
A Parallel Architecture for Data Mining and Knowledge Discovery

Li Min Fu

University of Florida, Gainesville, FL, USA

Abstract

In this paper, we introduce a new machine learning the-
ory based on multi-channel parallel adaptation for rule
discovery. This theory is distinguished from the familiar
parallel-distributed adaptation theory of neural networks
in terms of channel-based convergence to the target rules.
We show how to realize this theory in a learning system
named CFRule. CFRule is a parallel weight-based model,
but it departs from traditional neural computing in that its
internal knowledge is comprehensible. Furthermore, when
the model converges upon training, each channel converges
to a target rule. The model adaptation rule is derived by
multi-level parallel weight optimization based on gradient
descent. Since, however, gradient descent only guarantees
local optimization, a multi-channel regression-based opti-
mization strategy is developed to effectively deal with this
problem. Formally, we prove that the CFRule model can
explicitly and precisely encode any given rule set. Also,
we prove a property related to asynchronous parallel con-
vergence, which is a critical element of the multi-channel
parallel adaptation theory for rule learning. Thanks to the
quantizability nature of the CFRule model, rules can be
extracted completely and soundly via a threshold-based
mechanism. Finally, the practical application of the the-
ory is demonstrated in DNA promoter recognition and
hepatitis prognosis prediction.
Keywords: rule discovery, adaptation, optimization, re-
gression, certainty factor, neural network, machine learn-
ing, uncertainty management, artificial intelligence.

1 Introduction

Rules express general knowledge about actions or conclu-
sions in given circumstances and also principles in given
domains. In the if-then format, rules are an easy way
to represent cognitive processes in psychology and a use-
ful means to encode expert knowledge. In another per-
spective, rules are important because they can help scien-
tists understand problems and engineers solve problems.
These observations would account for the fact that rule
learning or discovery has become a major topic in both
machine learning and data mining research. The former
discipline concerns the construction of computer programs
which learn knowledge or skill while the latter is about the
discovery of patterns or rules hidden in the data.

The fundamental concepts of rule learning are discussed
in [16]. Methods for learning sets of rules include symbolic
heuristic search [3, 5], decision trees [17-18], inductive logic
programming [13], neural networks [2, 7, 20], and genetic
algorithms [10]. A methodology comparison can be found

in our previous work [9]. Despite the differences in their
computational frameworks, these methods perform a cer-
tain kind of search in the rule space (i.e., the space of
possible rules) in conjunction with some optimization cri-
terion. Complete search is difficult unless the domain is
small, and a computer scientist is not interested in exhaus-
tive search due to its exponential computational complex-
ity. It is clear that significant issues have limited the ef-
fectiveness of all the approaches described. In particular,
we should point out that all the algorithms except exhaus-
tive search guarantee only local but not global optimiza-
tion. For example, a sequential covering algorithm such as
CN2 [5] performs a greedy search for a single rule at each
sequential stage without backtracking and could make a
suboptimal choice at any stage; a simultaneous covering
algorithm such as ID3 [18] learns the entire set of rules
simultaneously but it searches incompletely through the
hypothesis space because of attribute ordering; a neural
network algorithm which adopts gradient-descent search
is prone to local minima.

In this paper, we introduce a new machine learning the-
ory based on multi-channel parallel adaptation that shows
great promise in learning the target rules from data by
parallel global convergence. This theory is distinct from
the familiar parallel-distributed adaptation theory of neu-
ral networks in terms of channel-based convergence to the
target rules. We describe a system named CFRule which
implements this theory. CFRule bases its computational
characteristics on the certain factor (CF) model [4, 22] it
adopts. The CF model is a calculus of uncertainty mange-
ment and has been used to approximate standard proba-
bility theory [1] in artificial intelligence. It has been found
that certainty factors associated with rules can be revised
by a neural network [6, 12, 15]. Our research has fur-
ther indicated that the CF model used as the neuron ac-
tivation function (for combining inputs) can improve the
neural-network performance [8].

The rest of the paper is organized as follows. Section 2
describes the multi-channel rule learning model. Section 3
examines the formal properties of rule encoding. Section 4
derives the model parameter adaptation rule, presents a
novel optimization strategy to deal with the local mini-
mum problem due to gradient descent, and proves a prop-
erty related to asynchronous parallel convergence, which
is a critical element of the main theory. Section 5 formu-
lates a rule extraction algorithm. Section 6 demonstrates
practical applications. Then we draw conclusions in the
final section.

1



2 The Multi-Channel Rule Learn-

ing Model

CFRule is a rule-learning system based on multi-level pa-
rameter optimization. The kernel of CFRule is a multi-
channel rule learning model. CFRule can be embodied
as an artificial neural network, but the neural network
structure is not essential. We start with formal definitions
about the model.

Definition 2.1 The multi-channel rule learning model M
is defined by k (k ≥ 1) channels (Ch’s), an input vector
(Min), and an output (Mout) as follows:

M ≡ (Ch1, Ch2, ..., Chk,Min,Mout) (1)

where −1 ≤Mout ≤ 1 and

Min ≡ (x1, x2, ..., xd) (2)

such that d is the input dimensionality and −1 ≤ xi ≤ 1
for all i.

