
Adaptive Exploration of User Knowledge
in Computer Based Testing

DIMITRIOS LAMBOUDIS, ANASTASIOS ECONOMIDES

University of Macedonia
156 Egnatia Str.

GREECE

Abstract: - In the context of Computer Based Testing (CBT) and Computer Adaptive Testing (CAT)
systems, two shortcomings can be identified. First, they seldom make use of information about how
confident a student is in the answer given, and second, it is quite possible that students can get good marks
by a combination of partial knowledge and guesswork [4]. More generally, in Computer Based Learning
Environments, the representation and maintenance of user’s knowledge can be considered as one of the
critical factors that affect the system’s effectiveness. In such systems the evaluation of user knowledge
derives from tests and tasks that the system proposes to the user to accomplish. Thus, they inherit the
limitations of testing, mentioned above. This paper describes an approach that refines assessment results
through user knowledge exploration, incorporating probabilities. We argue that the proposed approach may
lead to a better mapping of the assessment results to user knowledge.

Key Words: - Computer Based Testing, Computer Adaptive Testing, Intelligent Learning Environments,
Pedagogical Agents.

1 Introduction
In recent years, with the expanding use of
information technology in education, many tests
have begun to be administered on computer. The
Test-Delivery methods can be summarized in:
Computer Fixed Tests which is a fixed-length
fixed-form test, analogous to traditional paper-and-
pencil testing; Automated Test Assembly for
Online Delivery, which produces multiple test
forms that are equivalent in some sense; and
Computerized Adaptive Tests, which dynamically
produce question sequences adapted to the
individual learner [9].

For the purposes of this paper we will focus on
adaptive tests. All these tests are administered
following some testing algorithm, which is a set of
rules specifying the questions to be answered by
the examinee and their order of presentation. The
basic underlying theory of most adaptive testing
systems is Item Response Theory (IRT), where
briefly, the questions’ sequence is based on the
probability of the individual examinee to answer
the next question [12]. There are also approaches
using Bayesian networks and numerous other
research efforts trying to enhance the effectiveness
of the computerized testing procedure. For
example the incorporation of confidence testing,
where the examinee is asked how confident she/he

feels in answering a certain question before
looking at the alternative answers [3], [13].

 Although testing could be seen as a stand-
alone procedure when used in traditional learning
environments, e.g. universities etc., its importance
is enhanced in the context of Intelligent Learning
Environments (ILEs). These systems must
consider a set of key decisions in their effort to
support joint activity, including: when to engage
learners with a service, how to best contribute to
solving a problem, when to pass control back to
users, when to query users for additional
information, etc.

In order to reach such situated decisions, the
system makes “guesses” about learners’ needs,
usually depending on the evidence obtained
through the “keyhole” of the user interface,
collaborative statistical data about the learner,
explicitly asked information most commonly in the
form of queries to the user in the beginning of a
session, assessment evaluation, etc [5], [14].

The “intelligence” of a learning environment
can be defined by its ability to make these
decisions dynamically, at run- or user-time, based
on an analysis of the learning context.

One of the main “ingredients” of the learning
context is the learner and, from the system’s point

of view, the corresponding user model that the
system maintains.

The student model stores information that is
specific to each individual learner. At a minimum,
such a model tracks how well a student is
performing on the material being taught. Since the
purpose of the student model is to provide data for
the pedagogical module of the system, all of the
information gathered should be able to be used in a
meaningful way [10], [11].

In this paper we will focus on the system’s
capability to assess the current state of student’s
knowledge and the implied capability to do
something “instructionally useful” based on the
assessment. The learner’s level of knowledge
acquisition is evaluated by tests and/or tasks the
user has to accomplish. That is, the responses of
the user are mapped to its actual knowledge
representation

One of the biggest challenges, in both stand-
alone testing systems and intelligent learning
environments, is to account for “noisy” data; the
fact that students do not always respond
consistently, particularly when their knowledge is
fragile. Although different styles of scoring and
mapping can be found, there is a common
assumption made: a correct answer maps to
knowledge, while a wrong answer maps to
ignorance, faults, etc.
It can be argued, however, that this approach has
two main shortcomings:

