
Model Checking CSMA/CD Protocol Using an Actor-Based
Language

Marjan Sirjani1,2, Hassan Seyyed Razi2, Ali Movaghar1

Mohammad Mahdi Jaghoori1, Sara Forghanizadeh2, Mona Mojdeh2
1Department of Computer Engineering, Sharif University of Technology

Azadi Ave., Tehran, Iran
2Department of Electrical and Computer Engineering, Tehran University

Karegar Ave., Tehran, Iran

Abstract: Formal verification techniques are used to obtain correct and reliable systems. In this paper we use the
actor-based language, Rebeca, for modeling the CSMA/CD Protocol. In Rebeca, each component in the system
is modeled as a reactive object. Reactive objects are encapsulated, with no shared variables, communicating via
asynchronous message passing. Rebeca Verifier is a front-end tool, used for translating Rebeca code to the lan-
guages of existing model checkers. Different versions of CSMA/CD protocol are model checked and the results are
summarized.

Key-Words: Protocol verification, Actor model, Reactive systems, Model checking, Rebeca, CSMA/CD

1 Introduction

With the growing usage of software systems in
safety-critical applications, the demand for develop-
ing highly reliable systems has increased. Using for-
mal methods in general, and applying formal verifica-
tion approaches specifically, is a way to obtain reliable
systems. Here, we use the actor-based language, Re-
beca, for modeling an Ethernet Protocol and model
check it using the Rebeca Verifier tool.

Rebeca(Reactive Objects Language) is an
actor-based language for modeling reactive systems.
In Rebeca, systems are modeled as independent reac-
tive objects. These reactive objects have encapsulated
states with no shared variables and communicate by
asynchronous message passing. Rebeca is supported
by Rebeca Verifier [9], as a tool that automatically
translates Rebeca codes into SMV [1] or Promela [2].
Translated codes can be model checked by NuSMV.
or Spin, respectively.

.

CSMA/CD (Carrier Sense, Multiple Access with
Collision Detection) is a protocol for communica-
tion on a broadcast network with a multiple access
medium. For modeling CSMA/CD protocol in Re-
beca, we use the Timed Automata model of the proto-
col which is based on the description in [7]. The con-
currency in the CSMA/CD protocol results from the
common usage of a broadband transmission medium
by several independently acting stations.

Related work In [6], a model of the CSMA/CD
protocol is used as an example to describe the im-
plementation and application of a tool that handles
formal specifications written in the process calculus.
In [5], a compositional verification approach is pro-
posed and the CSMA/CD protocol is used as a bench-
mark to show the efficiency of this approach using
their tool RT-IOTA. The protocol is modeled in Timed
Automata. Another work based on Timed Automata
is presented in [4]. In that paper a tool is presented
which provides reachability analysis and refinement
checking using BDD. The results are evaluated using
the CSMA/CD protocol as the main case study.

Synchronous message passing is used in model-
ing CSMA/CD in CCS and Timed Automata. Also,

in Timed Automata one is able to model the real time.
In Rebeca, we modeled the protocol based on asyn-
chronous message passing, without explicit receive
statements. Passing of time can be modeled by mes-
sages waiting in the queues. Starting from a model
with eight million reachable states in the state space,
we applied some abstractions, simplifications, and op-
timizations to get less than two thousands reachable
states.

Plan of the paper In the following section we ex-
plain Rebeca, as a tool-supported modeling langauge,
that can be used for modeling and verification of reac-
tive systems. In Section 3, modeling CSMA/CD pro-
tocol in Rebeca is explained. Section 4 shows the dif-
ferent models of the protocol, and the model checking
results. In Section 5, we explain the conclusion and
future works.

2 Rebeca

Rebeca [8] is an actor-based language [3], with in-
dependent reactive objects, communicating by asyn-
chronous message passing, and using unlimited
buffers for messages. Our objects are reactive and
self-contained. We call each of them arebec, for
reactive object. Computation takes place by message
passing and execution of the corresponding methods
of messages. Each message specifies a unique method
to be invoked when the message is serviced. Each re-
bec has an unbounded buffer, called a queue, for ar-
riving messages.

Each rebec is instantiated from aclassand has a
single thread of execution. We define amodel, repre-
senting a set of rebecs, as a closed system. It is com-
posed of rebecs, which are concurrently executed, and
are interacting with each other. When a message is
read from the queue, its method is invoked and the
message is removed from the queue.

2.1 Rebeca Verifier

Rebeca Verifier is an environment to create Rebeca
models, edit them, and translate them to SMV or
Promela [9]. Also, modeler can enter the properties
to be verified. The output code can be model checked
by NuSMV or Spin.