The model has only a single output because here we as-
sume the problem is a single-class, multi-rule learning prob-
lem. The framework can be easily extended to the multi-
class case.

Definition 2.2 Each channel (Chj) is defined by an out-
put weight (uj), a set of input weights (wji’s), activation
(φj), and influence (ψj) as follows:

Chj ≡ (uj , wj0, wj1, wj2, ..., wjd, φj , ψj) (3)

where wj0 is the bias, 0 ≤ uj ≤ 1, and −1 ≤ wji ≤ 1
for all i. The input weight vector (wj1, ..., wjd) defines the
channel’s pattern.

Definition 2.3 Each channel’s activation is defined by

φj = fcf(wj0, wj1x1, wj2x2, ..., wjdxd) (4)

where fcf is the CF-combining function [4, 22], as defined
below.

Definition 2.4 The CF-combining function is given by

fcf(x1, x2, ..., y1, y2, ...) = f+

cf
(x1, x2, ...) + f−

cf
(y1, y2, ...)

(5)
where

f+

cf
(x1, x2, ...) = 1 −

∏

i

(1 − xi) (6)

f−
cf

(y1, y2, ...) = −1 +
∏

j

(1 + yj) (7)

xi’s are nonnegative numbers and yj’s are negative num-
bers.

As we will see, the CF-combining function contributes to
several important computational properties instrumental
to rule discovery.

Definition 2.5 Each channel’s influence on the output is
defined by

ψj = ujφj (8)

Definition 2.6 The model output Mout is defined by

Mout = fcf(ψ1, ψ2, ..., ψk) (9)

We call the class whose rules to be learned the target
class, and define rules inferring (or explaining) that class
to be the target rules. For instance, if the disease diabetes
is the target class, then the diagnostic rules for diabetes
would be the target rules. Each target rule defines a con-
dition under which the given class can be inferred. Note
that we do not consider rules which deny the target class,
though such rules can be defined by reversing the class
concept. The task of rule learning is to learn or discover
a set of target rules from given instances called training
instances (data). It is important that rules learned should
be generally applicable to the entire domain, not just the
training data. How well the target rules learned from the
training data can be applied to unseen data determines
the generalization performance.

Instances which belong to the target class are called
positive instances, else, called negative instances. Ideally,
a positive training instance should match at least one tar-
get rule learned and vice versa, whereas a negative train-
ing instance should match none. So, if there is only a
single target rule learned, then it must be matched by all
(or most) positive training instances. But if multiple tar-
get rules are learned, then each rule is matched by some
(rather than all) positive training instances. Since the
number of possible rule sets is far greater than the number
of possible rules, the problem of learning multiple rules is
naturally much more complex than that of learning single
rules.

In the multi-channel rule learning theory, the model
learns to sort out instances so that instances belonging to
different rules flow through different channels, and at the
same time, channels are adapted to accommodate their
pertinent instances and learn corresponding rules. Notice
that this is a mutual process and it cannot occur all at
once. In the beginning, the rules are not learned and the
channels are not properly shaped, both information flow
and adaptation are more or less random, but through self-
adaptation, the CFRule model will gradually converge to
the correct rules, each encoded by a channel. The essence
of this paper is to prove this property.

In the model design, a legitimate question is what the
optimal number of channels is. This is just like the ques-
tion raised for a neural network of how many hidden (in-
ternal computing) units should be used. It is true that too
many hidden units cause data overfitting and make gen-
eralization worse [7]. Thus, a general principle is to use
a minimal number of hidden units. The same principle
can be equally well applied to the CFRule model. How-
ever, there is a difference. In ordinary neural networks, the
number of hidden units is determined by the sample size,
while in the CFRule model, the number of channels should
match the number of rules embedded in the data. Since,
however, we do not know how many rules are present in
the data, our strategy is to use a minimal number of chan-
nels that admits convergence on the training data.

The model’s behavior is characterized by three aspects:

2



• Information processing: Compute the model output
for a given input vector.

• Learning or training: Adjust channels’ parameters
(output and input weights) so that the input vector
is mapped into the output for every instance in the
training data.

• Rule extraction: Extract rules from a trained model.

The first aspect has been described already.

3 Model Representation of Rules

The IF-THEN rule (i.e., If the premise, then the action)
is a major knowledge representation paradigm in artifi-
cial intelligence. Here we make analysis of how such rules
can be represented with proper semantics in the CFRule
model.

Definition 3.1 CFRule learns rules in the form of

IF A+
1 , ..., A+

i ,, ..., ¬A−
1 , . . ., ¬A−

j , . . ., THEN the
target class with a certainty factor.

where A+
i is a positive antecedent (in the positive form),

A−
j a negated antecedent (in the negative form), and ¬

reads “not.” Each antecedent can be a discrete or dis-
cretized attribute (feature), variable, or a logic proposition.
The IF part must not be empty. The attached certainty
factor in the THEN part, called the rule CF, is a positive
real ≤ 1.

