On Solvability for Higher Order Parabolic Equations

Martín López Morales
Department of Computer Science
Monterrey Institute of Technology. Mexico City Campus. Calle del Puente.No. 222.Ejidos de Huipulco.Tlalpan.C.P.14380. Mexico, D.F. MEXICO

Abstract

We consider the Cauchy problem for higher order linear parabolic equations in a layer. We establish new a priori estimates for the solution to this problem in general anisotropic Hölder norm, under the assumption that the coefficients and the independent term satisfy the general anisotropic Hölder condition of exponent $\alpha(l)$ with respect to the space variables only. In this connection, however, we also obtain an estimate for the modulus of continuity with respect to the time of the higher derivatives with respect to space variables of the corresponding solutions. On the basis of our new a priori estimates for the solution to the Cauchy problem for higher order linear parabolic equations, we establish the corresponding solvability theorem for this problem in general Hölder anisotropic spaces. We establish the local solvability of the Cauchy problem for higher order nonlinear parabolic equations with the aid of the results of the corresponding linear theory.

Key-Words: - estimates, solvability, equations, parabolicity, solution, problem

1. Introduction

In the present work we consider the higher order linear parabolic equation

$$
\begin{equation*}
\mathbf{u}_{t}-\sum_{|k| \leq 2 m} \mathbf{a}_{k}(\mathbf{t}, \mathbf{x}) D_{x}^{k} \mathbf{u}=\mathbf{f}(\mathbf{t}, \mathbf{x}) \tag{1}
\end{equation*}
$$

in the layer $\quad \Pi_{T}=[0, T] \times \boldsymbol{E}_{n}$ with the initial condition

$$
\begin{equation*}
\left.u\right|_{t=0}=\varphi(x) \tag{2}
\end{equation*}
$$

Here $\boldsymbol{x}=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)$ is a point of the n dimensional Euclidean space \boldsymbol{E}_{n}, $t \in[0, T]$.
$k=\left(k_{1}, \ldots, k_{n}\right),|k|=k_{1}+\ldots+k_{n}$,
$k_{i} \geq 0, \quad i=1, \ldots, n, \quad u_{t}=\frac{\partial u}{\partial t}$,
$D_{x}^{\mathbf{k}} \mathbf{u}=\frac{\partial^{\mathbf{k} \mid} \mathbf{u}}{\partial \mathbf{x}_{1}^{\mathbf{k}_{1}} \ldots \partial \mathbf{x}_{\mathrm{n}}^{\mathbf{k}_{\mathrm{n}}}}$
We establish new a priori estimates for solutions $\boldsymbol{u}(\boldsymbol{t}, \boldsymbol{x})$ to the problem (1),(2) in general anisotropic norms, under the assumption that the coefficients) and the independent term are continuous satisfy the
general Hölder in Π_{T} of exponent $\alpha(l), l>0$ with respect to the space variables $\boldsymbol{x}=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)$ only (See theorem 1). In this connection, however, we also obtain an estimate for the modulus of continuity with respect to the time \mathbf{t} of the leading derivatives $D_{x}^{k} \boldsymbol{u},|\boldsymbol{k}|=\mathbf{2 m}$ (See theorems 2,3).
Note that in the works [1]-[12] , the a priori estimates of this type have been obtained under the fulfilment of a (general) Hölder condition with respect to the totality of variables (\mathbf{t}, \mathbf{x}) on the coefficients and the independent term of equation (1).
On the basis of our new a priori
estimates for the solutions to the problem (1), (2), we establish the corresponding solvability theorems for this problem in general Hölder anisotropic spaces (See theorem 4).
We assume that the coefficients of Equation (1) satisfy the uniform parabolicity condition: for any non-zero vector $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in E_{n} ;(t, x) \in \Pi_{T}$

$$
(-1)^{\mathrm{m}+1} \sum_{\mid \mathrm{k}=2 \mathrm{~m}} \mathbf{a}_{\mathrm{k}}(\mathbf{t}, \mathbf{x}) \xi^{\mathrm{k}}>\lambda|\xi|^{2 \mathrm{~m}},
$$

$$
\begin{equation*}
\lambda=\text { const. }>0, \xi^{k}=\xi_{1}^{k_{1}} \ldots \xi_{n}^{k_{n}} \tag{3}
\end{equation*}
$$