NuSMV is a symbolic model checker which ver-
ifies the correctness of properties for a finite state
system. The system should be modeled in the input

language of NuSMV, called SMV, and the properties
should be specified in CTL or LTL. Spin is a model
checker that supports the design and verification of
asynchronous process systems.

3 CSMA/CD Protocol Specification in Re-
beca

M

MAC1
 MAC2

send rec
 send rec

Figure 1. The MAC sublayer of CSMA/CD protocol

In this section, we briefly describe the Me-
dia Access Control (MAC) sub layer of the Car-
rier Sense, Multiple Access with Collision Detec-
tion (IEEE 802.3 CSMA/CD) communication proto-
col. This protocol is used in multiple access shared
media environments such as Ethernet LANs, which
use a shared bus for connecting a number of indepen-
dent computers. The protocol specification consists
of MAC entities interconnected by a bi-directional
Medium. Each MAC is representative of a computer
in the data link layer. The MAC entities are identical
for all computers and can both transmit and receive
messages over the shared Medium. This means that
collisions may occur on the Medium (if two MAC’s
transmit simultaneously). It is assumed that collisions
will be detected in the Medium and signaled to every
MAC. Each MAC after transmitting a packet over the
Medium, waits to make sure that no collision has oc-
curred; but if collision occurs, it tries to retransmit its
last packet, until it gets the chance to send the packet
successfully without any collision.

As shown in Figure 1, a MAC may receive
sendmessages from its higher level, indicating a new
packet to be sent over the Medium. The MAC cannot

process the next packet before it has transmitted the
previous packet successfully over the Medium. In the
simplified model of the protocol shown in Figure 1,
the target of a packet is clearly the other MAC present
in the composition. Each MAC, similarly, signals a
recmessage to its higher level upon successful receipt
of a packet from the Medium.

Modeling in Rebeca For modeling this protocol in
Rebeca, we defined two active classes: one for the
MAC class and another for the Medium class, as
shown in Figures 4 and 5. We do not include the
higher level components in our model. The role of
the components in the higher level is abstracted in our
model using a nondeterministic choice in the MAC
for deciding when a new packet is available for send-
ing. The other role of this layer, which is receiving the
packets, does not change any thing in the model and
can easily be ignored.

The composition of our model consists of two
instances of the MAC class and one instance of the
Medium class. These MACs communicate with the
Medium via asynchronous message passing. In or-
der to send a packet, each MAC goes through the
following scenario, as shown in Figure 2. After it
has decided to send a packet in the ’start’ state, the
MAC sends ab message to the Medium and enters
the ’transfer’ state. In the ’transfer’ state, it sends
an e message to the Medium, indicating the end of
the packet. Then if no collision has occurred, packet
transmission is finished and the MAC can get back to
the ’start’ state; otherwise, it should retransmit the last
packet by sending a newb to the Medium and going
back to the ’transfer’ state. We name the above cycle,
theSend cycleof the rebec MAC. Figure 3 shows the
Send cycleof the Medium.

Collision is detected by the Medium if both
MACs try to send packets at the same time. How-
ever, since we are using asynchronous message pass-
ing, collision in our model is defined as the Medium
receiving twob messages from both MACs before it
has received their correspondinge messages. This
way of modeling collision (the coincidence of the time
that two MACs try to send packets) shows how we
can model the concept of time using asynchronous
message passing. That is why we do need two dis-
tinct messages showing the beginning and the end of a
packet, to be able to identify an interval during which
collision may occur.

The important point here is that although the

Start

Transfer

Wait for Ack

receivedSend = true /

M.b()

- / M.e()
 acknowledged= true,

 col= true

 / M.b()

acknowledged = False

receivedSend= false

acknowledged= true, col=

false

Figure 2. State Chart of a MAC showing theSend cycle

MACs work independently from the Medium, they
need to wait for the Medium’s response after send-
ing b ande to make sure whether collision has hap-
pened. This is achieved by repeatedly sending the
wait4ackmessage toself until the acknowledgment
from the Medium is received. The Medium on the
other hand, needs to wait for the MAC’s bothb and
e messages to make sure whether collision has hap-
pened or not. Therefore, the Medium only after re-
ceiving e from a MAC can determine if its transmis-
sion has been collision-free, and give corresponding
acknowledgment.

