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Abstract: - Real-time cell scheduling is a promising area for the application of evolvable hardware (EHW).  In 
this paper, we describe an intrinsic evolvable and online adaptive EHW for solving the packet switching problem.  
Based on the coding and evolution scheme, we refer to it as evolvable fuzzy hardware (EFH), an extension of our 
proposed evolvable fuzzy system (EFS) [1, 2] and reconfigurable fuzzy inference chip (RFIC) [3].  EFS is a good 
framework for online adaptation.  RFIC on the other hand is a hardware architecture which supports context 
switching or online reconfiguration.  By combining the advantages of the two, we can achieve an intrinsic 
evolvable and online adaptive EFH.  The whole scheme is illustrated through application in solving the packet 
switching problem and the advantages are highlighted. 
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1. Introduction 
For modern networks, various services are currently 
supported.  Voice, video, file transfer, etc., are some 
of the important services provided by Internet, broad 
area network, and local area network.  The IPv6 
(Internet Protocol version 6) is now starting to mature.  
This new type of communication protocol can connect 
instruments all over the world into a single network.  
It has significant advantages over the IPv4, which is 
currently widely used.  With the emergence of the 
advanced protocol, new services not currently 
available may be needed in the future.  This tendency 
requires network nodes to accommodate for greater 
flexibility.  The multiplexer is a very important 
network component for modern network infra-
structure.  It is used mainly to provide bandwidth 
sharing of high-speed link for network terminal 
equipments or network inter-nodes.  There are many 
scheduling algorithms available, such as first-in-first-
out (FIFO), weighted round-robin (WRR), virtual 
clock [11], dynamic weighted priority scheduling 
(DWPS) [10] and deficit round-robin (DRR) [12].  
Each of these schemes has its own strengths and 
weaknesses.  In this paper, we investigate the 

application of evolvable hardware (EHW) and some 
of its unique characteristics in cell scheduling.  Other 
than emulating general processor sharing (GPS) or 
designing the algorithm in a packet-by-packet mode, 
EFH can provide a platform of designing a scheduling 
system directly from the standpoint of QoS 
requirements.   

Evolvable hardware (EHW) was introduced in 
1992 by Higuchi et. al. [4], combining evolutionary 
scheme and reconfigurable hardware device to solve 
problems.  EHW is suitable for working under a 
dynamically changing environment.  It is therefore 
promising in some situations whereby the operating 
environment besides being dynamic, is also unknown 
or unpredictable.  Many research works till now deal 
with extrinsic EHW which carries out evolution by 
means of a software model and only downloads the 
elite into the reconfigurable hardware.  On the 
contrary, intrinsic EHW tries to do away with the 
software simulation model.  In an ideal case, both the 
evolution and reconfiguration can be carried out 
within the EHW such that it can trace and adapt to the 
changing operating environment to maintain good 
system performance.  Due to practical implementation 
issues, intrinsic EHW achieved so far cannot entirely 



 

  

break away from the need for an external 
computational platform [5,6,7]. 

The complexity pertaining to the implementation 
of intrinsic EHW depends very much on the 
application areas.  One potential area of application 
for intrinsic EHW is packet switching network.  There 
have already been some works done on EHW 
application in ATM cell scheduling [8,9].  In their 
works, the authors presented schemes to solve this 
kind of problem using functional EHW.  The 
functional EHW systems successfully evolved a 
circuit which can achieve similar service performance 
as traditional scheduling scheme.  However, some 
significant limitations make the system not suitable 
for practical applications.  The most significant 
limitation is that the system cannot evolve 
intrinsically and adapt online.  We believe intrinsic 
evolvable and online adaptive EHW for such kind of 
application is viable according to our previous work 
[1,2,3].  The combination of these works can be 
termed as evolvable fuzzy hardware (EFH). 

The rest of this paper is structured as follow.  
Section 2 discusses the application problem and the 
evolution scheme in the proposed EFH.  The proposed 
EFH relies mainly on a reconfigurable fuzzy device 
termed as reconfigurable fuzzy inference chip (RFIC).  
In Section 3, our proposed RFIC will be outlined.  In 
Section 4, the simulation results of EFH on ATM cell 
scheduling will be given.  Section 5 will then present 
the conclusion and give directions on some future 
work. 