We apply our results in the linear theory to establish the local solvability with respect to the time t, in general Hölder anisotropic spaces, to the Cauchy problem for the nonlinear parabolic equation (See theorem 5),

$$
\begin{equation*}
u_{t}=A\left(t, x, u, D_{x} u, \ldots, D_{x}^{2 m} u\right) \tag{4}
\end{equation*}
$$

in Π_{T} with the initial condition (2), where $\boldsymbol{D}_{x} \boldsymbol{u}=\left(\frac{\partial u}{\partial x_{1}}, \ldots, \frac{\partial u}{\partial x_{n}}\right)$ and $\boldsymbol{D}_{x}^{r} \boldsymbol{u}$ is the set of all derivative $D_{x}^{k} \boldsymbol{u},|\boldsymbol{k}|=r, 1 \leq r \leq 2 m$. In the present work, the equation (4) is linearized directly. No conditions are imposed here on the nature of the growth of the nonlinearity of the function $A\left(t, x, p^{0}, \boldsymbol{p}^{I}, \ldots, p^{2 m}\right)$
(See
[9]), where $\boldsymbol{p}^{\boldsymbol{o}}$ scalar, $\boldsymbol{p}^{r}=\left(\ldots, \boldsymbol{p}_{k}^{r}, \ldots\right)$,which is defined for $(\boldsymbol{t}, \boldsymbol{x}) \in \Pi_{T}$ and any $p^{0}, p^{r}, 1 \leq r \leq 2 m$.
The main assumption concerning to the function $\boldsymbol{A}\left(\boldsymbol{t}, \boldsymbol{x}, \boldsymbol{p}^{0}, \boldsymbol{p}^{1}, \ldots, \boldsymbol{p}^{2 m}\right)$ is the parabolicity condition: for any non zero vector $\boldsymbol{\xi}=\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{n}\right) \in \boldsymbol{E}_{n} ;(\boldsymbol{t}, \boldsymbol{x}) \in \Pi_{T}$ and $\boldsymbol{p}^{0}, \boldsymbol{p}^{1}, \ldots, \boldsymbol{p}^{2 m}$

$$
\begin{align*}
& (-1)^{m+1} \sum_{k \mathbf{k}=2 m} A_{p_{k}^{2 m}}^{2 m}\left(t, x, \mathbf{p}^{0}, \mathbf{p}^{1}, \ldots, \mathbf{p}^{2 m}\right) \xi^{k}>0, \\
& \xi^{k}=\xi_{1}^{k_{1}} \ldots \xi_{n}^{k} \tag{5}
\end{align*}
$$

In almost all the work we suppose that in the equation (1), the function $\boldsymbol{f}=\boldsymbol{f}_{1}+\boldsymbol{f}_{2}$; the functions $\boldsymbol{a}_{\boldsymbol{k}}(\boldsymbol{t}, \boldsymbol{x}),|\boldsymbol{k}|=\mathbf{2 m}$ and \boldsymbol{f}_{1} satisfy the general Hólder condition in Π_{T} of exponent $\beta(\boldsymbol{l}), \boldsymbol{l}>\boldsymbol{0}$ with respect to the space variables $\boldsymbol{x}=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)$ only and \boldsymbol{f}_{2} satisfies the general Hölder condition in Π_{T} of exponent $\boldsymbol{\alpha}(\boldsymbol{l}), \boldsymbol{l}>\boldsymbol{0}$ with respect
to the space variables $\boldsymbol{x}=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)$ only.
All the coefficients and the independent terms of equation 1 are continuous in the layer Π_{T}.
We require less smoothness conditions from the functions $\boldsymbol{A}\left(\boldsymbol{t}, \boldsymbol{x}, \boldsymbol{p}^{0}, \boldsymbol{p}^{\boldsymbol{1}}, \ldots, \boldsymbol{p}^{2 m}\right)$ and $\varphi(x)$ that in the works b[6], [7] and [9] (See theorem 5).Some close results for second order parabolic equations have been established in [13] -[17] and [19].

