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MIKLÓS BULLA
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HUNGARY

Abstract: A stochastic control process model is presented for simulating the output signal of an optical inter-
ferometer connected to light source of known (output) statistics. A probabilistic method is given by statistical
analysis of the time dependent vector signal process, using the covariance characteristics of the interferometer
(together with the “photon space”) that can be described by the models of control theory. The developed and
applied mathematical methods are highly determinate by the mechanism of the detector device.
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1 Introduction

The question “whether a photon is a particle or a wave”
has been raised for decades. Since both qualities can
be shown with a proper experimental arrangement, the
question had only historical interest, because quantum
optics is capable of describing both properties of the
photon.

For a long time it seemed that such questions would
have been forgotten, but in the last two decades the
development of laser metrology (and certain measure-
ments in particle physics, see [1,2,4]) made it possible
to detect low intensity light and particle beams. Prob-
lems like EPR, “which way”, “quantum eraser” etc.
were raised again, because it could not longer been
stated that “the measurement is applied to a statistical
sample”. For up to this point only correlation, coinci-
dence and momentums had been measured, the model
of signal process based on the results of stochastic con-

trol theory was not involved.

Our attention was turned to observing and mod-
elling an optical process which is capable of produc-
ing (measurable) interference, because this is probably
the simplest complex problem in modern physics where
the aforementioned aspects are present simultaneously.
Furthermore, not only the arrangement of experiment is
easy technically, but the measuring device can also be
clearly described theoretically (even classically).

We would like to base our investigation theoreti-
cally on stochastic dependencies between absorption
processes in the elements of the detector array. As the
interference picture, that is the average intensity distri-
bution, can not be interpreted after the impact of some
photons, this paradox can be lift by applying double
stochastic vector processes, which are well-known from
modern probability theory. Moreover, we can give a
statistical characterization for the dynamics of absorp-
tion time (events of photon detection) vector processes
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Figure 1: Mach–Zehnder interferometer (BS: Beam
Splitter, M: mirror, D1,. . . ,DM: Detector Array)

by assuming the existence of stochastic connection with
“hidden” generating information processes.

2 The physical model

Let us consider a Mach–Zehnder interferometer, see
Figure 1. The detector array constructed from semi-
conductor pixels, in which electrons are excited to the
conductance band by the absorbed photons.

The output signal (charge) of pixels can be read out
by ∆τ time intervals, according to the clock signal of the
measurement card. (Obviously, we have to take into ac-
count the wake-up time and dark noise of detector pixels
in determining ∆τ.)

Let us denote the output signal of the ith pixel by X (i)
n

(i = 1, . . . ,M, n = 1,2, . . .) which – choosing an appro-
priate average of the signals of detectors be the unit –
gives integer numbers during the reading time, thus the
signal of the detector array (neglecting the reading and
detector noises) at nth reading is

Xn =
(

X (1)
n ,X (2)

n , . . . ,X (M)
n

)

, n = 1,2 . . . , (1)

where M is the number of pixels. Denote the arrival
time of the jth photon on ith pixel by τ(i)

j , j = 1,2, . . ..
Now define Z(t) counter vector process as

Z(t) =
(

Z(1)(t),Z(2)(t), . . . ,Z(M)(t)
)

, (2)

where

Z(i)(t) =
∞

∑
j=1

I
(

τ(i)
j ≤ t

)

.

(I is the indicator function.) {τ(i)
j , j = 1,2, . . .} absorp-

tion time series can also be expressed using the mea-
surement series {X (i)

n ,n = 1,2, . . .}, 1 ≤ i ≤ N:

X (i)
n =

∞

∑
j=1

I
(

(n−1)∆τ < τ(i)
j ≤ n∆τ

)

=

= Z(i)(n∆τ)−Z(i)((n−1)∆τ). (3)

Now Z(i)(t) can be modelled by a doubly stochastic
Poisson process.

Definition 1 For a single detector

Z(t) := {Nt ; t ≥ t0} (4)

is a doubly stochastic Poisson process [3] with intensity
process {λt(yt); t ≥ t0} if for almost every given path
of the process {yt ; t ≥ t0}; N is a Poisson process with
intensity function λt(yt). In other words, {Nt ; t ≥ t0} is
conditionally a Poisson process with intensity function
λt(yt) given {yt ; t ≥ t0}.

