects. 
 
Step 4. Analysis of  the feasibility of  reuse through 
modifications. 
 
Step 5. Realization of modifications for reuse. 
 
Step 6. Development of an analysis model. 
 

For example the graphical programming language 
LabVIEW has a variety of reusable graphical objects 
applicable in domain as: data acquisition, signal 
processing, signal analysis, instrument control, image 
processing, mathematics, communication, report 
generation, fuzzy logic, PID control, etc. 
 
 
2.5 Software prototyping. 
Requirements Analysis should be conducted 
regardless of the software engineering paradigm that 
is applied, some circumstances require the 
construction of a prototype at the beginning of 
analysis, since the model is the only mean through 
which requirements can be effectively derived. The 
model then evolves into production software. The 
prototyping paradigm can be a throwaway prototyping 
or evolutionary prototype. The throwaway 
prototyping serves solely as a rough demonstration of 
requirements. The evolutionary prototype uses the 
prototype as the first part of an analysis activity that 
will be continued into design and construction. 

It is always necessary to determine whether the 
system to be built is amenable to prototyping.  
Graphical programming language LabVIEW has 
libraries of reusable graphical objects and a rapid 
prototyping is assembled. To develop a prototype it is 
necessary: to understand the application domain, to 
model the problem and to know the basic system 
requirements. 
 
 
2.6 The Software Requirements Specification 
The specification has much to do with the quality of 
the solution, it may be viewed as a representation 
process. The software requirements specification is 
produced at the culmination of the analysis task. 
Because the specification forms the foundation of the 
development phase, extreme care should be taken in 
conducting the review. 
 
 
2.7 Documentation  
Documentation provides a foundation for successful 
requirements analysis and, more important, guidance 
for software support. A general outline for the 
contents is developed. Representations reveal layers 
of information, and diagram numbering indicates the 
level of detail presented.  
 
 
3 Results 
The main results of this work is the proposed 
requirements analysis methodology for graphical 
programming and its application in an acquisition and 
processing system as a case example of its application 
[7]. The requirements analysis in the development of 
a system for the measurement of X-rays is presented. 
 
 
3.1 Problem recognition 
After the interview with the customer, the problem is 
described:  
“The Metrology Department at Nuclear Research 
National Institute, has three X-ray units, two for 
medical applications and another for industrial 
application. It is necessary to measure the main 
parameters of the X-ray units [8]. The detectors used 
in the measurements are PIN type silicon diodes and 
their output is a charge or current signal, this signal is 



converted to voltage with a preamplifier. The output is 
proportional to the X-ray intensity and associated 
energy. The PIN type silicon diodes employed for the 
measurement of X-ray have different filters, one of 
tungsten and another of aluminum. The detection 
section is separated from the personal computer, and 
then it is necessary to develop a system for the X- ray 
measurements (dose and exposure) and to show its 
results in graphical form”. 
  
 
3.1.1 Main system operations 
• Acquisition of signals from two detectors.  
• Processing of acquired signals. 
• Calculation of X-ray dose and exposure.  
• Presentation of results in the personal computer 

screen. 
• Record of X-ray equipment data. 
• Saving acquired data in a file. 

 
 

3.1.2 Innovatory system operations 
• Presentation of X-ray measurement results in the 

WEB. 
 
 
3.2 Requirements modeling with UML 
UML has been used for requirements modeling. 
Figure 1 shows the use case diagram of the X-ray 
measurement system. This use case refers to the data 
acquisition and results presentation and an use case 
description is presented. Figure 2 shows the relation 
between the actors within the system. 
 

Data acquisition

Results
presentation

Use case description

1. The engineer provides the detection section. 
2. The engineer of systems develops software.            
3. The technician starts acquisition.                  
4. The PC receives, processes and shows data in 
the graphical interface.      

Use case description  

1. The technician interprets results of
measurements.                                                     
2. The technician emits a diagnosis.

Electronic and 
Systems Engineer

Radiologist
Technician

 
 

Figure 1. Use case diagram for the development of the 
X-ray measurement system. 
 
 

Interprets results

X-RAY MEASUREMENT 
SYSTEM

Data acquisition

Provides Hardware

Radiologist 
Technician

Electronic
Engineer

Engineer of 
Systems 

Data processing

 
 
Figure 2. Relation between the actors within the 
system. 
 
 
3.2.1 System Actors and their function. Table 1 
shows the description of the functions performed by 
the actors, whose participate in the development of the 
X-ray measurement system. 



Personal  Hardware 
Electronic engineer. 
• Analyzes  PIN  
 detectors response. 
• Realises signal 
 conditioning.   