The rule’s premise is restricted to a conjunction, and no
disjunction is allowed. The collection of rules for a cer-
tain class can be formulated as a DNF (disjunctive nor-
mal form) logic expression, namely, the disjunction of con-
junctions, which implies the class. However, rules defined
here are not traditional logic rules because of the attached
rule CFs meant to capture uncertainty. We interpret a
rule by saying when its premise holds (that is, all posi-
tive antecedents mentioned are true and all negated an-
tecedents mentioned are false), the target concept holds
at the given confidence level. CFRule can also learn rules
with weighted antecedents (a kind of fuzzy rules), but we
will not consider this case here.

There is increasing evidence to indicate that good rule
encoding capability actually facilitates rule discovery in
the data. In the theorems that follow, we show how the
CFRule model can explicitly and precisely encode any
given rule set. We note that the ordinary sigmoid-function
neural network can only implicitly and approximately does
this. Also, we note although the threshold function of
the perceptron model enables it to learn conjunctions or
disjunctions, the non-differentiability of this function pro-
hibits the use of an adaptive procedure in a multilayer
construct.

Theorem 3.1 For any rule represented by Definition 3.1,
there exists a channel in the CFRule model to encode the
rule so that if an instance matches the rule, the channel’s
activation is 1, else 0.

(Proof): This can be proven by construction. Suppose we
implement channel j by setting the bias weight to 1, the
input weights associated with all positive attributes in the
rule’s premise to 1, the input weights associated with all
negated attributes in the rule’s premise to −1, the rest of
the input weights to 0, and finally the output weight to
the rule CF. Assume that each instance is encoded by a
bipolar vector in which for each attribute, 1 means true
and −1 false. When an instance matches the rule, the
following conditions hold: xi = 1 if xi is part of the rule’s
premise, xi = −1 if ¬xi is part of the rule’s premise, and
otherwise xi can be of any value. For such an instance,
given the above construction, it is true that wjixi = 1 or 0
for all i. Thus, the channel’s activation (by Definition 2.3),

φj = fcf(wj0 = 1, wj1x1, wj2x2, ..., wjdxd) (10)

must be 1 according to fcf . On the other hand, if an
instance does not match the rule, then there exists i such
that wjixi = −1. Since wj0 (the bias weight) = 1, the
channel’s activation is 0 due to fcf . 2

Theorem 3.2 Assume that rule CF’s > θ (0 ≤ θ ≤ 1).
For any set of rules represented by Definition 3.1, there
exists a CFRule model to encode the rule set so that if an
instance matches any of the given rules, the model output
is > θ, else 0.

(Proof): Suppose there are k rules in the set. As suggested
in the proof of Theorem 3.1, we construct k channels, each
encoding a different rule in the given rule set so that if an
instance matches, say rule j, then the activation (φj) of
channel j is 1. In this case, since the channel’s influence
ψj is given by ujφj (where uj is set to the rule CF) and the
rule CF > θ, it follows that ψj > θ. It is then clear that
the model output must be > θ since it combines influences
from all channels that ≥ 0 but at least one > θ. On
the other hand, if an instance fails to match any of the
rules, all the channels’ activations are zero, so is the model
output. 2

4 Model Adaptation and Conver-

gence

In neural computing, the backpropagation algorithm [19]
can be viewed as a multilayer, parallel optimization strat-
egy that enables the network to converge to a local opti-
mum solution. The black-box nature of the neural network
solution is reflected by the fact that the pattern (the in-
put weight vector) learned by each neuron does not bear
meaningful knowledge. The CFRule model departs from
traditional neural computing in that its internal knowl-
edge is comprehensible. Furthermore, when the model
converges upon training, each channel converges to a tar-
get rule. How to achieve this objective and what is the
mathematical theory are the main issues to be addressed.

4.1 Model Training Based on Gradient De-

scent

The CFRule model learns to map a set of input vectors
(e.g., extracted features) into a set of outputs (e.g., class

3



information) by training. An input vector along with its
target output constitute a training instance. The input
vector is encoded as a 1/ − 1 bipolar vector. The target
output is 1 for a positive instance and 0 for a negative
instance.

Starting with a random or estimated weight setting,
the model is trained to adapt itself to the characteristics
of the training instances by changing weights (both out-
put and input weights) for every channel in the model.
Typically, instances are presented to the model one at a
time. When all instances are examined (called an epoch),
the network will start over with the first instance and re-
peat. Iterations continue until the system performance
has reached a satisfactory level.

The learning rule of the CFRule model is derived in
the same way as the backpropagation algorithm [19]. The
training objective is to minimize the sum of squared errors
in the data. In each learning cycle, a training instance is
given and the weights of channel j (for all j) are updated
by

uj(t+ 1) = uj(t) + ∆uj (11)

wji(t+ 1) = wji(t) + ∆wji (12)

where uj: the output weight, wji: an input weight, the
argument t denotes iteration t, and ∆ the adjustment.
The weight adjustment on the current instance is based
on gradient descent. Consider channel j. For the output
weight (uj),

∆uj = −η(∂E/∂uj) (13)

(η: the learning rate) where

E =
1

2
(Tout −Mout)

2

(Tout: the target output, Mout: the model output). Let

D = Tout −Mout

The partial derivative in Eq. (13) can be rewritten with
the calculus chain rule to yield

∂E/∂uj = (∂E/∂Mout)(∂Mout/∂uj) = −D(∂Mout/∂uj)

Then we apply this result to Eq. (13) and obtain the fol-
lowing definition.

