
Program Structure Formalizing Technology for Static Analysis

Kishimoto Yorinori† Itou Takako‡ Satou Tadamasa‡

†Electrical and Computer Engineering ‡Faculty of Science and Engineering
Nagoya Institute of Technology Shimane University

Gokisochyou Nagoya 1060 Nishikawatsu Matsue-shi Shimane
Japan Japan

Abstract: - In software testing, maintenance and design skill education static analysis approaches are effective
and fundamental to improving software quality and productivity. We can assess program qualities of
correctness and traceability through analyzing program codes. This paper proposes a method for formalizing
program structure by representing it in the form of regular expressions, where these are derived from a
program by representing its scheme non-deterministically. The major feature of the method is to provide
conversion formulae for representing the structures with compulsive controls, when it is well known that
well-structured controls can be easily represented as regular expressions. It also discusses a way of applying
the abilities to detect problems by using two program examples that have appeared in published books.

Key-Words: - Regular Expression, Program Structure, Static Analysis, Traceability

1 Introduction
In software development and education static analy-
sis technology is an effective method of showing the
correctness of logic and the traceability of the speci-
fications in programs by analyzing program code.

As an approach to this problem we focus on the idea
that a program is concerned not with code meanings
(semantics) but with code sequences. We propose an
idea of program structure, that is non-deterministic
and basically represents the scheme of the program
by neglecting every proposition in the selections and
the iterations, and by removing all constructs which
compose the mechanisms which become deterministic
by all the propositions.

The program structure means the maximum frame-
work of the program which is specified by the mecha-
nisms. Different programs could be derived by apply-
ing different mechanisms to one program structure.
Since the description level is higher in the abstract
form than in code, it becomes close to the specifica-
tions, and is effective for analyzing the traceability of
programs to their specifications and checking logics
for them. In the analysis, the original structure needs
to be transformed in order to compare and check the
similarities or differences among the original and the
transformed one, and to show the transforming pro-
cess and the results.

Since a structure represented in regular expressions
can be definitely described in an algebraic fashion, it
is effective to illustrate the relationships among the
structures in equations.

A similar idea with program structure and
formalization was proposed by M.A.Jackson and
J.W.Hughes. M.A.Jackson proposed a program de-
sign method by which programs can basically be
formed through input and output data structures[2].
J.W.Hughes formalized Jackson’s method by includ-
ing definitions of both input and output data struc-
tures as labeled trees and showed the correspondence
between them on a generalized sequential machine.

However, Jackson’s method and its formalization is
concerned with showing the traceability of the speci-
fication from the input to the output data structures,
not to the program. In static program analysis for
checking specification traceability, an approach would
be required for formalizing not only the data struc-
tures but also the program structures.

This paper proposes a method for formalizing the
program structure in a program using regular expres-
sions. The method includes a structure with compul-
sive controls such as RETURNs and BREAKs, along
with ones without them (well-structured). It also
presents examples of practical applications that in-
clude analyzing traceability to improve them accord-
ing to the results, and in discussing problems includ-
ing errors in a program.

2 Formalization of Program Structure
2.1 Basic Idea
A program structure is derived from a program by
neglecting any kind of proposition in it[3]. If a pro-
gram is well-structured, regular expressions can be

1

applied to represent the program construct sequence
with three kinds of constructs, in which the concate-
nations are represented by ·(AND), the selections by
+(OR), and the iterations by Kleene closures (∗,+).

Some program constructs could have relations to
others in a program context. In this case, a program
does not always keep the context in it in handling
equations regularly. To resolve the problem of con-
text linkages, the concept of ’ the program struc-
ture and the program mechanism’ have been
introduced[3]. The structure is non-deterministic in
expressing the frame of a program, while the mecha-
nism puts a constraint on the production of a specific
program from a structure. In other words, a program
consists of two parts; the structure and the mecha-
nism. Formalization of the regular expressions can
be applied to the program structure alone, due to its
being non-deterministic. A program structure can be
identified from a program by removing the mecha-
nisms and constructing program constructs.

2.2 Conversion Formulae for Compulsive
Constructs

Compulsive controls of the RETURN constructs in a
function and the BREAK constructs in an iteration
construct can be used for specific controls even in a
well-structured program. It is useful to describe di-
rectly such structures as with compulsive constructs.
We show the formulae for converting regular expres-
sions with RETURNs and/or BREAKs to regular
ones (without them).

1) RETURNs:

Let the symbol # represent a RETURN construct
in a program structure. Other program constructs
are represented by alphabetic characters. A program
structure can be represented by a set of words (the
sequence of variables including the # symbol).