System engineer. 
• Analyzes the signals 

from the detectors. 
• Develops the X-ray 

measurement system  
Radiologist technician. 
• Operates the X-ray 

equipment. 
• Places the radiation 

detectors in the 
exposition field. 

• Starts the X-ray 
measurement system  

• Interprets the results. 

Detectors.  
• PIN diodes. 
• Filters. 

Preamplifiers. 
• Detects and 

prepares the X-ray 
signal  

Data acquisition interface 
PCI-6024E 
 [9,10].  
•    Acquires the signals 

from the PIN 
detectors. 

PersonalComputer.  
• Presents the results 

from the X-ray 
measurement 
system. 

 
 

Table 1. X-ray measurement system actors and their 
function. 

 
3.2.2 Problem scenario. Figure 3 shows the problem 
scenario of the X-ray measurement system.  Two PIN 
type radiation detectors are exposed to X-ray, which 
generate a photo-current, it is converted to a voltage in 
the preamplifiers. The voltage is measured by the 
acquisition card and the signal processing is realized. 
After that, the signals are presented in the graphical 
user interface. 
 
 

2 PIN 
Detectors

Signal 
conditioning

(preamplifiers)

Data acquisition 
interface

PCI-6024E

X-Ray equipment

User interface

 
Figure3. X-ray measurement system scenario. 

 
 

3.2.3 Sequence diagrams for the development of 
the X-ray measurement system. Figures 4 and 5 
shows the interaction between actors and scenario 
about operation details. Figure 4 describes the 
personnel working in the system. The electronic 
engineer designs and builds the radiation detection 
section. The systems engineer analyzes, designs and 
develops an acquisition and processing system and the 
radiologist technician tests the system, reviews and 
interprets the results.  The figure 4 shows that the 
detectors and preamplifiers supply and prepare X-ray 
signals respectively, these signals are carried to the 
acquisition interface and the personal computer. In the 
personal computer the X-ray measurement system is 
programmed and results are presented in an user 
interface. The objects involved in the operation are 
listed from left to right according to when they take 
part in the message sequence and the sequence 
diagrams are organized according to time. 
 

Electronic 
Engineer

Engineer of 
Systems 

Radiologist 
Technician

Time

Supply Hardware

Data acquisition

Results verification

Results interpretation

Data processing

 
 

Figure 4. Sequence diagram about personal interaction 
within the X-ray measurement system. 

  

Detectors and 
Preamplifiers

Interface PCI-
6024

Personal 
Computer

Signal 
conditioning

Data acquisition

Data processing

Time

 
 

Figure 5. Sequence diagram showing the hardware 
interaction within the X-ray measurement system. 



3.2.4 X-ray measurement system protocol. Figure 6 
is a protocol [11] that shows a specification of desired 
behaviour of the X-ray measurement system, here the 
incoming and outgoing signals are exhibited. Each 
protocol role is specified by a unique name and a set 
of signals that are received by that role as well as the 
set of signals that are sent by the role. Consider the 
abstract machine in figure 7, it is representative of the 
most abstract level of behaviour of the X-ray 
measurement system and shows how a simple state 
machine represents the behaviour of a real-time 
system.  
 

X-RAY MEASUREMENT 
SYSTEM

Incoming

X-ray signals

Outgoing

Graphical presentation of X-
Ray signals in a personal 

computer

 
Figure 6. X-ray measurement system protocol. 

 

X-ray Measurement 
System

Off

Stop
Start 

Acquisition 
start trigger

Acquisition 
and data 

processing

Acquisition 
Stop Trigger

Running

 
 

Figure 7. State machine of the X-ray measurement 
system. 

 
 
 

3.3 Partitioning 
The X-ray measurement system showed in figure 
8 is divided in three subsystems and deals with the 
configuration, trigger monitoring and user 
interfaces development. 

X-ray Measurement 
System

System 
configuration

Trigger 
monitoring

User 
interfaces

Data 
processing

Data 
acquisition

PC-server     
PC-client

Hardware and 
Software

Results 
presentation

 
 
 

Figure 8. Partition of the X-ray measurement system. 
 
 

3.4 Domain Analysis 
Figure 9 presents the domain analysis modeling. The 
X-ray measurement system works in the following 
application domains: 

 
• Data acquisition: The data are acquired with the 

acquisition card PCI-6024 and its connection 
terminal, with a virtual instrument developed with 
graphical programming. 

• Signal processing: The acquired data are processed 
with mathematics graphical objects supplied by the 
graphical language (LabVIEW). 