Definition 4.1 The learning rule for output weight uj of
channel j is given by

∆uj = ηD(∂Mout/∂uj) (14)

For the input weights (wji’s), again based on gradient
descent,

∆wji = −η(∂E/∂wji) (15)

The partial derivative in Eq. (15) is equivalent to

∂E/∂wji = (∂E/∂φj)(∂φj/∂wji)

Since φj is not directly related to E, the first partial
derivative on the right hand side of the above equation
is expanded by the chain rule again to obtain

∂E/∂φj = (∂E/∂Mout)(∂Mout/∂φj) = −D(∂Mout/∂φj)

Substituting these results into Eq. (15) leads to the fol-
lowing definition.

Definition 4.2 The learning rule for input weight wji of
channel j is given by

∆wji = ηdj(∂φj/∂wji) (16)

where
dj = D(∂Mout/∂φj)

Assume that

φj = f+

cf
(wj1x1, wj2x2, ..., wjd′xd′)+f−

cf
(wjd′+1xd′+1, ..., wjdxd)

(17)

Suppose d′ > 1 and d−d′ > 1. The partial derivative
∂φj

∂wji

can be computed as follows.

Case (a) If wjixi ≥ 0,

∂φj

∂wji

= (
∏

l 6=i,l≤d′

(1 − wjlxl))xi (18)

Case (b) If wjixi < 0,

∂φj

∂wji

= (
∏

l 6=i,l>d′

(1 + wjlxl))xi (19)

It is easy to show that if d′ = 1 in case (a) or d − d′ = 1

in case (b),
∂φj

∂wji
= xi.

4.2 Multi-Channel Regression-Based Op-

timization

It is known that gradient descent can only find a local-
minimum. When the error surface is flat or very convo-
luted, such an algorithm often ends up with a bad local
minimum. Moreover, the learning performance is mea-
sured by the error on unseen data independent of the
training set. Such error is referred to as generalization
error. We note that minimization of the training error
by the backpropagation algorithm does not guarantee si-
multaneous minimization of generalization error. What
is worse, generalization error may instead rise after some
point along the training curve due to an undesired phe-
nomenon known as overfitting [7]. Thus, global optimiza-
tion techniques for network training (e.g., [21]) do not nec-
essarily offer help as far as generalization is concerned.
To address this issue, CFRule uses a novel optimization
strategy called multi-channel regression-based optimiza-
tion (MCRO).

In Definition 2.4, f+

cf
and f−

cf
can also be expressed as

f+

cf
(x1, x2, ...) =

∑

i

xi−
∑

i

∑

j

xixj+
∑

i

∑

j

∑

k

xixjxk−...

(20)

f−
cf

(y1, y2, ...) =
∑

i

yi+
∑

i

∑

j

yiyj+
∑

i

∑

j

∑

k

yiyjyk+...

(21)
When the arguments (xi’s and yi’s) are small, the CF
function behaves somewhat like a linear function. It can

4



be seen that if the magnitude of every argument is < 0.1,
the first order approximation of the CF function is within
an error of 10% or so. Since when learning starts, all the
weights take on small values, this analysis has motivated
the MCRO strategy for improving the gradient descent
solution. The basic idea behind MCRO is to choose a
starting point based on the linear regression analysis, in
contrast to gradient descent which uses a random starting
point.

If we can use regression analysis to estimate the initial
influence of each input variable on the model output, how
can we know how to distribute this estimate over multiple
channels? In fact, this is the most intricate part of the
whole idea since each channel’s structure and parameters
are yet to be learned. The answer will soon be clear.

In CFRule, each channel’s activation is defined by

φj = fcf(wj0, wj1x1, wj2x2, ...) (22)

Suppose we separate the linear component from the non-
linear component (R) in φj to obtain

φj = (

d∑

i=0

wjixi) +Rj (23)

We apply the same treatment to the model output (Defi-
nition 2.6)

Mout = fcf(u1φ1, u2φ2, ...) (24)

so that

Mout = (

k∑

j=1

ujφj) +Rout (25)

Then we substitute Eq.(23) into Eq.(25) to obtain

Mout = (

k∑

j=1

d∑

i=0

ujwjixi) +Racc (26)

in which the right hand side is equivalent to

[

d∑

i=0

(

k∑

j=1

ujwji)xi] +Racc

Note that

Racc = (
k∑

j=1

ujRj) +Rout

Suppose linear regression analysis produces the follow-
ing estimation equation for the model output:

M ′
out = b0 + b1x1 + ...

(all the input variables and the output transformed to the
range from 0 to 1).

Definition 4.3 The MCRO strategy is defined by

k∑

j=1

uj(t = 0)wji(t = 0) = bi (27)

for each i, 0 ≤ i ≤ d

Table 1: The target rules in the simulation experiment.

rule 1: IF x1 and ¬x2 and x7 THEN the target concept

rule 2: IF x1 and ¬x4 and x5 THEN the target concept

rule 3: IF x6 and x11 THEN the target concept

That is, at iteration t = 0 when learning starts, the ini-
tial weights are randomized but subject to these d + 1
constraints.