The set R is introduced, whose element is a word
including #.

Σ0 = {alphabetic character} ,Σ1 = Σ0 ∪ {#}
R ≡ {x ∈ Σ∗

1|W ∗⇒ x}

,where W is a symbol given in the following produc-
tion rule.

W → f |f#W, f ∈ Σ∗
0

Now, p ∈ R can be seen as a list as follows;

p = ((f)|(f,#, f, · · · ,#, f)) = ((fE)|(fR,#, f0))

,where fE ≡ (f),fR ≡ (f),f0 ≡ (f,#, f, · · · ,#, f))

The meaning of RETURNs in a function can be
interpreted to neglect the sublist that starts with the
first # symbol in a list. The car() function for a list
can be applied to represent the RETURN context.

car(p) = fE |fR

This can be expressed in a regular expression and sim-
plified in form. In the program context, the function
car() can be omitted. The RETURN construct con-
version formula is as follows;

p = fE + fR (1)

2) Pre-tested iteration with BREAK:

It is well known that iterations with BREAK con-
structs can be converted into ones without them. The
BREAK construct conversion formula for a pre-tested
iteration can be developed using an idea similar to the
RETURN case, as BREAKs terminates an iteration.
Let the symbol � represent a BREAK construct. The
formula derived is as follows;

f = (fE + fB�f0)∗ = (fE)∗ + (fE)∗fB (2)

where, fE ⊆ Σ∗
0, fB ⊆ Σ∗

0, f0 ⊆ Σ∗
2,Σ2 = Σ0 ∪ {�}

3) Post-tested iteration with BREAK:

f = (fE + fB�f0)+ = (fE)+ + (fE)∗fB (3)

4) Continuous iteration with BREAK:

A continuous iteration can be converted into a regular
one, if they have some BREAK constructs. Let the
symbol ∞ represent a continuous iteration instead of
∗ or +. The conversion formula is as follows;

f = (fE + fB�f0)∞ = (fE)∗fB (4)

2.3 Compulsive Control Conversion Exam-
ple

It is possible for both RETURN(#) and BREAK(�)
to exist in a regular expression. In this case, all # in
an iteration must be replaced with the symbol con-
catenation of #� at any nested level.

Figure1 shows the program with a RETURN con-
struct and a BREAK construct in an HCP1 chart.
This program source code appeared in a book on
JavaScript2 . Program structure of this sample can
be lead to the following regular expression.

S = (a(b# + ε)c(ε� + ε))∗

1ISO8631
2Danny Goodman, ”Danny Goodman’s JavaScript Hand-

book” John Wiley & Sons, 1996

2

Figure 1: Example program with
RETURN and BREAK in HCP

Figure 2: A rewrit-
ten regular struc-
ture in HCP

S can be developed by interpreting # as #� in an
iteration.

S = (a(b# + ε)c(ε� + ε))∗

= (a(b#� + ε)c(ε� + ε))∗

Conversion formula(2) has been developed to lead to
the following equation.

S = (a(b#� + ε)c(ε� + ε))∗

= (ac)∗(ε + ab + ac)
= (ac)∗(ε + ab) (5)

Figure2 could be rewritten from the structure of equa-
tion (5) by applying appropriate mechanisms.

3 Traceability Analysis Example
In testing, maintenance and design skill education it
is important to know how programs have been im-
plemented to reflect their specifications (traceability).
The program structure formalizing method permits to
analyze traceability, as it provides a program scheme
in regular expressions that enables exact and easy
handling. It can also be applied to programs in an
object-oriented language. In this case, the formaliza-
tion should be applicable to class methods.

We introduce a class method as an example of ana-
lyzing traceability. This is a play game class method
for the breakout game which program in C++ ap-
pearing in a book3.

1) Program structure formalizing

The following equation is the structure from which the
code in Figure3 derived by excluding mechanisms.

SP = ab∗(cd(ef((ε + g) + ε)(h� + ε))∞)∗ (6)
3Richard C. Lee, William M. Tepfenhart, ”UML and C++ A

Practical Guide to Object-oriented Development,” PRENTICE
HALL, PP.419, 1997

Figure 3: game play() method

where, the variables a,b,c,d,e,f ,g,h are specified in
Figure3.

Equation (6) applied to conversion formula (4)
leads to the following.

SP = ab∗(cd(e(fg + f))+h)∗ (7)

2) Specification formalizing

The specifications for the class method shown in Fig-
ure4 give the following regular expression.

The system for the example specifies the two ob-
jects of a ball and a brick wall.