• User interfaces: The signals acquired and 
processed are presented in graphical indicators of 
the user interface. 

• Client / server communication: The network to 
the Internet exists because software residing on 
client computer requests services from server 
computer.  

 
 
 
 



3.5 Software prototyping. 
An evolutionary prototype for the X-ray measurement 
system was developed with the graphical 
programming language LabVIEW. This prototype 
was employed as the first part of an analysis activity 
that will be continued into design and system 

construction. Figure 10 shows the prototype for the X-
ray measurement system. It presents a graphical user 
interface with controls for data acquisition and 
indicators for X-ray signals, and data record of the 
measurements in the X-ray equipment. 

 
 

Body of 
knowledge Domain Analysis

Application 
Domains :

-acquisition

-processing

-interfaces

-comunication

NI Manuals

LabVIEW objects

NI Information 

Software procedures

LabVIEW library

Analysis models

System 
requirements

Detectors 
information

NI  National  Instruments

 
 
 

Figure 9. Domain analysis modeling of the X-ray measurement system. 
 

 
Figure 10. Prototype for the X-ray measurement system. 

 



3.6 The Software Requirements Specification 
for the X-ray measurement system 
The requirements specification was presented in a 
manner that ultimately leads to successful software 
implementation, this contains: an introduction, 
description of the problem that the software must 
solve (functional and behavioural description), 
validation criteria, bibliography and appendix. The 
specification was accompanied by the executable 
prototype. 
 
 
3.6.1 Validation Criteria.  Specification of 
validation criteria is an implicit review of all other 
requirements and was conducted by both the 
software developer and the customer. 
 
 
3.7 Documentation  
Documentation provides a foundation for successful 
requirements analysis and, more important, guidance 
for software support. A general outline for the 
contents was developed. Representations reveal 
layers of information, and diagram numbering 
indicates the level of detail presented.  
                
                                                                                                                                                                                                             

[10] National Instruments  NI-DAQ Function 
Reference Manual for PC Compatibles, 1995, part 
number 320499C-0.  4. Conclusions 

This paper shows that if we apply the requirements 
analysis in the development of systems with 
graphical programming language LabVIEW, it helps 
to improve the quality of the product, and permits to 
save costs derived from systems without 
requirements analysis. This is more important in the 
development of complex systems in which a 
methodology of design is a must. The requirements 
analysis helps too, to decide if is convenient to 
realize a system or not. As a future work we plan to 
develop methodologies with methods for design, 
development and probes in systems with graphical 
programming languages. 
 
 
5. References 
[1] I. Summerville, P. Sawyer, “Requirements 
Engineering”, http://www.comp.lancs.ac.uk/ 
computing/resources/re-gpg/preface.html#contents. 

[2] M.L. Griss, R. R. Kessler, “Building Object-
Oriented Instrument Kits”, Object Magazine, April, 
1996. 
[3] G. W. Johnson, LabVIEW Graphical 
Programming, Practical applications in 
Instrumentation and Control, McGraw-Hill, 1994.  
[4] E. Gaytán G.,  “Modelo de Proceso de Software 
para Programación Gráfica”. Memorias del Taller 
Internacional de Tecnología de Software, CIC, IPN, 
p. 23-30, Nov. 1999, ISBN 970-18-3738-x.   
[5] http://www.togethersoft.com/services/practical_
guides/umlonlinecourse/index.html. 
[6]  R. S. Pressman, Software Engineering. Fifth 
Edition, McGraw-hill international edition, 2001. 
[7] E. Gaytán G., F.J. Ramírez J. “Sistema de 
medición de rayos x (análisis de requisitos)”, 
Informe técnico IT.AU-0206-2002, ININ.  
[8] Mercado I., Ramírez J. F. J., Tovar V., Becerril 
A., “Prototipo para la Medición de Parámetros en 
una unidad de Mamografía utilizando Fotodiodos”, 
II Conferencia Internacional y XII Congreso 
Nacional sobre Dosimetría de Estado Sólido. 
México, D. F., 22-24 Sep. (1999). 
[9] National Instruments, 6023E/6024E/6025E, 
User Manual, 1999, part number 322072B-01, 

[11] B. Selic, J. Rumbaugh, “Using UML for 
Modeling Complex Real- Time Systems” 
http://www.rational.com/products/whitepapers/ 
 
 
 

http://www.togethersoft.com/services/practical_guides/umlonlinecourse/index.html
http://www.togethersoft.com/services/practical_guides/umlonlinecourse/index.html
http://www.rational.com/products/whitepapers/

	Data acquisition interface PCI-6024E