2. Basic Notations. Auxiliary Propositions

We shall say that the function $\boldsymbol{u}(\boldsymbol{t}, \boldsymbol{x})$ defined in the layer Π_{T} satisfies the general Hölder condition of exponent $\beta(\boldsymbol{l}), \boldsymbol{l}>\mathbf{0}$ in Π_{T} with respect to the space variables if there exists a constant $\boldsymbol{C}>\boldsymbol{0}$ such that

$$
\begin{aligned}
& |\mathbf{u}(\mathbf{t}, \mathbf{x})-\mathbf{u}(\mathbf{t}, \mathbf{y})| \leq \mathbf{d} \mathbf{x}-\mathbf{y} \mid \\
& (\mathbf{t}, \mathbf{x}),(\mathbf{t}, \mathbf{y}) \in \boldsymbol{\Pi}_{\mathbf{T}} .
\end{aligned}
$$

The function $\boldsymbol{\beta}(\boldsymbol{l})$ is defined and continuous in $0<l<\infty$. Moreover it has the following properties:
Ia.
$\beta(1) \rightarrow \sigma \in[0,1[$
if $1 \rightarrow 0^{+}$or $1 \rightarrow+\infty$
Ib .
$\beta^{\prime}(1) \ln \rightarrow 0$
if $1 \rightarrow 0^{+}$or $1 \rightarrow+\infty$
Ic. If $\boldsymbol{\sigma}=\boldsymbol{0}$ then

$$
\begin{aligned}
& \beta(l) \ln \rightarrow-\infty \quad \text { for } l \rightarrow 0^{+} \text {and } \\
& \left.\left(\beta(l)+\beta^{\prime}(l) l \ln \right)>0 \text { for } l \in\right] 0 . l_{0}[
\end{aligned}
$$

where \boldsymbol{I}_{0} is sufficiently small number (we suppose that the derivative $\boldsymbol{\beta}^{\prime}(\boldsymbol{l})$ exists and it is a continuous function in

$$
\left.\boldsymbol{R}_{0}=\right] 0 . I_{0}[\cup]_{1 / 0},+\infty[)
$$

Note that the condition Ic introduces a new set of functions (the functions $\boldsymbol{u}(\boldsymbol{t}, \boldsymbol{x})$ that satisfy the general Hölder condition with respect to space variables only).In this new set of functions we will obtain the corresponding existence and uniqueness theorems for the solutions to the problems (1),(2) and (4),(2). It follows from the conditions Ia, Ib, Ic that

IIa. $\boldsymbol{l}^{\boldsymbol{\beta (l)}}$ is a monotonically increasing function for $\boldsymbol{l} \in \boldsymbol{R}_{\boldsymbol{0}}$.
IIb. $\frac{(q l)^{\beta(l)-\sigma}}{\boldsymbol{l}^{\beta(l)-\sigma}} \rightarrow 1 \quad$ if \quad and \quad only \quad if $\boldsymbol{l} \rightarrow \mathbf{0}^{+}$or $\boldsymbol{l} \rightarrow+\infty$,
uniformly respect to $\boldsymbol{q}, \boldsymbol{0}<\boldsymbol{a} \leq \boldsymbol{q} \leq \boldsymbol{b}<\infty$ We denote by Γ the set of functions $\beta(l), l>0$ for which
$\Lambda l^{\beta(l)} \equiv \Lambda_{\beta(l)} \equiv \int_{0}^{t} t^{\beta(t)-l} d t<\infty$
For the functions $\beta(l) \in \Gamma$ we
introduce the
functions $\boldsymbol{B}_{\beta(l)}=\frac{1}{\ln l} \ln \frac{\Lambda_{\beta(l)}}{\Lambda_{\beta(l)}}$.
The function $\boldsymbol{B}_{\boldsymbol{\beta}(I)}$ is a function of the type $\beta(l)$.
III.. $\boldsymbol{B}_{\beta(l)}>0$ for $\left.l \in\right] 0 .+\infty[$.

IIII. There exist constants $\boldsymbol{C}_{1}, \boldsymbol{C}_{2}$ such that for $\boldsymbol{l} \in \boldsymbol{R}_{0}$
$l^{\beta(l)}<C_{l} l^{B_{\beta(l)}}$
and
$l^{B_{\beta(l)}}<C_{2} l^{\beta(l)}$ for $l>0$
IIIc. There exists a constant \boldsymbol{C}_{3} such that for