The operations for them specify the system status.
The specifications for the system then can be con-
sidered as a sequential machine with the alphabet of
the operations. The machine is shown in Figure4 in
a state transition diagram. The diagram leads to the
following regular expression.

Bc((B0 + (B10 + B20)(Re + ReRc))((B0)∗

+((B10 + B20)(Re + ReRc))∗)BeBc)∗(B0 + (B10

+B20)(Re + ReRc))((B0)∗ + ((B10 + B20)(Re

+ReRc))∗)BeBn (8)

,where the variables Bc,Be,B10,B20,B0,Rc,Re and Bn

are specified in the Figure4 (2).
Equation (7) can be developed as follows;

SP = ab∗(cd(e(fg + f))+h)∗

= ab∗c(d(e(f(g + ε)))d(e(f(g + ε)))∗hc)∗d
(e(f(g + ε)))d(e(f(g + ε)))∗h (9)

3

Figure 4: Specifications of breakout game

This shows the traceability analysis between equation
(8) and equation (9). By observing e(f(g + ε)) in
equation (9) it can be discovered that the f construct
corresponds to B10, B20, and B0 and it can be iden-
tified that the move() method in the f construct is
implemented in polymorphism.

Correspondences of equation (8) to equation (9) are
listed in Table 1 which identifies how the program
structure is reflected in its specifications in the equa-
tions.

Table
1. Correspondences the structure to the specifications

Specifications(8) Program structure(9)
Bc c

(B0)∗, ((B10 + B20)Re)∗ f
Rc g
Be h

4 Traceability Improvement Example
We can analyze traceability not only as shown in chap-
ter 3, but also identify some difficulties, including er-
rors, and improve traceability as well. To show these
we introduce an example of a procedure that converts
and arranges the command line from a full line ap-
pearing in the book4.

Figure6 shows an HCP chart which has been rewrit-
ten from the pseudo code given in Figure5. Although

4Ali Behforooz, Frederick J. Hudson, ”Software Engineering
Fundamentals,” Oxford University Press, Cp.11, PP.345, 1996.

the input command line syntax is not clearly specified
even in the header comment part of Figure5, an inter-
pretation of the code in constructing the Is command
flag-mechanism leads to the input syntax. It can be
clarified by adding the following specifications inter-
preted from the code and the comments in Figure7.

Figure 5: Pseudo code of the Read Command Line()

Let a command line be specified as a character string
on the alphabet {B,C} with the following syntax,
where B is a blank character and C is any charac-
ter except a blank.

L ≡ B∗C+(B+C∗)∗ (10)

The structure of the procedure in Figure5 can be
shown in the following equation derived by excluding
mechanisms.

P ≡ g∗(g(h + ε)(ik + ε)(m + ε))∗(k + ε)n (11)

where the variables g,h,i,k,m,n are specified in Fig-
ure5.

1)Command head character problem

There are two problems. Firstly there is the possi-
bility of not reading any first character in an input

4

Figure 6: Read Command Line() in HCP

1) An input has more than one character exclud-
ing an empty file and the lines have no char-
acter.

2) When the condition ’not more characters on
the line’ is true, a flag (such as an empty input
flag) is set to ’on’.

3) The command-word length is in the range of 1
to 8.

Figure 7: Specifications for the
Read Command Line()

except a blank, if the pseudo code ’while leading char-
acter is blank’ is conditioned in the ’Ch == ” ”’. The
term g∗ in equation (11) could not be implemented
because g is concerned with the context of the itera-
tion. The proposition of the iteration depends on the
processing of g. The implementation logic of this pro-
gram is g+ because checking the proposition occurs
after the g construct (read a character).

We must assume ’Set Ch to blank’ is an initialized
value of Ch, or change the iteration type to a post-
tested one. In any case g∗ in equation (11) should be
changed to g+.

To clarify the discussion a variable α ≡ (h+ε)(ik+
ε)(m + ε) is introduced.

P ′ ≡ g+(gα)∗(k + ε)n (12)

Secondly it is possible to discover the lack of a com-
mand head character by observing g in equation (12).
The term g+(g(α))∗ means that there is the possibil-
ity of overwriting a head character with a second. The
structure should be modified, such as the following, to
correct the error.

P ′′ = g+(αg)∗α(k + ε)n

2)Placement of ’ $ ’ problem

We now observe the ’$’ placement processing. The
placement is determined by the program constructs
concerned with the variable I in the P ′′ structure. It
can identify the constructs m,k, and n. These con-
structs are included in the following structure by ne-
glecting program constructs unrelated to them.

