
Knowledge Representation of Acquisition and Control Systems with
Graphical Programming using UML Notation

ELVIRA GAYTÁN GALLARDO1, 2, JAVIER ORTIZ HERNÁNDEZ3, J. ARMANDO SEGOVIA DE

LOS RÍOS1, 2
1Instituto Nacional de Investigaciones Nucleares

2Instituto Tecnológico de Toluca
 3Centro Nacional de Investigación y Desarrollo Tecnológico

MËXICO

Abstract:- The need to improve the software engineering in the development of complex data acquisition and
control systems with reusable components designed with graphical programming languages leads to represent the
knowledge acquired in the development of these systems. Software for data acquisition and control systems with
graphical programming is playing an important role in industry and research, graphical programming languages as
Lab VIEW has a variety of reusable graphical objects applicable in this kind of systems. In this paper we present
an effort to represent the knowledge in the development of data acquisition and control systems with graphical
programming, modeling the software process by UML notation.

Key-Words: - Graphical Programming, UML, Control Systems, Knowledge Representation

1 Introduction
Data acquisition and control systems with reusable
graphical objects are planned to solve complex and
ever-changing problems applying knowledge
representation in this environment. If the knowledge
is captured and reapplied, the systems can become
even easier to develop, thus increasing its probability
of success. However, even with today’s more
advanced technology, operational knowledge is never
captured, and organizations often spend much time
and money rediscovering what they already knew but
never took the time to capture. For increasing value
and quality, reducing costs and time, the acquisition
and knowledge representation are required. UML
notation can be used for communicating and
representing knowledge. We believe that UML object
diagrams can be considered to be a representation of
knowledge.

2. Developing knowledge
representation
One of the factors that were considered in the
development of knowledge representation is the role

of system engineering in software engineering,
because the software is a part of more complex
technological systems. System engineering focuses
on a variety of elements, analyzing, designing, and
organizing those elements into a system that can be a
product or a technology for the transformation of
information or control.

2.1 Background
For the knowledge representation of Acquisition and
Control Systems with Graphical Programming, was
necessary first to develop the software process model
for graphical programming presented in figure 1. The
graphical programming [1] permits to create
functions and even programs represented by graphic
objects that encapsulate both data and algorithms.
Whether graphical objects are properly implemented,
they are reusable across different applications or
systems. The model for graphical programming
provides the framework, for graphic objects
development and incorporates many of the
characteristics of the spiral model created originally
by Boehm [2]. It is evolutionary and possesses the
iterative nature of prototyping model. In this model

mailto:egg@nuclear.inin.mx
mailto:ortiz@cenidet.edu.mx
mailto:asegovia@nuclear.inin.mx

the software is developed in a series of incremental
releases and consists of three knowledge categories:
requirements analysis, management and engineering.
In engineering category the term GP refers to
graphical programming.

Figure 1. Software process model for graphical
programming

In the software process model for graphical
programming, the process moves through an
evolutionary spiral that starts with analysis of
requirements. It is here that the problem domain is
defined and basic graphic objects are identified.
Management establishes a foundation for the project
plan. The technical work associated with software
engineering follows the iterative path shown in the
ellipse.

2.2 Representing knowledge.
2.2.1 Software engineering body of knowledge.

A hierarchical description of a body of knowledge
for the software process model is described. The
description of the body of knowledge was based in
“Software Engineering Body of Knowledge” [3]
using too its operational definitions.

M ANAGEM ENT

ENGINEERING

REQUIREM ENTS

ANALYSIS

YES NO

Internet
libraries

Graphic objects
proposition

Are there?

Graphic objects
search

Graphical
programming

libraries

Graphic objects
development

To extract
library To build library

new graphic
objects

graphic objects
reuse

Program
development

GP Analysis

GP Design

GP Development

GP Testing

GP Reuse

development of a Prototype.

Delivery of 1st version.

Delivery of 2nd version.

Delivery of 3rd version....

Knowledge: is used to describe the whole spectrum
of content for the model.

Body of Knowledge (BOK): a hierarchical
description of software engineering knowledge that
organizes and structures the knowledge into three
levels: knowledge category KC, knowledge areas
KA, and knowledge units KU.

We organize the process model in three knowledge
categories: analysis of requirements, management
and engineering.

2.1.1.1 Analysis of Requirements. This category
establishes a common understanding of the

requirements to be addressed by the software product
and include information about the elicitation, analysis
and specification.

• Requirements Elicitation: it provides knowledge

that supports the systematic development of a
complete understanding of the problem domain.

• Requirements Analysis: it provides knowledge

about the modeling of software requirements in
the information.