To demonstrate this strategy, we designed an experi-
ment. Assume there were 20 input variables and three tar-
gets rules as shown in Table 1. The training and test data
sets were generated independently, each consisting of 100
random instances. An instance was classified as positive
if it matched any of the target rules and as negative oth-
erwise. The CFRule model for this experiment comprised
three channels. The model was trained under MCRO and
random start separately. For each strategy, 25 trials were
run, each with a different initial weight setting. The same
learning rate and stopping condition were used in every
trial regardless of the strategy taken. The training and
test error rates were measured. If the model converged to
the target rules, then both training and test errors should
be close to zero. We used the t test (one-sided hypothesis
testing based on the statistical t distribution) to evaluate
the difference in the means of error rates produced under
the two strategies. Given the statistical validation result,
we can conclude that MCRO is a valid technique.

4.3 Asynchronous Parallel Convergence

In the multi-channel rule learning theory, there are two
possible modes of parallel convergence. In the synchronous
mode, all channels converge to their respective target pat-
terns at the same time, whereas in the asynchronous mode,
each channel converges at a different time. In a self-
adaptation or self-organization model without a global
clock, the synchronous mode is not a plausible scenario of
convergence. On the other hand, the asynchronous mode
may not arrive at global convergence (i.e., every channel
converging to its target pattern) unless there is a mecha-
nism to protect a target pattern once it is converged upon.
Here we examine a formal property of CFRule on this new
learning issue.

Theorem 4.1 Suppose at time t, channel j of the CFRule
model has learned an exact pattern (wj1, wj2, ..., wjd) (d ≥
1) such that wj0 (the bias) = 1 and wji = 1 or −1 or 0
for 1 ≤ i ≤ d. At time t + 1 when the model is trained
on a given instance with the input vector (x0, x1, x2, ..., xd)
(x0 = 1 and xi = 1 or −1 for all 1 ≤ i ≤ d), the pattern
is unchanged unless there is a single mismatched weight
(weight wji is mismatched if and only if wjixi = −1). Let
∆wji(t+ 1) be the weight adjustment for wji. Then
(a) If there is no mismatch, then ∆wji(t + 1) = 0 for all
i.

5



(b) If there are more than one mismatched weight then
∆wji(t+ 1) = 0 for all i.

(Proof): In case (a), there is no mismatch, so wjixi = 1
or 0 for all i. There exists l such that wjlxl = 1 and l 6= i,
for example, wj0x0 = 1 as given. ¿From Eq. (18),

∂φj

∂wji

= (

d∏

l≥0,l 6=i

(1 − wjlxl))xi = 0

Then from Eq. (16),

∆wji(t+ 1) = ηdj(
∂φj

∂wji

) = 0

In case (b), the proof for matched weights is the same
as that in case (a). Consider only mismatched weights
wji’s such that wjixi = −1. Since there are at least two
mismatched weights, there exists l such that wjlxl = −1
and l 6= i. ¿From Eq. (19),

∂φj

∂wji

= (
∏

wjlxl=−1,l 6=i

(1 + wjlxl))xi = 0

Therefore,

∆wji(t+ 1) = ηdj(
∂φj

∂wji

) = 0

In the case of a single mismatched weight,

∂φj

∂wji

= xi

which is not zero, so the weight adjustment ∆wji(t + 1)
may or may not be zero, depending on the error dj . 2

Since model training starts with small weight values,
the initial pattern associated with each channel cannot be
exact. When training ends, the channel’s pattern may
still be inexact because of possible noise, inconsistency,
and uncertainty in the data. However, from the proof of
the above theorem, we see that when the nonzero weights
in the channel’s pattern grow larger, the error derivative

(dj
φj

wji
) generally gets smaller, so does the weight adjust-

ment, and as a result, the pattern becomes more stable
and gradually converges to a target pattern. A converged
pattern does not move unless there is a near-miss instance
(with a single feature mismatch against the pattern) that
causes some error in the model output, in which case, the
pattern is refined to be a little more general or specific.
This analysis explains how the CFRule model ensures the
stability of a channel once it is settled in a target pattern.
Note that the output weight of a channel with a stable
pattern can still be modified toward global error mini-
mization and uncertainty management. In asynchronous
parallel convergence, each channel is settled in its own
target pattern with a different time frame. Without the
above pattern stabilizing property, global convergence is
difficult to achieve in the asynchronous mode. This line of

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Epoch

W
ei

gh
t M

ag
ni

tu
de

 (
A

bs
ol

ut
e 

V
al

ue
)

w(1,7)

w(1,1)

w(1,2)

w(2,5)

w(2,1)

w(2,4)

w(3,6)

w(3,11)

Figure 1: The temporal curves of asynchronous parallel
convergence for rule learning.

arguments imply that CFRule admits asynchronous paral-
lel convergence. Theorem 4.1 is unique for CFRule. That
property has not been provable for other types of neural
networks or learning methods (e.g., [16]).

