
The Design and Implementation of the Java Based Remote File

Management System
CHENG ZENG, WEI DU, AIMIN WANG, TIANYUAN XIAO

Department of Automation
Tsinghua University

RM 219, BLDG 24, Tsinghua University, Beijing, 100084, China
CHINA

Abstract:-This paper designs a set of Java Sockets based on application programming interface (API) to
realize the remote file management system (RFMS) running on different operating systems, and realizes a
Client/Server structure based on RFMS with graphic interface. This set of API is similar to the local file
operation classes of the Sun JDK, with which the programmers can realize a RFMS satisfying their
requirements conveniently and rapidly.

Key words: -Java; Socket; JDK; File Management System

1 Introduction
With the advance of network technologies,

remote education, management and technologies
support become popular. Remote file management
system (RFMS) contributes most to this trend.

The current RFMS includes two kinds as
following

P

[
P

1]:
1) RFMS based on FTP protocol;
2) RFMS inherited from the operating system

(OS), used only in the homogeneous OS.
These two RFMS have the same shortcoming

that they can only be used in the homogeneous OS,
and will cause problems when transferring in
different platforms.

Java is an excellent cross-platform program
language. The file class of Java will not be
restricted to specific platforms. With this attribute,
we design an application-programming interface
(API), which is similar to the Java local file class.
Using this API, we implement a graphical RFMS
based on client/sever structure, which can be
installed in different operating systems and will
facilitate the implementation of user-specific
RFMS.

2 The principle of design
2.1 The structure of system

The system is based on traditional Client/Sever
two layers structure. The main design principle
includes:

1) Both the client and sever are written in pure
Java to ensure the cross-platform attribute;

2) The client and sever communicate each
other using Sockets.

The program running in the sever listens the
request from the client, i.e. the administrator of the
RFMS. The communication process can be show in
Fig. 1.

Remote File System Client

Listening

Requesting

Responsing

Fig.1:The process of communication

2.2 Java Socket
The communication through stream socket is

based on connection, i.e. before starting

communication, the client and sever authenticate
their identities each other and then create a specific
virtual tunnel to connect, which will be cancelled
when the communication is finished

P

[
P

2]. The socket
communication is realized through the classes of
java.net.Socket and java.net.ServerSocket. The
following code shows the process of creating a
sever monitoring program to communicate with a
client:

…...
// to create a monitor server in port 8000
ServerSocket listener = new
ServerSocket(8000);
//blocked till catching a request form client
Socket client = listener.accept();
// to get the output stream to the client
OutputStream out = client.getOutputStream();
//to get the input stream from the client
InputStream in = client.getInputStream();
String strHello = “Hello!”;
byte[] hello = strHello.getBytes();
//to send a message” Hello!” to the client
out.write(hello);
……
We can find that the monitoring program will get

output stream from severs and input stream from
clients after catching the clients’ request, and then this
program can send or fetch data from clients. In this
way, the RFMS gets technologies support P

[
P

3].
2.3 Java file class
 Java has various classes to support the file
operationP

[
P

4], including File Class, FileInputStream

Class, FileOutputStream Class, FileSystemView Class,
RandomAccessFile Class, etc. File Class is in charge
of managing the disk file and directory;
FileInputStream and FileOutputStream Class can
manage the output and input of files respectively;
FileSystemView Class can implement the file
operations based on operating systemP

[
P

5]. The
following codes show how to tell if a drive is a floppy
disk drive using File class and FileSystemView class:

FileSystemView fs=
FileSystemView.getFileSystemView();

File drive = new File(“A:\\”);
if(fs.isFloppyDrive(drive))
 System.out.println(“a: is a floppy disk

drive.”);
else
 System.out.println(“a: is not a floppy disk

drive”);
These classes can easily be used, but only

restricted to local file operationsP

[
P

6]. To inherit these
benefits to support RFMS, we design an API similar
to these classes. In this way, users can easily and
efficiently write programs to support RFMS in the
same way with using local classes.

3 The building of System
The system is composed of three parts: a related

API, sever units and client programs.
3.1 The self-designed API

We design this API following the class of local
file operation provided by Sun Corp. However, there
is some difference as showed in table 1:

Type

Description

Sun JDK

RFMS

File java.io.File org.rmfs.File
Read file
stream

java.io.FileInputStream org.rmfs. FileInputStream

Write file
stream

java.io.FileOutputStream org.rmfs. FileOutputStream

Random
read/write

java.io.RandomAccessFile org.rmfs. RandomAccessFile

File system javax.swing.filechooser.FileSystemView org.rmfs. FileSystem
Table1:the difference between the two classes

The principle to design this API is to keep the
interface homogenous with Sun JDK’s file operation
classes and shield all the Socket operations in the
bottom layer, which can make the user handle the
RFMS like what hey do with java.io package P

[
P

7].
The kernel classes of this API are FileSystem and

File class. The relationship between those classes and
with J2SE (Java 2 Standard Edition) is showed in
fig.2:

File

FileSystem

RandomAccessFileFileInput

Stream

FileOutput
Stream

J2SE

Fig. 2:The relationship between classes

1) org.rmfs.FileSystem
This class is designed corresponding to Sun

JDK’s javax.swing.filechooser.FileSystemView class
and inherit to be one of its sub classes.