• Requirements Specification: it concerns with

the representation of software requirements.

2.1.1.2 Management. This category deals with the
concepts, methods, and techniques for managing
software products and projects and it includes
activities concerned with project management, risk
management, software quality, and configuration
management.

• Software Project Management: this area deals

with defining project objectives, assessing project
needs and resources, and defining the plan for
performing the work.

• Software Risk Management: this area is

concerned with the concepts, methods and
techniques that threaten a plan for developing a
software product.

• Software Quality Management: this area is

concerned with the concepts, methods,
techniques, procedures and standards for
producing high-quality software products.

• Software Configuration Management: it deals

with the discipline of identifying the
configuration of a system a discrete points in time
for systematically controlling changes to this
configuration and maintaining the integrity and
traceability of this configuration throughout the
life of the software system.

• Software Process Management: this area deals
with the management of the technical aspects of
the software development.

2.1.1.3 Engineering : this category is concerned
with a well-defined and integrated set of activities to
produce correct, consistent software products
effectively and efficiently and for this model include
knowledge about Graphical Programming Analysis
GPA, Graphical Programming Reuse GPR, Graphical
Programming Design GPD, Graphical Programming
Construction GPC, and Graphical Programming
Testing GPT.

• Graphical Programming Analysis: this area is

concerned with the requirements addressed by the
software product and the development of a series
of models that describe computer software and
satisfy a set of defined requirements.

• Graphical Programming Design: this area is
concerned with the transformation of the
statement of requirements into a description of
how these requirements are to be implemented.

• Graphical Programming Development: this

area is concerned with knowledge about the
development of the software components that are
identified and described in the design documents.

• Graphical Programming Testing: this area is

concerned with establishing that a correct solution
to a problem, embodied in the statement of the
requirements, has been developed.

• Graphical Programming Reuse: this area is

concerned with the reuse and creation of reusable
components.

2.1.2 Representing knowledge of Acquisition and
Control Systems with Graphical Programming
using UML.

The UML notation permits to organize and to class
knowledge, such knowledge is captured in a model
consisting of various modeling elements, and it is
represented with distinct sets of diagrams. The model

itself captures the knowledge, and the diagrams
represent the knowledge in a communicable form.
The UML notation [4, 5] offers diagrams through
which we represent the knowledge of Acquisition
and Control Systems with Graphical Programming.
The UML gives a common vocabulary to deal with
software problems, it begins with the construction of
a model. A model is an abstraction of the underlying
problem. The domain is the actual world from which
the problem comes. Models consist of objects that
interact by sending messages. Objects have
(attributes) and things they can do (behaviours or
operations). The values of an object's attributes
determine its state.

2.1.2.1 Analysis of Requirements. For
representation knowledge of requirements we use the
next kinds of UML modeling diagrams:

• Use case diagrams: They describe what a system

does from the point of view of an external
observer. The emphasis is on what a system does
rather than how. A use case diagram is a
collection of actors, use cases, and their
communications.

• Sequence diagrams: They are interaction
diagrams that detail how operations are carried
out, what messages are sent and when. Sequence
diagrams are organized according to time.

• Protocols: They are used for modeling behaviour;
a protocol is a specification of desired behaviour,
an explicit specification of the contractual
agreement between the participants in the
protocol.

• State machines: The specification of valid
protocols sequences is done using standard UML
state machines

Figure 2 shows the use case diagram, that represents
the knowledge acquired in the analysis of
requirements, and a use case description is
presented.

Data acquisition and
control

Use case description

1. The electronic engineer provides the hardware
section.
2. The engineer of systems develops software section.
3. The user starts the acquisition and control system.
4. The PC receives, processes and shows data in the
graphical interface.

Use case description

1. The user works with the system.
2. The user interprets results.

Electronic and
Systems
Engineer

User

Results
presentation

Figure 2. Use case diagram for knowledge
representation in the analysis or requirements.

Figures 3 and 4 shows the interaction between actors
and scenario about operation details.

Electronic
Engineer

Engineer of
Systems User

Time

Supply
hardware

Data
acquisition

Results
verification

Results
interpretation

Data
processing

Control

Figure 3. Sequence diagram about personal
interaction within data acquisition and control

system.

hardware Interfaces P C

Signal
conditioning

Data
acquisition

Data
processing

Time
Control

P C Personal Computer

Figure 4. Sequence diagram showing the hardware

interaction within data acquisition and control
system.

Figure 5 is a protocol [6] that shows a specification
of desired behaviour of a data acquisition and control
system; here the incoming and outgoing signals are
exhibited.