$$
l \in] 0 . l_{o}[
$$

$l \int_{l}^{+\infty} \rho^{\beta(\rho)-2} d \rho \leq C_{3} \Lambda_{\beta(\rho)}$
Now we give two examples of functions of the type $\beta(l)$:
$1 \beta(l)=\beta, \beta=$ const., $\quad 0<\beta<1$
2.
$\beta(l)= \begin{cases}\beta-\frac{b \ln (-\ln l)}{\ln l}, & 0<l \leq \exp \left(-\frac{b}{a}\right) \\ \beta-\frac{b \ln \left(\frac{b}{a}\right)}{\ln l}, & l>\exp \left(-\frac{b}{a}\right)\end{cases}$
where
$0<a<1, \quad \beta=$ const., $\quad 0 \leq \beta<1$ (see
[18]).
For the functions $\boldsymbol{u}(\boldsymbol{t}, \boldsymbol{x})$ defined and Hölder continuous(in the general sense) of exponent
$\beta(l), l>0$ in the layer Π_{T} with respect to space variables, we introduce the following norms
$|\boldsymbol{u}|_{\boldsymbol{0}, \boldsymbol{0}}^{[t]}=\left.\underset{\boldsymbol{0} \leq \tau \leq t}{ } \sup _{\boldsymbol{u}}\right|_{\boldsymbol{0}, \boldsymbol{0}} ^{\boldsymbol{\tau}}$,
$|u|_{0, \beta(l)}^{[t]}=\sup _{0 \leq \tau \leq t}|u|_{0, \beta(l)}^{\tau}$,
where

$$
\begin{align*}
& |u|_{0,0}^{t}=\sup _{x \in E_{n}}|u(t, x)|, \\
& |u|_{0, \beta(l)}^{t}=|\boldsymbol{u}|_{0,0}^{t}+H_{\beta(l)}^{t}(u), \tag{7}\\
& \mathbf{H}_{\beta(\mathbf{l})}^{\mathbf{t}}(\mathbf{u})=\sup _{\substack{\mathbf{x}, \mathbf{y} \in \mathbf{E}_{\mathbf{n}} \\
\mathbf{x} \neq \mathbf{y}}} \frac{\mid \mathbf{u}(\mathbf{t}, \mathbf{x}))-\mathbf{u}(\mathbf{t}, \mathbf{y}) \mid}{|\mathbf{x}-\mathbf{y}|^{\beta(|x-\mathbf{y}|)}} \tag{8}
\end{align*}
$$

For the functions $\boldsymbol{u}(\boldsymbol{t}, \boldsymbol{x})$ that have continuous derivatives with respect to \boldsymbol{x} up to the order $\boldsymbol{m}(\boldsymbol{m}=\mathbf{0}, \mathbf{1 , 2}, \ldots$.$) inclusively in$ the layer Π_{T} and satisfying the general Hölder condition of exponent $\boldsymbol{\beta}(\boldsymbol{l}), \boldsymbol{l}>\boldsymbol{0}$, with respect to space variables in the layer Π_{T} we define the norms
$\left.\left.|\mathbf{u}|_{\mathbf{m}, \beta(\mathbf{l}}^{\tau}\right)=\underset{|\mathbf{k}| \leq \mathbf{m}}{\sum}\left|\mathbf{D}_{\mathbf{x}}^{\mathbf{k} u}\right|_{\mathbf{0 , \beta}(\mathbf{l}}^{\tau}\right)$
$\mathbf{m}=\mathbf{0 , 1 , 2 , \ldots .}$
$|\mathbf{u}|_{\mathbf{m}, \boldsymbol{t}(\mathbf{l})}^{[\mathrm{l}]}=\underset{\mathbf{0 \leq \tau \leq t}}{ }|\mathbf{u}|_{\mathbf{m}, \beta(\mathbf{l}}^{\tau}, \mathbf{m}=\mathbf{0 , 1 , 2 , \ldots .}$.
We will denote by
$C_{m, \beta(l)}^{[t]}\left(\Pi_{t}\right) \quad \boldsymbol{m}=0,1,2, \ldots$ the
Banach space of functions $\mathbf{u}(\mathbf{t}, \mathbf{x})$ that are continuous in $\boldsymbol{\Pi}_{t}=[\boldsymbol{0}, \boldsymbol{t}] \times \boldsymbol{E}_{n}$ together with all derivatives respect to \boldsymbol{X} up to the order $\boldsymbol{m}(\boldsymbol{m}=0,1,2, .$.$) inclusively and have a$ finite norm (10).
With respect to the coefficients of the equation (1) we assume that
$\mathbf{a}_{\mathbf{k}}(\mathbf{t}, \mathbf{x}) \in \mathbf{C}_{\mathbf{0}, \boldsymbol{\beta}(\mathbf{l})}^{[\mathrm{t}]}\left(\Pi_{\mathrm{T}}\right)$,
$0 \leq|k| \leq 2 m$
and

$$
\left.\left.\sum_{|\mathbf{k}| \leq m}\right|_{\mathbf{a}_{k}}(\mathbf{t}, \mathbf{x})\right|_{\mathbf{0}, \boldsymbol{\beta}(\mathbf{l})} ^{[\mathbf{T}]}=\mathbf{B}<\infty
$$