FileSystem class describes a remote file system
used in client software, with whose static method
getFileSystem() we can get an objective of FileSystem
class:
 public class FileSystem extends

FileSystemView{
//to connect with the remote file system socket
private Socket socket;
//to output to the remote file system’s stream
private OutputStream out;
//to get the remote file system’s input stream
private InputStream in;
public static synchronized FileSystem
getFileSystem(String host,int port){

……
//to connect with the remote file system using
//the allocated host pc and port
socket = new Socket(host,port);
out = socket.getOutputStream();
in = socket.getInputStream();
……

}
// to read bytes from a file input stream
int read(FileInputStream fis,in,byte[] b,int off,int
len){
 …….
 String cmd = “READ “+fis.getID()+” END”;
 out.write(cmd.getBytes[]);
 in.read(b,off,len);
 ……
}
// to send bytes to file output stream
void write(FileOutputStream fos,byte[] b,int
off,int len){
 ….
 String cmd = “WRITE “+fos.getID()+” END”;
 out.write(cmd.getBytes[]);
 out.write(b,off,len);
 ….
}
……

 }
The fields of the class:
z private Socket socket;

This field describes the connection with the
remote file system’s socket. All the data between
clients and remote system transfer through this socket
connection.
z private OutputStream out;

This field describes the output stream sent to
remote file system. The command and data sent to
remote system are transferred by calling the write
method of this stream.
z private InputStream in;

This field describes the input stream from remote
file system. The acknowledge command and data of
remote system can be got by calling the read method
of this stream.
The methods of the class:
z FileSystem getFileSystem(String host,int port)

getFileSystem() method can be used to get an
objective of FileSystem class. This method has two
parameters: one is to point out the IP of remote host pc
and the other is to point out a port number, which is
used by sever to monitor the client request. So the

client can call this method to get the object describing
the remote file system.

In fact, a remote file system object is a
connection with the remote file system’s socket. When
user call the getFileSystem(), the following code is
executed:

String cmd = “WRITE “+fos.getID()+” END”;
out.write(cmd.getBytes[]);
“WRITE” means send data to remote file system,

fos.getID is the unique flag of FileOutputStream and
“END” means the command’s over. When receiving
this command, the remote file system will be ready to
read the data from clients.

Similar to read, the method of write does not
have the variable of public. In fact, this method is
provided for the call of write () in class of
FileOutputStream.

The client can get an object from remote file
system using following code:
CODE1::To get a object from remote file system

String host = “166.111.167.128”;
int port = 8001;
FileSystem remoteFS

= FileSystem.getFileSystem(host,port);
FileSystem class is the basis of remote file

system, and all the other classes have to get a
realization of FileSystem class.
2) org.rmfs.File

This class corresponds the java.io.File class in
Sun JDK, and is used to describe a file or directory in
remote system.

public class File implements
java.io.Serializable,java.lang.Comparable{
// to describe the current remote file system

private FileSystem fs;
//to describe the path of file in this file system
private String path;

//to get the current file system where the file
//locates

 public FileSystem getFileSystem() {
 return fs;
 }
 //constructor
 public File(FileSystem fs,String path){

 if (path == null || fs==null) {
 throw new NullPointerException();
 }
 this.fs=fs;
 this.path=path;

}
……

}
The fields of the class:
z private FileSystem fs;
The current remote file system
z private String path;
Describing the absolute path of remote file in the
RFMS.

 The methods of the class:
z public FileSystem getFileSystem()
return domain fs;
z public File(FileSystem fs,String path)
Constructor, the two parameters point out fs and

path;
In addition, file class provides the methods of

listFiles(), renameTo(), delete(), etc. which is similar
to the java.io.File class. These methods can easily
rename and delete the remote files. RemoteFs is a
object of remote file system got from CODE1.
CODE2: to get the object of remote files

File helloFile = new
File(remoteFS,”C:\\hello.txt”);

3) org.rmfs. FileInputStream
This class corresponds the

java.io.FileInputStream class in Sun JDK, and is used
to get data from a remote file. We will only introduce
this class’s methods and fields.
 public class FileInputStream extends

java.io.InputStream {……}
The fields of the class:
z private FileSystem fs;
 The current remote file system
z private File file;
The remote file object;