• In case of a correct answer, there is always a
possibility that the user has answered by
chance or at least he/she is uncertain about
the answer chosen; it must be mentioned
that the majority of the tests or the tasks in
hand are, or could be seen, as multiple-
choice questions; thus, with a question with
five alternative choices, the possibility that a
correct answer is the result of a guess is
20%; a possibility that cannot be ignored;

• In case of a wrong answer there is always a
possibility that the user was mislead by
factors irrelevant with his/her knowledge;
for example, poorly designed questions,
poor graphics in case the answer depended
on them, etc.

Both cases lead to misconceptions about the
actual user knowledge, which are difficult to be
traced and revealed in the learning procedure to
follow.

2 The Proposed Algorithm

The proposed algorithm attempts to overcome
some of the limitations that were mentioned in the
previous section. The algorithm is engaged during
a multiple-choice test, or in a task with discrete
steps or sub tasks.

Instead of proceeding to the next question or
task when the user provides an answer, the
algorithm engages an exploration module allowing
the user to have a second chance or prove the
validity of his/her answer. This second chance is
not provided unconditionally, since this would be
equivalent to just adding more questions or tasks
in the original design of the test, leading to a
prolonged test that might not be ideal in all cases.
Instead, when the user responds to a question, the
algorithm decides to explore the answer’s
correspondence to actual knowledge by some
probability Pe, and not to explore it by some
probability Pm = 1-Pe. Thus, in the “worst case”,
the system will behave “conventionally”, i.e. like
in the existing systems. However, there is a
possibility, which is partially defined by the
designer, at least as far as the initial value of Pe is
concerned, that the system will give the learner a
second chance. Yet, if this possibility is heavily
depending on the initial value of Pe, it would be
just another ad hoc intervention of the designer,
lacking any adaptive characteristics.

Instead, the probability of exploring user
knowledge (i.e. the definition of Pe), is determined
by the system, through the algorithm which checks
if this exploration has any affects on the learning
procedure, that is, if it reveals user knowledge that
was previously hidden. In case it does, it reinforces
the value of Pe, and in case it doesn’t it decreases
it. In the long run, this means that independently of
the initial values of Pe and Pm the system will
favour the option that actually helps the learner
and the system to have a better representation of
what the user actually knows. The corresponding
notation and assumptions are as follows:

• A testing procedure that can be
represented by a set of n ordered
Questions or Tasks,
 Q={Qi, i=1... n};

• An initial value of Pe
0 (the corresponding

Pm
0=1-Pe

0);
Where Pe

0 =P (explore user knowledge/
given an answer);

• Map is a function that maps the answer of
the student to his/her knowledge
representation;

• Explore is procedure that is engaged to
clarify user Knowledge, and

• Update is a function that updates the
values of Pe

i and Pm
i;

The pseudo code of the algorithm is described
below and its flow chart in Figure 1.

Pose Qi to the Student
Given an Answer from the Student
By (Pm

i-1) Proceed to Map
of this Answer to actual Knowledge or

By (Pe
i-1) Explore Students Knowledge

 If (New Answer = Answer) then Map
 Else Proceed to New Map
 Update (Pe

i, Pm
i)

Proceed to Qi+1

Probability” module presented next. In case the
learner has responded correctly in the original
question, it could ask for further details in the
particular subject to check the validity of the
original answer. In case the learner has responded
with a wrong answer, it could pose the question in
a different style. For example negatively posed
questions quite often lead to misconceptions. The
“Explore” module could rephrase the question in a
positive manner, etc.

Probability” module presented next. In case the
learner has responded correctly in the original
question, it could ask for further details in the
particular subject to check the validity of the
original answer. In case the learner has responded
with a wrong answer, it could pose the question in
a different style. For example negatively posed
questions quite often lead to misconceptions. The
“Explore” module could rephrase the question in a
positive manner, etc.