(km)∗(ε + k)n = ((km)∗ + (km)∗k)n

k in (km)∗ is redundant, as the m∗ provides the incre-
ment to I. (km)∗ in (km)∗k is similarly redundant.
k in (ik + ε) can be omitted to give (i + ε).

3)Traceability analysis

To discover what specifications lead to the program
structure, how the input specifications are reflected
on it (traceability) are analyzed.

The following equations can be introduced after
correcting the two problems ((1) and (2) above).

P ′′′ = g+(α′(ε� + ε)g)∞(k + ε)n

,where α′ ≡ (h + ε)(i + ε)(m + ε)
Applying the conversion formula (4) to P ′′′ leads to

the following.

P ′′′ = g∗(gα′)+(k + ε)n

Namely,

= g∗(g(h + ε)(i + ε)(m + ε))+(k + ε)n

Replacement of the following variables is introduced
to simplify the discussion.

v = h + ε, b = ε + i + m, c = im, f = (k + ε)n

P ′′′ = g∗(gvb + gvc)(gvb + gvc)∗f (13)

Equation (10) can be converted as follows;

L ≡ B∗C+(B+C∗)∗

= B∗C(C∗)∗(B+(C∗)∗)∗

= B∗C(C∗ + B+)∗

= B∗C(C + B)∗ (14)

Table 2 shows the correspondences by comparing
equation (14) and equation (13). It is concluded that
the construction basis of the program structure de-
pends on the input string specifications extended from
the original C∗(B+C∗)∗ to (C + B)∗.

5

Table 2.Correspondences of the structure to the specifications
Specifications(14) Program structure(13) Description

B∗ g∗

C gvb + gvc for first character of the command
C gvc for other characters of the command

and other characters except blank
B gvb

4)Traceability improvement

Next, we try to arrange the program structure to im-
prove traceability, and to check whether it is possible
to implement a program from an arranged structure,
since it is important to keep traceability for main-
tainance.

It is more natural to compose a structure to follow
the word, not character sequence in the specifications.
Program sub-structures can be considered to be com-
posed of a command word, other words (such as pa-
rameters or switches), and blank strings. The word
sequence is specified as follows;

SBSC(SBSP)∗

SC : command word processing
SP : word except command processing
SB : blank processing

A structure P ′′′′ following the word sequence is intro-
duced as follows;

P ′′′′ = SB1SC(SB2SP)∗P$

This requires two types of blank string B1 and B2. B1

is the leading input line, B2 exists between SC and SP

or among SP s. P$ is a construct for ’$’ placement.
The above words can be processed with program

constructs in P ′′′ as follows;

SB1 = (b1g)+ , b1 is the process for leading

blank characters(= ε)
SC = ((h + ε)mg)+i

SP = ((h + ε)mg)∗

SB2 = (b1g)∗

P$ = (k + ε)n

Eventually,

P ′′′′ = (b1g)+((h + ε)mg)+i((b1g)∗((h
+ε)mg)∗)∗(k + ε)n (15)

If a program can be implemented to P ′′′′, this means
there would be an improvement in traceability. It is
not difficult to write a program with the above struc-
ture. The traceability of this one has been improved
by comparing with the original.

5 Concluding Remarks
A method that permits the formalization of pro-
gram structures in regular expressions which repre-
sent the non-deterministic scheme of a program as
well-structured, along with compulsive controls such
as RETURN constructs in a function and BREAK
constructs in any type of iteration, has been proposed.

Also presented is an application of the method to
sample programs appearing in books which has made
it clear that it has effective application in practical
fields. These are to analyze program traceability; that
is to explain how the program structures in a program
reflect the specifications, to improve traceability mod-
ifying structures to follow the specifications, and to
discover and discuss difficulties in a program, includ-
ing errors.

References:
[1] M.A.Jackson, ”Principles of Program Design”,

Academic Press, 1975

[2] J.W.Hughes, ”A Formalization and Explication
of the Michael Jackson Method of Program
Design”, SOFTWARE-PRACTICE AND EX-
PRENCE Vol.9 PP.192-201,1979

[3] Satou Tadamasa, ”A Formalization by S-Algebra
for Program Algorithm Described in HCP-
Charting,”,IPSJ Vol.27 No.6 ,1986 (in Japanese)

[4] Satou Tadamasa, ”Universal Form for Pro-
gram Iteration Structure”, ICCIT2000 Proceed-
ings PP.240-243 ,2001

[5] Satou Tadamasa, Kishimoto Yorinori, ”An Anal-
ysis Method of Program Traceability to the Spec-
ification through Program Construct Formaliza-
tion”，WSEAS2002 PP.19-24, 2002

6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