 The methods of the class:
z public FileInputStream(File file)
Constructor,setting the field fs and file;
z public int read(byte[] b, int off, int len)

throws IOException
 Reading data from the input stream; In fact, this
method calls the read() method of the FileSystem
class;
z public long getID()
Returning the ID of the input stream. When
sending commands to the remote file system, the
remote file system is able to know the file of
which the content should be sent to the client
according to this ID;

4) java.io.FileOutputStream
This class is related to the

java.io.FileOutputStream class in Sun JDK and is used
to write data to a remote file. We will only introduce
this class’s methods and fields.

public class FileOutputStream extends
java.io.OutputStream{……}
The fields of the class:
z private FileSystem fs;
The current remote file system;
z private File file;
The remote file object;

The methods of the class:
z public FileOutputStream(File file)
This is the constructor setting fs and file;
z public void write(byte[] b, int off, int len)

throws IOException
This method writes data to the output stream. In

 fact this method calls the FileSystem class’s write()
method;
z public long getID()
This method returns the ID of the output stream.

When the client sends commands to the remote file
system the remote file system is able to know the file
that should be written according to this ID.

String addToFile = “Hello,remote file!”;
//transferring the string to a byte array to match the
//parameter’s criterion of the write() method
byte[] b = addToFile.getBytes();
fos.write(b,0,b.length);
 This code writs the sentence “Hello,remote file!”

to the remote file C:\\hello.txt.
5) org.rmfs. RandomAccessFile

This class corresponds the
java.io.RandomAccessFile class in Sun JDK, and the
functions of it are similar to
java.io.RandomAccessFile class. Because the 4
classes introduced before are able to realize the remote
file management system, this class will not be
introduced particularly.
3.2 The Software in Server

The software in sever provide the clients access
to remote file system. Actually, it is a monitor
program running in some port. There is a domain
socket in the FileSystem class, which actually is a
object connected with sever program who directly
communicates with FileSystem class and transfer data.
When sever catching a request for connection, that
means a client is trying to connect the sever.
Consequently, the sever will create a thread to handle
with the communication with the client.
3.3 The Software in Clients

The program in clients uses the five classes
referred above to communicate with RFMS. A typical
communication process includes:

Call the method of FileSystem
getFileSystem(String host,int port) to get a object of
remote file system

Call the method of File (FileSystem fs,String
path) to get a remote file system’s object

Finish the related operations, such as delete files,
write data to files, etc.

In this way, user can easily realize network
communication with a complete shield of detail
operations. The period of development can be
shortened while the complexity of program can be
decreased dramatically.

4 Case Study
 Based on the principle and structure referred
above, we implement a RFMS with a graphical
interface. Fig 3 shows the interface of sever program,
Fig 4 and 5 show the interface of client program. As
Fig.3, the program can start the RFMS after pointing
out the port number while Fig. 4 and 5 show the
access and management to RFMS after pointing out
the IP and port number of RFMS.

Fig.3:The interface of sever--boot

Fig. 4 the interface of clients—point out the IP
and port number of RFMS

Fig. 5:interface of clients- connecting with

RFMS

5 Conclusions
 We design an API class similar to the Sun class
of standard local file operation. Based on this API
class, we implement a RFMS with a structure of
Client/Sever. Because of the homogeneousness
between the interface of this API and that of Sun’ file
operation class, and the complete shield of bottom
socket operations, user can easily and efficiently

implement a specific RFMS with the aid of this API.

References:
[1] Shinzo Doi, Atsuhiro Tsuji,Yukiko
Itoh,Kouji Kubota, Tsutomu Tanaka,
Real-Time Remote File System for Multimedia
Application, Multimedia and Expo, ICME 2000.
2000 IEEE International Conference , Volume:
3 , 2000 ,pp.1727 - 1730
[2] Bruce Eckel, Thinking in Java, Prentice
Hall, 2000
[3] O'Connell, M., Nixon, P., JFS: a secure
distributed file system for network computers,
EUROMICRO Conference, 1999. Proceedings.
25th , Volume: 2,pp.450-453
T[T4] Jackson, D., Waingold, A.,Lightweight
extraction of object models from bytecode,
Software Engineering, 1999. Proceedings of the
1999 International Conference,pp.70-73
[5] Ahuja, S.P., Quintao, R., Performance
evaluation of Java RMI: a distributed object
architecture for Internet based applications,
Modeling, Analysis and Simulation of
Computer and Telecommunication Systems,
2000. Proceedings. 8th International
Symposium, pp.565-569
[6] Ekwall, R.,Urban, M., Robust TCP
connections for fault tolerant computing,
Parallel and Distributed Systems, 2002.
Proceedings. Ninth International
Conference, pp.503-505
[7] Ng, K.T., Siu, Y.M., The development of a
betting system on the Internet, Information
Technology: Coding and Computing, 2000.
Proceedings. International Conference,
pp.308-309