2. Evolution Scheme  
Multiplexer is a very important component in packet 
switching network.  It adopts time division sharing 
scheme to provide bandwidth sharing for different 
flows.  In this paper, two classes of cell flows with 
fixed packet size are mainly considered.  Class1 refers 
to cell flow which is sensitive to cell delay, for 
example, Constant Bit Rate (CBR).  On the other 
hand, Class2 refers to cell flow such as non-real-time 
Variable Bit Rate (nrt-VBR) which are not sensitive 
to cell delay but to cell loss.  The whole system 
structure of EFH for packet scheduling is described as 
in Fig.1.  BUF# and MP unit are normal components 
as in traditional scheduling scheme.  BUF# in Fig.1 is 
used to store cells waiting for time slots.  MP is the 
multiplexing unit for allocating time slots to Class1 
and Class2.  In this problem, the size of BUF# is 
fixed.  It is also assumed that the capacity of OUT 

channel is the same as the capacity of the input 
channels, 155.52Mhz.  The performance of the 
multiplexing system can be described by the quality of 
service (QoS) which includes Class1 cell delay, delay 
variation and Class2 cell loss. 

Due to the system’s complexity, the evolution 
granularities such as transistor, gate, functional unit 
are not very suitable for evolving powerful circuits in 
a very short time.  In order to overcome such a 
problem, we can adopt fuzzy rules as the evolution 
granularity.  In Fig.1, TB# is the training buffer for 
acquiring training data online.  RFIC block is a 
specific implementation of reconfigurable fuzzy 
inference chip described in [3].  Evolution Module is 
a hardware component to perform GA operations in 
order to evolve the desired fuzzy rule sets.  
Scheduling Model is used to simulate the behavior of 
MP unit on the cell flow stored in TB#.  In a simple 
way, Scheduling Model can be an embedded 
scheduling system.  It includes two components, MP 
simulator unit and RFIC unit.  Every fuzzy rule set 
evolved by the Evolution Module can be evaluated by 
downloading onto the RFIC in the Scheduling Model.  
By incorporating the Scheduling Model, the evolved 
fuzzy rule sets can be evaluated without affecting the 
system’s operation. 

Because of the unpredictablility of cell flow, it is 
difficult to train a system that works equally well for 
all cell flow scenarios.  The rationale for choosing an 
appropriate data set for training can be justified based 
on the principle of “locality”.  If we assume that the 
time period is very small, the cell flow of the next 
time period will be very similar to the current time 
period.  Based on this justification, it is suitable to 
employ TB# of finite length to collect training data for 
the evolvable system. 

In order to control the scheduling behavior using 
fuzzy rule set, we define two fuzzy variables c1 and c2 
to describe the status of BUF1 and BUF2 respectively.  
c1 is the ratio of Class1 cell rate and the capacity of 
the OUT channel.  c2 is the ratio of the number of 
empty units in BUF2 and the length of BUF2.  The 
membership functions for c1 and c2 are as shown in 
Fig.2.  A fuzzy rule set for cell scheduling is as shown 
in Table 1.  In Table 1, T means that the OUT channel 
is allocated to Class1 and F means that Class2 will be 
sent through the OUT channel.  For genetic coding, 
the string “12222,11122,11112,11112,11111” 
represents the fuzzy rule set in Table 1.  The value “1” 
corresponds to T and “2” corresponds to F.  A “0” in 



 

  

the chromosome indicates there is no fuzzy rule 
defined for the corresponding input situation. 

The rule set in Table 1 is designed based on human 
knowledge and intuition.  It can be employed as a core 
rule set in the EFH system.  In this system, the 
evolution system tries to derive a good chromosome 
for a specific situation, not necessarily an optimal one.  
After a fixed number of generations, if a better 
chromosome is derived, the current working 
chromosome is replaced immediately.  Otherwise, the 
current rule set continues to be applicable.  In order to 
guarantee a certain level of minimum acceptable 
performance, the system relies on the core rule set 
shown in Table 1 as a default startup rule set. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1 Adaptation framework for EFH 

 

 

 

 
 

Fig.2 Membership function 
 

Table 1 A fuzzy set for ATM cell scheduling 
 

          c1 
c2     

VS S M L VL 

VS T F F F F 
S T T T F F 
M T T T T F 
L T T T T F 

VL T T T T T 
 

In Table 1, each cell entry is interpreted as a fuzzy 
rule that maps the inputs c1 and c2 to the output SEL.  
For example, the first fuzzy rule represents “if <c1 is 
VS> and <c2 is VS> then <SEL is T>”.  This means 
that the strength of firing is taken as the minimum of 
the degrees of matching between the two inputs and 
the antecedents of the rule.  The fuzzy aggregation is 
carried out by averaging the fuzzy conclusions 
derived for all the rules.  There are two aggregation 
results for the T and F outputs.  The larger value 
determines the final crisp conclusion. 