Asynchronous parallel convergence for rule learning
can be illustrated by the example in Section 4.2. Table 2
shows how each channel converges to a target rule in the
training course when the model was trained on just 100
random instances (out of 220 possible instances). For in-
stance, given ¬x2 in the premise of rule 1 (Table 1), we
observe the corresponding weight w1,2 of channel 1 con-
verged to −1 (Table 2); also, for x6 mentioned in rule 3,
we see the weight w3,6 of channel 3 converged to 1. Only
the significant weights that converge to a magnitude of 1
are shown. Unimportant weights ending up with about
zero values are omitted. The convergence behavior can be
better visualized in Figure 1. It clearly shows that con-
vergence occurs asynchronously for each channel. It does
not matter which channel converges to which rule. This
correspondence is determined by the initial weight setting
and the data characteristics. Note that given k channels in
the model, there are k! equivalent permutations in terms
of their relative positions in the model. It matters, though,
whether the model as a whole converges to all the needed
target rules.

5 Rule Extraction

As illustrated by the example in Section 4.3, when a chan-
nel converges to a target rule, the weights associated with
the input attributes contained in the rule’s premise grow
into large values, whereas the rest of input weights de-
cay to small values. The asymptotic absolute weight val-
ues upon convergence approach either 1 or 0 ideally, but
this case does not necessarily happen in practical circum-
stances involving data noise, inconsistency, uncertainty,
and inadequate sample sizes. However, in whatever cir-
cumstances, it turns out that a simple thresholding mech-
anism suffices to distinguish important from unimportant
weights in the CFRule model. Since the weight absolute
values range from 0 to 1, it is reasonable to use 0.5 as
the threshold, but this value does not always guarantee

6



Table 2: Asynchronous parallel convergence to the target rules in the CFRule model. Channels 1, 2, 3 converge to
target rules 1, 2, 3, respectively. wj,i denotes the input weight associated with the input xi in channel j. An epoch
consists of a presentation of all training instances.

epoch w1,1 w1,2 w1,7 w2,1 w2,4 w2,5 w3,6 w3,11

1 .016 -.073 .005 .144 -.166 .087 .387 .479
5 .202 -.249 .133 .506 -.348 .385 1.00 .948
10 .313 -.420 .256 .868 -.719 .725 1.00 1.00
15 .462 -.529 .440 1.00 -.920 .893 1.00 1.00
20 .851 -.802 .789 1.00 -.983 1.00 1.00 1.00
25 1.00 -.998 .996 1.00 -1.00 1.00 1.00 1.00
30 1.00 -1.00 1.00 1.00 -1.00 1.00 1.00 1.00

optimal performance. How to search for a good threshold
in a continuous range is difficult. Fortunately, thanks to
the quantizability nature of the system adopting the CF
model [9], only a handful of values need to be considered.
Our research has narrowed it down to four candidate val-
ues: 0.35, 0.5, 0.65, and 0.8. A larger threshold makes
extracted rules more general, whereas a smaller thresh-
old more specific. In order to lessen data overfitting, our
heuristic is to choose a higher value as long as the training
error is acceptable. Using an independent cross-validation
data set is a good idea if enough data is available. The
rule extraction algorithm is formulated below.

The CFRule Rule Extraction Algorithm

• Select a rule extraction threshold r (0 < r < 1).

• For each channel j,

1. P := nil (an empty set)

2. C :=the target class

3. Normalize the input weights wji’s so that the
maximum weight absolute value is 1.

4. For each input weight wji (1 ≤ i ≤ d, d: the
input dimensionality),

a. If wji ≥ r, then add xi to P .

b. If wji ≤ −r, then add ¬xi to P .

c. Else, do nothing.

5. Form a rule: “IF P , THEN C with CF = uj”
(uj : the output weight based on the rule).

• Remove subsumed rules and rules with low CFs.

The threshold-based algorithm described here is fun-
damentally different from the search-based algorithm in
neural network rule extraction [7, 9, 20]. The main advan-
tage with the threshold-based approach is its linear com-
putational complexity with the total number of weights,
in contrast to polynomial or even exponential complexity
incurred by the search-based approach. Furthermore, the
former approach obviates the need of a special training,
pruning, or approximation procedure commonly used in

the latter approach for complexity reduction. As a re-
sult, the threshold-based, direct approach should produce
better and more reliable rules. Notice that this approach
is not applicable to the ordinary sigmoid-function neural
network where knowledge is entangled. The admissibil-
ity of the threshold-based algorithm for rule extraction in
CFRule can be ascribed to the CF-combining function.

6 Applications

Two benchmark data sets were selected to demonstrate
the value of CFRule on practical domains. The promoter
data set is characterized by high dimensionality relative
to the sample size, while the hepatitis data has a lot of
missing values. Thus, both pose a challenging problem.

The decision-tree-based rule generator system C4.5 [18]
was taken as a control since it (and with its later version)
is the currently most representative (or most often used)
rule learning system, and also the performance of C4.5 is
optimized in a statistical sense.