ACQUISITION AND
CONTROL SYSTEM

Incoming

input signals

Outgoing

Output results in a
personal computer

Figure 5. Protocol for behaviour of a data

acquisition and control system.

Consider the abstract machine in figure 6, it
represents the most abstract level of behaviour a data
acquisition and control system and shows how a
simple state machine represents the behaviour of a
real-time system.

DATA ACQUISITION
AND CONTROL

SYSTEM

Off

Stop
Start

Acquisition
start trigger

Acquisition
and data

processing

Acquisition
Stop

Trigger
Running

Figure 6. Protocol for behaviour of a data
acquisition and control system.

2.1.2.3 Management: In this category we represent
the knowledge acquired with a use case and it
represents concepts, methods, techniques, and
standards required in project, risk, quality,
configuration and process management. The software
project management is an umbrella activity within
software engineering, and stars after requirements
analysis and continues throughout the definition,
developments, and support of acquisition and control

system. Risks management is a series of steps that
help a software team to understand and manage
uncertainty. Software quality management
encompasses procedures for the effective application
of methods and tools, formal technical reviews,
testing strategies, procedures for change control, and
procedures for assuring compliance to standards and
measurement and reporting mechanisms. Software
configuration management identifies, controls,
audits, and reports modifications that invariably
occur while software is being developed and after is
has been release to a customer. Software process
management enables manager to improve and apply a
software process. Figure 7 shows the use case
diagram that represents the knowledge acquired in
the management category.

Standards and
procedures application

Use case description

1. The software engineer define project objectives, interprets
and applies methods, techniques, procedures and standards for
project, risk, quality, configuration and process management.

Use case description

1. The software manager verifies and
validates the management areas.

Software
Engineer Software

Manager

Verification
and validation

Figure 7. Use case diagram for knowledge
representation in the management category.

2.1.2.4 Engineering. In engineering category we
have considered five knowledge areas: graphical
programming analysis, graphical programming
design, graphical programming development,
graphical programming testing, and graphical
programming reuse. For knowledge representation of
engineering category [7] we apply use case that is
presented in figure 8.

GP Analysis
Capture, definition and
use case diagrams validation.

Applicationofuse case
diagrams

GP Design

GP Testing

GP Development

GP Reuse

use case diagrams verification

Application of previous steps

Use case
diagrams

Figure 8. Knowledge representation of engineering
category.

Because the graphical programming language
LabVIEW produces objects, besides of the use case
diagrams, we are proposed to use an activity diagram
for knowledge representation of the design and
graphical programming development, it models
graphical objects and it is show in figure 9.

E le c tr o n ic E n g in e e r E n g in e e r o f s y s t e m s S o f tw a r e s y s te m

S u p p l ie s
h a rd w a r e

C o n f ig u r e s s y s te m

A c c e p ts
c o n f ig u r a t io n

D e s ig n s a n d
d e v e lo p m e n ts s y s te m

U s e r

R e q u ire s s y s te m

T e s ts s y s te m

U s e s s y s te m

V e r if ie s a n d
v a l id a te s s y s te m

D e liv e r s s y s te m

P a y s fo r s y s te m

Figure 9. Activity diagram for knowledge
representation in the management category.

3. Conclusions
Knowledge representation with UML notation leads
to acquire and represents the software engineering
knowledge in data acquisition and control systems.
This helps to solve problems through the application
of knowledge. The UML diagrams are a good option
to capture lessons learned, good practices in software
engineering, and reapplying knowledge the systems

increases its probability of success avoiding to spent
much time and money. It is highly advantageous for
software developers and software managers to
represent knowledge, for increasing quality, and for
reducing costs.

References
1. G. W. Johnson, LabVIEW Graphical
Programming, Practical applications in
Instrumentation and Control, McGraw-Hill, 1994.
2. R. Pressman, Software Engineering a Practitioners
Approach, McGraw-hill International Edition, 2001.
3. T. B. Hilburn, I. Hirmanpour, S. Khajenoori, R.
Turner, A. Qasem, A Software Engineering Body of
Knowledge, Version 1.0, Technical Report,
CMU/SEI-99-TR-004.

4. Borland, Practical UML A Hands-On Introduction
for Developers.
5. Unified Modeling Language,
http://www.rational.com/uml/
6. B. Selic, J. Rumbaugh, “Using UML for Modeling
Complex Real- Time Systems”
http://www.rational.com/products/whitepapers/
7. P. Letelier, Desarrollo de Software orientado a
objetos usando UML, http://www.dsic.upv.es/~uml/.

http://www.rational.com/uml/
http://www.rational.com/products/whitepapers/
http://www.dsic.upv.es/~uml/

	References