(11)

Lemma. Suppose that the function
$\mathbf{u}(\mathbf{t}, \mathbf{x}) \in \mathbf{C}_{\mathbf{2 m}, \mathbf{B}_{\boldsymbol{\beta}_{(\mathrm{l})}}^{[t]}}\left(\Pi_{\mathrm{t}}\right)$
$0 \leq t \leq T$.
Then for $0<\varepsilon<1$ the following inequality holds

$$
\begin{aligned}
|\mathbf{u}| \begin{array}{l}
{[\mathbf{t}]} \\
2 \mathrm{~m}-1, \mathrm{~B}_{\beta(1)}
\end{array} & \leq \varepsilon|\mathbf{u}|_{2 \mathrm{~m}, \mathbf{B}_{\beta(1)}^{[t]}}^{[\mathrm{t}]}
\end{aligned}+
$$

For the proof of this lemma see [7].
For equation (4) we consider in addition to the parabolicity condition (5) that there exists a domain
$\mathbf{H}_{\mathbf{M}}=\left\{(\mathbf{t}, \mathbf{x}) \in \Pi_{\mathrm{T}} ;|\mathbf{u}| \leq \mathbf{M}, \cdots\right.$
$\ldots\left|p^{r}\right| \leq M, 1 \leq r \leq 2 m, M=$ const $\}^{\text {in }}$
which the function $A\left(t, x, p^{0}, p^{1}, \ldots, p^{2 m}\right)$ together with its derivatives with respect to $p_{k}^{r}, p^{r}=\left(\ldots, p_{k}^{r}, \ldots\right), \quad 1 \leq r=|k| \leq 2 m$ up to the second order inclusively is continuous, satisfies the Lipschitz condition with respect to $\boldsymbol{p}^{r}, \quad 1 \leq r=|\boldsymbol{k}| \leq 2 \boldsymbol{m}$ and the general Hölder condition of exponent $\boldsymbol{\beta}(\boldsymbol{l}), \boldsymbol{l}>\boldsymbol{0}$, with respect to \boldsymbol{x} and with the constant \boldsymbol{C}_{M}.

Moreover $A(t, x, 0, \ldots 0) \in C_{0, \alpha(l)}^{[T]}\left(\Pi_{T}\right)$,
$|A(t, x, 0, \ldots 0)|_{0, \alpha(l)}^{[T]} \leq C$.
All the mentioned derivatives are bounded in $\boldsymbol{H}_{\boldsymbol{M}}$ by the constant $\boldsymbol{C}_{\boldsymbol{M}}$. Now we shall consider the equation (1) with the initial zero condition:

$$
\begin{equation*}
\left.u\right|_{t=0}=0 \tag{12}
\end{equation*}
$$

3. Bounds for solutions to the Cauchy problem for linear parabolic equation

Theorem 1.

be a solution to the problem (1), (12) in the layer $\boldsymbol{\Pi}_{\boldsymbol{T}}$.Assume that

$$
f=f_{1}+f_{2}, f_{1} \in C_{0, \beta(l)}^{[t]}\left(\Pi_{T}\right)
$$

$f_{2} \in C_{0, \alpha(l)}^{[t]}\left(\Pi_{T}\right), \beta(l), \alpha(l) \in \Gamma$,
$\beta(l) \rightarrow \sigma_{1}, \quad \alpha(l) \rightarrow \sigma_{2}$
if $\mathrm{l} \rightarrow 0^{+}$or $\mathrm{l} \rightarrow+\infty, \quad 0 \leq \sigma_{1}<\sigma_{2}<1$.
Furthermore the conditions (3) and (11) hold. Then there exists a constant \mathbf{K}, depending only on $\boldsymbol{n}, \boldsymbol{m}, \boldsymbol{\lambda}, \boldsymbol{B}, \boldsymbol{T}, \boldsymbol{\alpha}(\boldsymbol{l}), \boldsymbol{\beta}(\boldsymbol{l})$ and $\boldsymbol{B}_{\boldsymbol{\beta}(\boldsymbol{l})}$ such that for $0 \leq t \leq T$
$\left\lvert\, \mathbf{u}_{\underset{2 m, B_{\beta(1)}}{[t]}}^{[t]}\left[\left.\right|_{f_{1}} ^{[t]}+t_{0, \beta(1)}^{[t]} \quad \frac{\sigma_{2}-\sigma_{1}}{2 m}\left|f_{2}\right|_{0, \alpha(1)}^{[t]}\right]\right.$