6.1 Promoter Recognition in DNA

In the promoter data set [23], there are 106 instances with
each consisting of a DNA nucleotide string of four base
types: A (adenine), G (guanine), C (cytosine), and T
(thymine). Each instance string is comprised of 57 sequen-
tial nucleotides, including fifty nucleotides before (minus)
and six following (plus) the transcription site. An instance
is a positive instance if the promoter region is present in
the sequence, else it is a negative instance. There are 53
positive instances and 53 negative instances, respectively.
Each position of an instance sequence is encoded by four
bits with each bit designating a base type. So an instance
is encoded by a vector of 228 bits along with a label indi-
cating a positive or negative instance.

In the literature of molecular biology, promoter (of
prokaryotes) sequences have average constitutions of -TTGACA-
and -TATAAT-, respectively, located at so-called minus-35
and minus-10 regions [14], as shown in Table 3.

7



Table 3: The promoter (of prokaryotes) consensus se-
quences.

Region DNA Sequence Pattern

Minus-35 @-36=T @-35=T @-34=G @-33=A
@-32=C @-31=A

Minus-10 @-13=T @-12=A @-11=T @-10=A
@-9=A @-8=T

The CFRule model in this study had 3 channels, which
were the minimal number of channels to bring the train-
ing error under 0.02 upon convergence. Still, the model
is relatively underdetermined because of the low ratio of
the number of instances available for training to the input
dimension. However, unlike our previous approach [9], we
did not use any pruning strategy. The model had to learn
to cope with high dimensionality by itself. The learn-
ing rate was set to 0.2, and the rule extraction threshold
0.5 (all these are default values). The model was trained
on the training data under the MCRO strategy and then
tested on the test data. The stopping criterion for train-
ing was the drop of MSE (mean squared error) less than
a small value per epoch. Rules were extracted from the
trained model.

Cross-validation is an important means to evaluate
the ability of learning. Domain validity is indicated if
rules learned based on some data can be well applied to
other data in the same domain. In the two-fold cross-
validation experiment, the 106 instances were randomly
divided equally into two subsets. CFRule and C4.5 used
the same data partition. The rules learned on one subset
were tested by the other and vice versa. The average pre-
diction error rate on the test set was defined as the cross-
validation rule error rate. The cross-validation experi-
ment with CFRule was run 5 times, each with a different
initial weight setting. The average cross-validation error
was reported. CFRule had a significantly smaller cross-
validation rule error rate than C4.5 (12.8% versus 23.9%,
respectively), as shown in Table 4. Note that the predic-
tion accuracy and the error rate were measured based on
exact symbolic match. That is, an instance is predicted
to be in the concept only if it matches exactly any rule
of the concept, else it is not in the concept. If, however,
prior domain knowledge is used and exact symbolic match
is not required, the error rate based on leave-one-out can
be as low as 2% [7].

The data for this research are available from a machine
learning database located in the University of California at
Irvine with an ftp address at ftp.ics.uci.edu/pub/machine-
learning-databases.

6.2 Hepatitis Prognosis Prediction

In the data set concerning hepatitis prognosis 1, there are
155 instances, each described by 19 attributes. Contin-

1This data set is an old version previously used in our research
work [7].

Table 4: The average two-fold cross-validation error rates
of the rules learned by C4.5 and CFRule, respectively.

Domain C4.5 CFRule

Promoters (without
prior knowledge) 23.9% 12.8%
Hepatitis 7.1% 5.3%

uous attributes were discretized, then the data set was
randomly partitioned into two halves (78 and 77 cases),
and then cross-validation was carried out. CFRule and
C4.5 used exactly the same data to ensure fair compari-
son. The CFRule model for this problem consisted of 2
channels. Again, CFRule was superior to C4.5 based on
the cross-validation performance (see Table 4).

7 Conclusions

If global optimization is a main issue for automated rule
discovery from data, then current machine learning the-
ories do not seem adequate. For instance, the decision-
tree and neural-network based algorithms, which dodge
the complexity of exhaustive search, guarantee only local
but not global optimization. In this paper, we introduce a
new machine learning theory based on multi-channel par-
allel adaptation that shows great promise in learning the
target rules from data by parallel global convergence. The
basic idea is that when a model consisting of multiple par-
allel channels is optimized according to a certain global
error criterion, each of its channels converges to a target
rule. While the theory sounds attractive, the main ques-
tion is how to implement it. In this paper, we show how
to realize this theory in a learning system named CFRule.

CFRule is a parallel weight-based model, which can be
optimized by weight adaptation. The parameter adapta-
tion rule follows the gradient-descent idea which is gen-
eralized in a multi-level parallel context. However, the
central idea of the multi-channel rule-learning theory is
not about how the parameters are adapted but rather,
how each channel can converge to a target rule. We have
noticed that CFRule exhibits the necessary conditions to
ensure such convergence behavior. We have further found
that the CFRule’s behavior can be attributed to the use of
the CF (certainty factor) model for combining the inputs
and the channels.

Since the gradient descent technique seeks only a lo-
cal minimum, the learning model may well be settled in
a solution where each rule is optimal in a local sense. A
strategy called multi-channel regression-based optimiza-
tion (MCRO) has been developed to address this issue.
This strategy has proven effective by statistical validation.