The depth of exploration, i.e. how many
additional questions the module will invoke, is up
to the designer and depends on the
implementation. For example, in common
multiple-choice tests one additional question could
be adequate, while in a more complicated learning
procedure more extensive exploration might be
needed.

The depth of exploration, i.e. how many
additional questions the module will invoke, is up
to the designer and depends on the
implementation. For example, in common
multiple-choice tests one additional question could
be adequate, while in a more complicated learning
procedure more extensive exploration might be
needed.

The “Update Probabilities” module controls
the values of probabilities that trigger the
exploring module. The updating strategy is based
on the assumption that if the learner gives similar
answers to both original and exploring questions
these answers are consistent with his/her
knowledge. Thus in the questions to follow the
algorithm decreases the probability of exploration.

The “Update Probabilities” module controls
the values of probabilities that trigger the
exploring module. The updating strategy is based
on the assumption that if the learner gives similar
answers to both original and exploring questions
these answers are consistent with his/her
knowledge. Thus in the questions to follow the
algorithm decreases the probability of exploration.

In the opposite case, where the original and
exploration answers differ, it can be assumed that
there is some kind of misconception or that the
learner is not so confident about his/her answers.
Thus the algorithm increases the probability of
exploration in the questions to follow. In both
cases we argue that the system will favor the
option that is meaningful for the user and the
system itself, literally adapting its behavior to the
individual learner.

In the opposite case, where the original and
exploration answers differ, it can be assumed that
there is some kind of misconception or that the
learner is not so confident about his/her answers.
Thus the algorithm increases the probability of
exploration in the questions to follow. In both
cases we argue that the system will favor the
option that is meaningful for the user and the
system itself, literally adapting its behavior to the
individual learner.

The exact values of the increment or the
decrement as well as the initial values of
probabilities depend on the designer’s scopes. For
example if we wish an initially neutral system we
set Pm = Pe =0,5. Limitations should also be
incorporated to specify the upper and lower limits

ii ii

The exact values of the increment or the
decrement as well as the initial values of
probabilities depend on the designer’s scopes. For
example if we wish an initially neutral system we
set Pm = Pe =0,5. Limitations should also be
incorporated to specify the upper and lower limits
Figure 1. The algorithm Flow-Chart
Up to this point the algorithm actually
describes the intervention strategy that the system
follows in order to clarify possible misconceptions
about the user knowledge. The “Explore”, “Update
Probabilities” and “Map”, modules need to be
further investigated. Although the functionality of
these modules is still under research, we will
present some ideas that were used in our
preliminary implementation.

Up to this point the algorithm actually
describes the intervention strategy that the system
follows in order to clarify possible misconceptions
about the user knowledge. The “Explore”, “Update
Probabilities” and “Map”, modules need to be
further investigated. Although the functionality of
these modules is still under research, we will
present some ideas that were used in our
preliminary implementation.

The “Explore” module is triggered by “chance”
based on the probability computed in the “Update

The “Explore” module is triggered by “chance”
based on the probability computed in the “Update

for Pe and Pm , depending on the particular
implementation. These limits will prevent, if
necessary, the values of probabilities to reach unit
or zero and lock the algorithm to continuously
intervene and explore, or proceed with out
exploring.

for Pe and Pm , depending on the particular
implementation. These limits will prevent, if
necessary, the values of probabilities to reach unit
or zero and lock the algorithm to continuously
intervene and explore, or proceed with out
exploring.

The “Map” module could be seen, at least as far
as multiple question tests are considered, as a
scoring module. Its task is to interpret the answers
given by the student in both original and
exploration questions in to a fair score. In case
there is no extra information from exploration, i.e.

The “Map” module could be seen, at least as far
as multiple question tests are considered, as a
scoring module. Its task is to interpret the answers
given by the student in both original and
exploration questions in to a fair score. In case
there is no extra information from exploration, i.e.

either the algorithm did not invoke at all with
additional questions, or the learner was absolutely
consistent in his/her answers, scoring can proceed
as usual adding up the predefined partial scores for
each question. In case there is extra information
from exploration, a more detailed procedure need
to be followed and it is up to the designer and the
particular implementation to decide the scoring
strategy. For example, if there is a direct conflict
between an original and an exploring answer, the
answer could be discarded or the learner could be
granted with some scoring points depending on
his/her overall achievement.

b. Two files can have same names but
different extensions

c. Two files can have the same name and
extension if they are stored in
different directories.

d. All of the above.