In this system, we fix the rule number to be a small 
number to keep the search space manageable.  The 
fitness function adopted in the proposed EFH system 
is described by Eq.1, 2 and 3. 
 

F AveDelay DelayFactorκ λ= − − ×             (1) 

1

1 ( )
i

AveDelay m i
τ

τ
=

= ×∑        (2) 

DelayFactor ρ υ= ×                      (3) 
 
In Eq.1, κ  is a very large constant.  λ  is an 
adjustable parameter to indicate the desired Class1 
cell delay.  AveDelay represents the average cell delay 
suffered by the cell flow stored in TB1.  DelayFactor 
is a constant used as a reference for scaling the value 
of λ  based on the desired Class1 cell delay.  In Eq.2, 
τ  is a variable denoting the number of Class1 cell 
units in TB1 sent during evaluation.  ( )m i is the 
waiting time of the ith cell in TB1 before being sent.  
In Eq.3, ρ is a constant corresponding to the time 
required to send a cell through the output channel.  
The value of ρ  depends on the bandwidth capacity of 
the output channel.  υ  denotes the size of TB#. 
 

3. Hardware Implementation 
In the system architecture of Fig.1, there are two 
RFIC blocks, which are the key components.  One 
RFIC block is for packet scheduling control and the 
other is included in the Scheduling Model block.  For 
the Scheduling Model, chromosomes need to be 
evaluated within a very short time period.  The 
duration of the evaluation can significantly affect the 
system performance.  The concept of RFIC is 
illustrated by the block architecture in Fig.3 [3].  
There are 4 main blocks that make up the RFIC, FIM 
(fuzzy inference map), CMU (context memory unit), 
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AEM (address encoding mechanism) and OAM 
(output aggregation mechanism).  In Fig.3, k indicates 
the number of input bits.  p refers to the width of the 
data bus.  v and w are the sizes of the linguistic term 
sets for Input1 and Input2 respectively.  m depends on 
the size of the linguistic term set for the output 
variable.  In the application for cell scheduling, k is 5, 
p is 5, v and w are 5 and m is 1. 

In the RFIC, the FIM is a critical part for 
accommodating the various fuzzy contexts.  It stores 
all the fuzzy conclusions for every input situation.  
For a rule set of 25 rules as in Table1, the FIM block 
is divided into 25 groupings called partition blocks 
(PB).  Each PB stores the fuzzy conclusions covering 
all possible input situations.  For example, PB<1,1> 
maintains a mapping for the fuzzy antecedents such as 
“if <c1 is VS> and <c2 is VS>”.  The digitized inputs 
c1, c2 and genes of the working fuzzy rule set stored in 
the context register of CMU can be combined together 
to address a specific memory location within this PB.  
The content in every PB is determined by the adopted 
inference scheme. 
 
 
 
 
 
 
 
 
 
 
 
The content of the context register in CMU is the 
working fuzzy rule set.  CMU generates Ena and Sel 
signals for the PBs based on the context register.  The 
Ena signal is used to decide which PB is active.  The 
Sel signal combines with the output of AEM to form 
the address signals to access specific memory location 
in every active PB. 

AEM is the address generator unit.  It is 
responsible for generating major address signals for 
the PBs of the FIM.  Its output is derived by combing 
the two digitized inputs.  OAM is a circuit to fulfill 
fuzzy aggregration.  It includes two parts of 
aggregation for T and F respectively which is 
composed of Ave_2 blocks and Ave_3 block to 
perform 2-averaging and 3-averaging [3].  The inputs 
of OAM are from every PB.  If one PB is active, it 
outputs the data stored in the unit specified by the 

output of AEM and the output signal Sel of CMU to 
OAM, otherwise it outputs 0. 

 

4. Simulation 
In order to demonstrate the viability of EFH for 
solving packet scheduling problem, we carried out 
simulations on the cell flow scenario in Fig.4.  The 
simulation results of EFH will be compared with first-
in-first-out (FIFO) and dynamic priority scheduling 
(DWPS) [10].  FIFO is a very general scheduling 
scheme which can achieve very good balance of cell 
losses but very poor Class1 cell delay.  DWPS is an 
improvement of round-robin scheduling scheme.  It 
can adapt to the changes of the cell flow. 
 