We have formally proven two important properties that
account for the parallel rule-learning behavior of CFRule.
First, we show that any given rule set can be explicitly
and precisely encoded by the CFRule model. Secondly,
we show that once a channel is settled in a target rule, it
barely moves. These two conditions encourage the model

8



to move toward the target rules. An empirical weight con-
vergence graph clearly showed how each channel converged
to a target rule in an asynchronous manner. Notice, how-
ever, we have not been able to prove or demonstrate this
rule-oriented convergence behavior in other neural net-
works.

We have then examined the application of this method-
ology to DNA promoter recognition and hepatitis progno-
sis prediction. In both domains, CFRule is superior to
C4.5 (a rule-learning method based on the decision tree)
based on cross-validation. Rules learned are also consis-
tent with knowledge in the literature.

In conclusion, the multi-channel parallel adaptive rule-
learning theory is not just theoretically sound and sup-
ported by computer simulation but also practically use-
ful. In light of its significance, this theory would hopefully
point out a new direction for machine learning and data
mining.

Acknowledgments

This work is supported by National Science Foundation
under grant IIS-0221954.

References

1. J.B. Adams, “Probabilistic reasoning and certainty
factors”, in Rule-Based Expert Systems, Addison-
Wesley, Reading, MA, 1984.

2. J.A. Alexander and M.C. Mozer, “Template-based
algorithms for connectionist rule extraction”, in Ad-
vances in Neural Information Processing Systems,
MIT Press, Cambridge, MA, 1995.

3. B.G. Buchanan and T.M. Mitchell, “Model-directed
learning of production rules”, in Pattern-Directed
Inference Systems, Academic Press, New York, 1978.

4. B.G. Buchanan and E.H. Shortliffe (eds.), Rule-Based
Expert Systems, Addison-Wesley, Reading, MA, 1984.

5. P. Clark and R. Niblett, “The CN2 induction algo-
rithm”, Machine Learning, 3, pp. 261-284, 1989.

6. L.M. Fu, “Knowledge-based connectionism for re-
vising domain theories”, IEEE Transactions on Sys-
tems, Man, and Cybernetics, 23(1), pp. 173–182,
1993.

7. L.M. Fu, Neural Networks in Computer Intelligence,
McGraw Hill, Inc., New York, NY, 1994.

8. L.M. Fu, “Learning in certainty factor based multi-
layer neural networks for classification”, IEEE Trans-
actions on Neural Networks. 9(1), pp. 151-158,
1998.

9. L.M. Fu and E.H. Shortliffe, “The application of cer-
tainty factors to neural computing for rule discov-
ery”, IEEE Transactions on Neural Networks, 11(3),
pp. 647-657, 2000.

10. C.Z. Janikow, “A knowledge-intensive genetic algo-
rithm for supervised learning”, Machine Learning,
13, pp. 189-228, 1993.

11. G.B. Koudelka, S.C. Harrison, and M. Ptashne, “Ef-
fect of non-contacted bases on the affinity of 434 op-
erator for 434 repressor and Cro”, Nature, 326, pp.
886-888, 1987.

12. R.C. Lacher, S.I. Hruska, and D.C. Kuncicky, “Back-
propagation learning in expert networks”, IEEE Trans-
actions on Neural Networks, 3(1), pp. 62–72, 1992.

13. N. Lavrac̆ and S. Dz̆eroski, Inductive Logic Program-
ming: Techniques and Applications, Ellis Horwood,
New York, 1994.

14. S.D. Lawrence, The Gene, Plenum Press, New York,
NY, 1987.

15. J.J. Mahoney and R. Mooney, “Combining connec-
tionist and symbolic learning to refine certainty-factor
rule bases”, Connection Science, 5, pp. 339-364,
1993.

16. T. Mitchell, Machine learning, McGraw Hill, Inc.,
New York, NY., 1997.

17. J.R. Quinlan, “Rule induction with statistical data—
a comparison with multiple regression”, Journal of
the Operational Research Society, 38, pp. 347-352,
1987.

18. J.R. Quinlan, C4.5: Programs for Machine Learn-
ing, Morgan Kaufmann, San Mateo, CA., 1993.

19. D.E. Rumelhart, G.E. Hinton, and R.J. Williams,
“Learning internal representation by error propa-
gation”, In Parallel Distributed Processing: Explo-
rations in the Microstructures of Cognition, Vol. 1.
MIT press, Cambridge, MA, 1986.

20. R. Setiono and H. Liu, “Symbolic representation of
neural networks”, Computer, 29(3), pp. 71-77, 1996.

21. Y. Shang and B.W. Wah, “Global optimization for
neural network training”, Computer, 29(3), pp. 45-
54, 1996.

22. E.H. Shortliffe and B.G. Buchanan, “A model of
inexact reasoning in medicine”, Mathematical Bio-
sciences, 23, pp. 351-379, 1975.

23. G.G. Towell and J.W. Shavlik, “Knowledge-based
artificial neural networks”, Artificial Intelligence. 70(1-
2), pp. 119-165, 1994.

9