In order to simplify the model, the receipt of
a packet is represented by only one message from
the Medium to the receiving MAC, after which the
Medium is assumed to be empty and ready for the next
packet transmission. This has no effect on the gener-
ality of the model; because we can assume that the
MAC starts receiving sometime in between receiving
b ande messages from the other MAC, and ends re-
ceiving upon receipt ofrec message, which is sent by
Medium immediately after processing thee message
from the sending MAC. It should be noted that after
receiving messageackRecfrom both of the MACs,
anyb from either of them no longer collides with this
finished transmission.

When the Medium is processing ane message,
if no collision has happened, acollisionfalsemessage
can be sent to the sender of thee message. On the
other hand, which is the case of a collision, thecolli-
siontruemessage needs to be broadcast to both MACs.
In such a case, the Medium surely will receive twoe
messages, because it already has received twobs. If
we do the broadcast just at the firste, we may lose

Collision

Collision

e1

Wait for

ack

b1

Wait for

ack

e2

b2

Idle

r1= true/mac2.collisionfalse

e (Mac2)

b (Mac2)

b (Mac1)
r2= true/mac1.collisionfalse

-/ ask Macs to retransmit

-/ ask Macs to retranstmit

b (Mac2)

e (Mac1)

r2= false

r1= false

b (Mac1)

-/mac1.rec()

-/mac2.rec()

Figure 3. State Chart of a Medium showing theSend cycle

track thebs and the nexte (which should be ignored)
may conflict with the next transmission from the MAC
that had sent the firste.

4 Verification Results

The CSMA/CD protocol (shown in Figures 4 and 5)
is verified using Rebeca Verifier. We used Rebeca
Verifier to generate codes in both SMV and Promela.
The results of verification of the last version of our
model by NuSMV is 1438 reachable states out of
2.2378e+21 total states. In Spin, the max depth is
6603, and the number of stored states is 9184.

In the preliminary versions of our Rebeca model,
the number of reachable states in equivalent SMV
model exceeds 8 million. Version 6 in Table 1 repre-
sents one of these versions. The number of reachable
states, the CPU time for computing these states, and
also the memory used in this computation are shown.
Table 1 shows the results of executing NuSMV on a
Pentium IV 2.00 GHz (full cache) system with 1.0 GB
RAM.

Existence of redundant message servers in the
MACs, although correct, results in an excessive in-
crease in the number of states. This is caused by the

activeclass Mac(3) {
knownobjects {

Medium medium; }
statevars {

boolean receivedSend;
boolean col;
boolean acknowledged; }

msgsrv initial() {
acknowledged = false;
receivedSend = ?{true, false};
col=false;
self.start();

}
msgsrv rec(){

medium.ackRec();
}
msgsrv start (){

if (receivedSend){
receivedSend=false;
medium.b();
self.transfer();

}
else {

receivedSend = ?{true, false};
self.start();

}
}
msgsrv transfer(){

acknowledged = false;
medium.e();
self.wait4ack();

}
msgsrv wait4ack (){

if (acknowledged) {
acknowledged = false;
if (col){

medium.b(); /* retransmit */
self.transfer();

}
else{

receivedSend = ?{true, false};
self.start();

}
}
else {

self.wait4ack();
}

}
msgsrv collisiontrue(){

col = true;
acknowledged = true;

}
msgsrv collisionfalse(){

col = false;
acknowledged = true;

}
}

Figure 4. Rebeca code for Class MAC

activeclass Medium(5) {
knownobjects {

Mac mac1; Mac mac2; }
statevars {

boolean bb1; boolean bb2;
boolean r1; boolean r2;
boolean col; }

msgsrv initial() {
bb1=false; bb2=false;
col = true; }

msgsrv b() {
if (sender == mac1){

bb1 = true; }
else{

bb2 = true;
} }

msgsrv e() {
if (sender == mac1) {

if (!bb2 && bb1){
mac2.rec();
self.ackReceive1();
bb1 = false;
col = false; } }

else {
if (bb1){

mac1.collisiontrue();
mac2.collisiontrue();
bb1 = false;
col = true; }

else{
mac1.rec();
self.ackReceive2();
col = false;

}
bb2=false;

} }
msgsrv ackReceive1(){

if (!r2){
self.ackReceive1(); }

else{
mac1.collisionfalse();
r2 = false;

} }
msgsrv ackReceive2(){

if (!r1){
self.ackReceive2(); }

else{
mac2.collisionfalse();
r1 = false;

} }
msgsrv ackRec(){

if (sender == mac1){
r1 = true; }

else{
r2 = true;

} }
}

Figure 5. Rebeca code for active class Medium

fact that a rebec needs to send a message to itself in
order to make a transition from one state to another.
Therefore, arrival of a message between each two state
transitions can cause a virtual new state. It increases
the state space proportional to the number of steps in
the life cycle of the rebec. Removing redundant mes-
sage servers results in version 8 in Table 1.