If the student selects other than (d), that is,
he/she continues to be wrong, we have good
reasons to assume that he/she is not familiar with
file naming in Windows. From the algorithm’s
point of view that means that there was no
misconception and the student’s answers are
consistent with his/her knowledge. Thus additional
questions may not provide any useful information
in the following questions. If, in the opposite, the
student selects answer (d), the correct answer,
there is a clue of misconception in the original
question. This misconception has derived, either
from the question itself or from luck of confidence
from the student’s side. In any case it can be
assumed that additional questions may be useful
for the particular student in the questions to
follow.

A simple example of the algorithm intervention
will be presented to demonstrate its use.

3 Example
Let us assume that in the context of a

preliminary computer science course the students
are to be tested with a multiple choice test, part of
which includes the following question:

1. What of the following is wrong in the
context of MS Windows Operational System: The results of exploring are then passed in to

the Update Probabilities module. In the first case
of similar answers, and based on the analysis that
we have made, the algorithm will decrease the
value of Pe. Thus, at least for the next question the
probability of exploration will be reduced. In the
second case of different answers, the algorithm
will increase the value of Pe thus increasing the
probability of exploration in the next question.

a. A file name can have Greek characters
b. Two files can have same names but

different extensions
c. Two files can have the same name and

extension if they are stored in different
directories.

d. Two files in any case cannot have the
same name and extension. The Map module will evaluate the feedback

provided by the user. A hypothetical scoring
strategy is shown in table 1.

Suppose that the student selects one of the
wrong answers in this question. Instead of
proceeding to the next question the system invokes
the algorithm. A uniform random number
generator calculates a number P, between 0 and 1,
which actually corresponds to a probability value.
The result is checked against the current values of
Pe and Pm. If P < Pe the system will proceed to the
next question; else the algorithm will engage the
explore module. We remind that the underlying
idea is that the student may know the correct
answer but, for example, was mislead by the
question’s phrasing. For the purposes of our
example we suppose that P > Pe and exploration is
triggered. An additional question is then presented
to the student, equivalent to the original one. For
example:

 Answer to Q 1

Answer to Q 1.1

Wrong Correct

Wrong 0 0.5

Correct 0.5 1

Table 1. Scoring Strategy

In practice, scoring proved to be quite tricky in
order to maintain its consistency among students.
Generally defining the properties of the
measurement scale, labelling the units, and
interpreting the values derived are complex issues
and require further research. [2]

1.1 What is true for the filenames in MS
Windows?

a. A file name can have Greek characters.

Completing the question in hand the system
will proceed to the next one, but this time with the
new values for probabilities Pe and Pm. The
algorithm will be engaged in exactly the same
manner and depending on the comparison of the
outcome of the random generator and the new
probability values will proceed to exploration. We
argue that this iterative computation of
probabilities and the corresponding biasing of the
system’s behaviour enhance the system’s
adaptivity.

Although we have focused in multiple-choice
tests, it must be noted that in its general form the
algorithm can be integrated in systems that use the
assessment procedure to trigger intervention from
the system’s side. A very suitable example could
be the case of a learning environment that is
inhabited by an animated pedagogical agent [6]. In
these environments the agent is physically present
and one of its tasks is to monitor the learning
procedure and act correspondingly. Misconception
detection is one of the most tedious tasks and
actually triggers most of the times the agent’s
intervention. Misconception is defined either as a
deviation or a completely wrong answer-act from
the user side, compared with the predefined
“expert’s choice”. On the other hand a correct
choice-act is apprehended as actual knowledge.
We have argued that this approach has some
shortcomings and that the proposed algorithm
could be used to overcome them. Thus we argue
that the algorithm could be integrated in such
systems to enhance the “intelligence” of the
agent’s intervention strategy.