Remark 1 The process {yt ; t ≥ t0} we shall encounter
as it conveys desired information, and for this reason we
call it the information process, which in our case will be
called as propensity (output) process.

Our model for a so-called multichannel (multi-
detector) doubly stochastic Poisson process is com-
prised of M single-channel doubly stochastic Pois-
son processes that are conditionally mutually indepen-
dent Poisson processes given the information process.
Thus, let {N(m)

t ; t ≥ t0} for m = 1,2, . . . ,M be dou-
bly stochastic Poisson process with corresponding in-
tensity processes {λ(m)

t (yt); t ≥ t0} for m = 1,2, . . . ,M,
where {yt ; t ≥ t0} is an information process. We
assume N(1),N(2), . . . ,N(M) are mutually independent
given {yt ; t ≥ t0}. We term the vector Nt , where

Nt :=
[

N(1)
t ,N(2)

t , . . . ,N(M)
t

]′
, (5)

a multichannel doubly stochastic Poisson process with
intensity process λt(yt), where

λt(yt) :=
[

λ(1)
t (yt),λ

(2)
t (yt), . . . ,λ

(M)
t (yt)

]′
. (6)

Let us consider the information (propensity) process
being an M dimensional complex valued Gauss station-
ary series {yt = (y(1)

t , . . . ,y(M)
t ; t ≥ t0}, and using this

the intensity process can be characterized. The identifi-
cation of the Gauss type information process {yt ; t ≥ 0}
from absorption times needs the application of further
complex mathematical tools. We neglect this, instead
we consider the analysis of the stochastic dependencies
between absorption and information processes, which
forms the base for the statistical identification of the in-
formation process.

It is of special interest, that in case of highly weak-
ened light beams the intensity and information pro-
cesses can not be identified directly in the base time



Figure 2: Qualitative illustration of interference picture

slot, as opposed to normal intensity beams, when hav-
ing the appropriate a priori physical (technical) infor-
mation intensity and information processes can be es-
timated quite easily. This gives us the reason for con-
sidering the information process as propensity process.
Further, it concludes that for the characterization of de-
pendence between arrival processes on individual detec-
tors the usual measures of dependence can not be used,
instead special techniques are adequate (see [5]).

Let us consider the process for the interference pic-
ture illustrated in Figure 2. From symmetry it is rea-
sonable that in this case the individual time scales ti are
uniquely defined by the geometric arrangement of the
detector array and by the number of interference stripes
to be processed.

The general formula is e−bx2
cosbx, if the coherence

length is great enough compared to the wave length, i.e.
if lcoh � λ (lcoh ≈ 3−5 cm) then the intensity distribu-
tion of the interference picture is

I(x) ≈ I0 + I′ cos2(kx), (7)

where I0 constant, and I′ can be considered as constant
(∆I′ is the error of intensity measurement, ∆I ′ < I′/100
can be achieved easily by tuning the measuring arrange-
ment; greater exactness is an unrealistic expectation be-
cause of the inhomogeneities in optical elements).

On the basis of Figure 3. we can write that

Pi,∆x ∼
∫ xi+∆x

xi

I0 + I′ cos2(kx)dx, (8)

therefore

Pi,∆x ∼
I0∆x

k
+

I′∆x
k

+
I′

k

[

cos(2k(xi +∆x))

− cos(2kxi)
]

, (9)

where ∆x is the width or height of a detector pixel.

Remark 2 Because of difficulties in controlling the
transversal behavior of the measuring arrangement

Figure 3: Intensity distribution

there can arise arbitrary phases, but they do not modify
the result significantly:

Pi,∆x ∼
I0∆x

k
+

I′∆x
k

+
I′

k

[

cos(2k(xi +∆x)+φ)

− cos(2kxi +φ)
]

. (10)

Probabilities defined in interval [0,1] can be derived
by the appropriate normalization of the above equa-
tions, e.g.

pi = pi,∆x =
Pi,∆x

∑ j Pj,∆x
. (11)

3 The statistical model

Let us examine the interpretation of intensity processes
on the different possible time scales. Let nk = 1/pk-t
(k = 1, . . . ,M) be the interval length when the average
number of photon absorptions in pixel k is 1. In the
following we fix this scale.