As long as the sender MAC gets more turns
than the receiver MAC, the number of messages in
the queue increases. In order to handle this problem,
some kind of logical fairness is introduced in versions
9.5 and9.6. To ensure that MACs receive incoming
packets, acknowledgements are sent, declaring that a
MAC has received the last packet; i.e., it finds the
chance for execution in the situation explained above.

The safety property, which is verified and proved
to be true in the model, is that no collision occurs
when one of the MACs receives a packet. For that,
we defined acol variable in the Medium indicating
the collision. The LTL (Linear Temporal Logic) spec-
ification of this property is as follows:

G((medium.r1 ∨medium.r2) →!(medium.col))

Version 9.6 is developed in order to check the property
that there is a possible computation where although
collision happens, the packet is finally received. For
this purpose, we simplified the model in the way that
only one packet is sent. If collision occurs, the MAC
retransmits the packet. The LTL specification of this
property is as follows:

(mac1.col ∧mac1.acknowledged)
→ F (medium.r2)

and its symmetric counterpart:

(mac2.col ∧mac2.acknowledged)
→ F (medium.r1)

In global, the other MAC may never receive the
packet, as collision may happen forever. So, the fol-
lowing specifications are false:

G((mac1.col ∧mac1.acknowledged)
→ F (medium.r2))

G((mac2.col ∧mac2.acknowledged)
→ F (medium.r1))

Version States Compute time Memory (KB)
6 8× 106 00 : 23 : 10 972, 413
8 2× 106 00 : 05 : 23 118, 016

9.5 1438 00 : 00 : 00 14, 292
9.6 951 00 : 00 : 00 13, 384

Table 1. Versions compared using NuSMV

5 Conclusion and Future Work

We used Rebeca to model IEEE 802.3 CSMA/CD
protocol. The protocol has been modeled in differ-
ent levels of abstraction by Rebeca and then model
checked by NuSMV and Spin. In doing so, we
showed how to model the concept of time using
asynchronous message passing. We also encountered
queue-overflow problem. It happens when a MAC is
allowed to send more packets than the other one can
take. This is due to less execution turns given to the
receiving MAC. However, we were able to solve this
problem by synchronizing the MACs, preventing the
sender from sending a new packet before the receiver
takes the previous one; and thus avoiding queue over-
flow.

Rebeca Verifier will be extended to support di-
rect model checking. In that version, the state space
can be abstracted from the queue, reducing the total
state space drastically.

References

[1] NuSMV user manual. availabe through
http://nusmv.irst.itc.it/NuSMV/ userman/index-
v2.html.

[2] Spin user manual. avail-
able through http://netlib.bell-
labs.com/netlib/spin/whatisspin.html.

[3] G. Agha, I. Mason, S. Smith, and C. Talcott.
A foundation for actor computation.Journal of
Functional Programming, Vol.7, 1997, pp. 1-72.

[4] Beyer D., Lewerentz C., and Noack A. Rab-
bit: A tool for BDD-based verification of real-
time systems. In Hunt W.A., Jr. Somenzi, and
F. Somenzi, editors,Proceedings of CAV 2003,
volume 2725 ofLecture Notes in Computer Sci-
ence, Springer-Verlag, Berlin, Germany, 2003,
pp. 122-125.

[5] J. Jeffrey, P. Tsai, Y. Eric, T. Juan, and A. Sahay.
Model and algorithm for efficient verification of
high-assurance properties of real-time systems.
IEEE Transactions on Knowledge and Data En-
gineering, Vol.15, No.2, 2003, pp. 405-422.

[6] R. Lichtenecker, K. Gotthardt, and J. Zalewski.
Automated verification of communication pro-
tocols using CCS and BDDs. InProceedings of
IPPS/SPDP Workshops, 1998, pp. 1057-1066.

[7] J. Parrow. Verifying a CSMA/CD-protocol with
CCS. InProceedings of the IFIP Symposium on
Protocol Specification, Testing and Verification,
Atlantic City, New Jersey, North-Holland, 1988,
pp. 373-387.

[8] M. Sirjani and A. Movaghar. An actor-based
model for formal modelling of reactive sys-
tems: Rebeca. Technical Report CS-TR-80-01,
Tehran, Iran, 2001.

[9] M. Sirjani, A. Shali, M.M. Jaghoori, H. Ira-
vanchi, and A. Movaghar. A front-end tool for
automated abstraction and modular verification
of actor-based models. InProceedings of ACSD
2004, to appear.