 
 
 
 
 
 

Fig.4 Two classes of cell flows 
 
For the cell flow scenario, Class1 is the cell flow with 
cell bit rate of 155.52MHz while Class2 is the cell 
flow also with cell bit rate of 155.52MHz.  The 
difference between Class1 and Class2 is that Class1 
has constant cell bit rate while Class2 has 2 ms ON 
period and 2 ms OFF period.  For the simulation, the 
length of BUF# is 100 units, the length of TB# is 300 
units, the population size is 12 and the generation 
number is 14.  The simulation results of EFH 
( λ =0.35), FIFO and DWPS are as given in Fig.5, 6, 
7, 8, and 9.  From Fig.5 we can see that EFH can 
achieve lower Class1 cell delay than FIFO and 
DWPS.  From Fig.6 it can be seen that the balance of 
cell losses by using these three systems are good, 
which means that none of them biases much on 
Class1 cell flow.  Fig. 7, 8 and 9 present the delay 
distribution suffered by Class1.  In Fig.7, it can be 
seen that most of the Class1 cells suffer delay 
between 270µS and 400µS for the EFH.  The 
probability of cell delay above 400µS approaches 0, 
indicating a small delay variation for Class1 packets.  
The delay for FIFO in Fig.8 is mainly concentrated 
around two bars, 270µS and 530µS.  The probabilities 
for these two values are both very significant.  The 
delay for DWPS in Fig.9 is in the range of 270µS and 
470µS.  But besides the high probability of 270µS, the 
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delay for DWPS also concentrates around 400µS.  
From these comparisons, it is concluded that EFH can 
provide smaller delay variation than the other two 
algorithms. 

Another very good property of EFH is that the 
system’s performance can be adjusted very intuitively 
by decreasing or increasing the value of λ  in Eq.1.  
The smaller the value, the smaller the Class1 cell 
delay.  This property cannot be achieved conveniently 
using traditional scheduling methods.  The tunability 
of EFH can be seen from the simulation results.  
Results of simulation for different λ values are as 
shown in Fig.10 and 11.  In Fig.10 and 11, when λ is 
0.4, the Class1 cell delay and Class1 cell loss are very 
small.  Accordingly, the Class2 cell delay and Class2 
cell loss are very big.  If good balance of Class1 cell 
loss and Class2 cell loss is desired, a bigger value can 
be assigned to λ .  In Fig.10 and 11, both the Class1 
cell loss and Class2 cell loss are moderate when λ  is 
0.6.  In the case when the QoS of Class2 needs to be 
significantly emphasized, the value of λ  can be 
further increased.  The larger the λ , the better the 
QoS of Class2.  The QoS for Class2 when λ is 0.8 is 
the best in Fig.10 and 11.   

In principle, Class1 cell delay can be adjusted in 
the range from 0 to ρ υ×  if λ is within 0 and 1.  This 
means that Class1 cell delay has a very wide range of 
tunability.  In another word, according to the 
correlation between cell loss and cell delay, Class1 
cell loss and Class2 cell loss can also be tuned to a 
very wide range when λ  is adjusted.  According to 
the fitness function, a rough Class1 cell delay can be 
estimated after deciding the value of λ .  On the other 
hand, if one knows the satisfactory Class1 cell delay 
requirement, the value of λ  can also be 
approximated.  This delay tunability is very useful to 
give some priorities to other flows under the case 
when a flow does not require much on small delay but 
has requirement of small delay variation.  This 
philosophy can take better advantage of the network 
bandwidth and resource without much effects on 
network QoS.  

5. Conclusion and Future Works 
In this paper, we described the packet switching 
problem and the evolution scheme of EFH for solving 
this problem.  We also addressed the implementation 
issues of EFH by describing the RFIC, a 
reconfigurable fuzzy inference chip that is able to 

handle real-time context switching.  For the 
demonstration of the viability of EFH, the simulation 
results for the packet switching were given which 
shows that the EFH system can perform as well as 
other scheduling schemes, namely FIFO and DWPS.  
The EFH can also provide better properties than other 
schemes in terms of flexibility.  The more 
advantageous aspect of EFH is the tunability.  This 
was also demonstrated through simulation results.  
From the research work shown in this paper, it is 
evident that EFH is very suitable for controlling data 
flow.  It can adapt to the changes of the cell flows and 
effectively control the multiplexing of the cell flow.  
Our future work will focus further on studying the 
characteristics of EFH system and its hardware 
implementation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.7 Class1 delay distribution for EFS
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Fig.5 Cell delay of Class1 and Class2 
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Fig.6 Cell loss of Class1 and Class2 
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Fig.8 Class1 delay distribution for FIFO 
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Fig.9 Class1 delay distribution for DWPS 

-100 0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
DWPS Class1 Delay Distribution

Fig.10 Cell delay tunability 
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Fig.11 Cell loss tunability 
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