In our case it is obvious that individual occurrence
times can not be observed. Then let {N(i)

t , t ≥ t0} be
a doubly stochastic Poisson process with intensity pro-
cess {λ(i)

t , t ≥ t0}. Assume that the mean E(λ(i)
t ) and co-

variance function Kλ(i)λ( j)(t,u) for the double stochastic
Poisson intensity process are known. An observation in-
terval [t0,T ] is partitioned into m(i) = [T − t0/ni] subin-
tervals according to the times t(i)0 < t(i)1 < t(i)2 < · · · <

t(i)m = T , t(i)k = kni∆τ, k = 0,1, . . . ,m(i); and the num-
ber of points occurring in each subinterval is observed.
Denote these observables by W (i)

1 ,W (i)
2 , . . . ,W (i)

k , i =
1,2, . . . ,M, where

W (i)
k = N(i)

(

λ(i)
kni∆τ

)

−N(i)
(

λ(i)
(k−1)ni∆τ

)

=

=
kni

∑
l=(k−1)ni+1

x(i)
j , k = 1,2, . . . ,m(i), (12)

here x(i)
j was defined by (3) for the measurement data

“interpretation” of the physical model. ν(i)
k is defined



theoretically as

ν(i)
k =

∫ kni∆τ

(k−1)ni∆τ
λ(i)

s ds, and

ν̂(i)
k =

(

t(i)k − t(i)k−1

)−1
ν̂(i)

k . (13)

Remark 3 Since filtering Nt for determination of λt is
not possible (because we do not know a priori and can
not estimate directly covariance function K), we must
estimate discrete intensity process ν from the observed
series of W i

τk.

Thus, the covariance function of ν(i)
j is

Ri j(uk,sl) = cov
(

ν(i)
j ,ν(i)

h

)

=

=
∫ tk

tk−1

∫ tl

tl−1

Ki j(τ,σ)dτdσ, (14)

and

R̂i j(uk,sl) = (tk − tk−1)
−1(tl − tl−1)

−1Ri j(uk,sl). (15)

In this case obviously

E

(

W (i)
k

)

= E

(

ν(i)
k

)

= (tk − tk−1)E
(

ν̂(i)
j

)

, (16)

where E is the symbol of mathematical expectation, and

cov
(

W (i)
k ,W (i)

l

)

= (17)

=







cov
(

ν(i
k ),ν(i)

l

)

, for k 6= l,

cov
(

ν(i)
k ,ν(i)

l

)

+E

(

ν(i)
j

)

, for k = l, i = j.

Further, examine the coupled behavior of two de-
tectors (i and j, 1 ≤ i, j ≤ M) for some fixed scale
ni = n j = n (here the selection of n ∼ 1/pi and n ∼ 1/p j

plays important role), but we omit the explicit notation
on n for the sake of simplicity. Then the estimation of
discrete intensity process ν(i)

k can be determined by the
following filtering formula

ν(i)
k = E

(

ν(i)
k

)

+
M

∑
j=1

m

∑
l=1

g( j)
l W ( j)

k−l . (18)

Here the optimal estimation (e.g. in minimal mean
square) of the discrete intensity process ν(i)

k can be car-
ried out by the well-known methods (e.g. correlation
equation system, state-space model). On the basis of the
estimated discrete intensity process y(i)

k complex-valued
Gauss stationary time series can be defined by expres-
sion

ν(i)
k = E

(

ν(i)
k

)

+
(

ℜy(i)
k

)2
−

(

ℑy(i)
k

)2
. (19)

After the concrete computation of y(i)
k from ν(i)

k the
system identification of y(i)

k generated by forward and
backward (or acausal) vector white noise processes can
be carried out (for the different time scales) by rather
sophisticated structure and parameter estimation meth-
ods, that is a subject of a forthcoming paper.
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