 Moreover, this intervention will not only be
useful to resolve misconceptions, but it will be
done in a way that “hides” the behaviour pattern of
agent, thus enhancing its believability [1], [7] [8].
This is achieved as result of the use of
probabilities, which always leave a window of
“chance” in the agent’s behavior. It must be noted
that the algorithm maintains the predefined
pedagogical mainstream of decision-making,
providing some low-cost additional information.

4 Conclusions

This paper proposes an algorithm that aims to
enhance the systems ability to keep track of user’s
knowledge more reliably and more adaptively.
Moreover, in case that it is used as part of the
intervention strategy it could preserve the systems
believability.

It can be also argued that although the proposed
approach cannot formulate an autonomous
procedure, it can be plugged – in to most testing
delivery methods.

We have conducted some early experiments
with students of our department to evaluate the
algorithm. In particular we had our students run a
simple multiple-choice test with and without the
integration of the algorithm. This informal
evaluation provided very positive results. Scoring
was averagely 20% different, revealing lucky
guesses but also not very clear questions.
Further work needs is currently under progress in
the exploring and mapping modules in order to
integrate a complete suite for assessment.

References
[1] Bates, J. (1994). The Role of Emotion in

Believable Agents. Communications of the
ACM, 37 (7), 122-125.

[2] Crocker, Linda M., Introduction to Classical
and Modern Test Theory. Wadsworth Group,
1986

[3] Davies, P. (2002), There’s No Confidence in
Multiple-Choice Testing…, Computer-
Assisted Assessment Conference 2002 (CAA-
2002), Loughborough, England.

[4] Gardner-Medwin, A.R. (1995) Confidence
assessment in the teaching of basic science,
ALT-J, vol. 3 no 1.

[5] Horvitz, E. (1999). Principles of Mixed-
Initiative User Interfaces. Proceedings of CHI
'99, ACM SIGCHI Conference on Human
Factors in Computing Systems, Pittsburgh,
PA, May 1999.

[6] Johnson W. L. (2000), Pedagogical Agents.
MIT Press.

[7] Lamboudis D., Economides A., Managing
Time Thresholds in Mixed Initiative
Environments. E-Learn 2002, World
Conference on E-learning in Corporate
Government, Healthcare and Higher
Education, Montreal Oct. 15-19 2002.

[8] Lester, J. C., Converse, S. A. Kahler, S. E.
Barlow, S. T., Stone, B. A. and Bhogal, R.
(1997a). The Persona Effect: Affective Impact
of Animated Pedagogical Agents.
Proceedings of CHI ’97 (Human Factors in
Computing Systems, pp. 359-366.

[9] Parsal Cynthia. [et al.]. Practical
Considerations in Computer Based Testing.
Springer-Verlag 2002 ISBN 0-387-98731-2.

[10] Sampson D., Karagiannidis, C., Kinshuk,
(2002). Personalised Learning: Educational,
Technological and Standardisation
Perspective. Interactive Educational
Multimedia, number 4 (April 2002), pp. 24-39.

[11] Shute V. and Psotka J., Intelligent Tutoring
Systems: Past, Present and Future. In Jonassen
D. (ed.), Handbook of Research on
Educational Communications and Technology.
Scholastic Publications.

[12] Wainer Howard [et al.]. Computerized
Adaptive Testing. Lawrence Erlbaum
Associates 2000. ISBN 0-8058-3511-3.

[13] Vomlel J., Bayesian Networks in Educational
Testing, In Proceedings of First European
Workshop on Probabilistic Graphical Models
(PGM'02), November 6-8, 2002, Cuenca,
Spain, pp. 176-185.

[14] Zuckerman I., and Albreciit D. W. (2001).
Predictive Statistical Models for User
Modelling. User Modelling and User Adapted
Interaction.

	Key Words: - Computer Based Testing, Computer Adaptive Testing, Intelligent Learning Environments, Pedagogical Agents.
	Pose Qi to the Student
	Given an Answer from the Student
	References