Remark. We can reduce the Cauchy problem with non-zero initial condition $\left.\boldsymbol{u}\right|_{\boldsymbol{t}=\boldsymbol{0}}=\boldsymbol{u}_{\boldsymbol{0}}(\boldsymbol{x})$ to the Cauchy problem (1), (12) by means of the transformation $\overline{\boldsymbol{u}}=\boldsymbol{u}(\boldsymbol{t}, \boldsymbol{x})-\boldsymbol{u}_{\boldsymbol{0}}(\boldsymbol{x})$ where
$u_{0}(x) \in C_{2 m, \beta(l)}^{[T]}\left(E_{n}\right)$.
Now we shall establish an estimate of the modulus of continuity with respect to the time t of the derivatives $D_{x}^{k} \boldsymbol{u}, \quad|\boldsymbol{k}| \leq 2 \boldsymbol{m}$ for the solutions to the equation (1).
Theorem 2. Let $\mathbf{u}(\mathbf{t}, \mathbf{x}) \in \mathbf{C}_{\mathbf{2 m}, \mathbf{B}_{\boldsymbol{\beta}(\mathbf{l})}}^{[\mathbf{T}]}\left(\boldsymbol{\Pi}_{\mathbf{T}}\right)$ be a solution to the equation (1) in the cylindrical domain $\boldsymbol{Q}_{\boldsymbol{T}}=[\boldsymbol{0}, \boldsymbol{T}] \times \boldsymbol{\Omega}, \quad \boldsymbol{\Omega}$ - bounded domain in \boldsymbol{E}_{n}.Assume that

$$
\begin{array}{ll}
f \in C_{0, \beta(l)}^{[t]}\left(Q_{T}\right), \beta(l) \in \Gamma \\
\beta(l) \rightarrow \sigma_{1}, & \text { if } 1 \rightarrow 0^{+} \text {or } 1 \rightarrow+\infty, \\
& 0 \leq \sigma_{1}<1
\end{array}
$$

Furthermore the conditions (3) and (11) hold. Then if the points ,
$\left(\mathrm{t}_{1}, \mathrm{x}_{0}\right),\left(\mathrm{t}_{2}, \mathrm{x}_{0}\right) \in \mathrm{Q}_{\mathrm{T}}^{\boldsymbol{\delta}}=\left(\boldsymbol{\delta}^{2}, \mathrm{~T}\right] \times \Omega{ }_{\mathrm{\delta}} \mathrm{\delta}^{2}$
$\delta^{2}<t_{2}<t_{1}<T$,
$\Omega^{\delta}=\{x \in \Omega ; \operatorname{dist}(x, \partial \Omega)>\delta\}$, there
exists a constant \mathbf{K}, depending only on $n, m, \lambda, B, T, \alpha(l), \beta(l)$ and $B_{\beta(l)}$
such that for any derivative
$D_{x}^{k} \boldsymbol{u},|\boldsymbol{k}| \leq 2 \boldsymbol{m}$ of the function $\boldsymbol{u}(t, x)$ the following estimate holds for
$j=0,1, \ldots, 2 m-1$

$\leq K\left[\left|\mathbf{f}_{\mathbf{0}, \boldsymbol{\beta}(\mathbf{1})}^{\left[\mathbf{t}_{\mathbf{1}}\right]}+|\mathbf{u}|_{\mathbf{0}, \mathbf{0}}^{\left[\mathbf{t}_{\mathbf{1}}\right]}\right]\right.$
The proof of the theorem 2 is similar to the proof of the theorem 2 in [16] but reasoning as in the proof of theorem 1 of the present paper.

Theorem 3.Suppose that all assumptions of the theorem 1 hold. Then for every $\left(t_{1}, x\right),\left(t_{2}, x\right) \in \Pi_{T}$,
$0 \leq \boldsymbol{t}_{2}<\boldsymbol{t}_{\boldsymbol{1}} \leq \boldsymbol{T}$, there exists a constant \mathbf{K}, depending only on $n, m, \lambda, B, T, \alpha(l), \beta(l)$ and $B_{\beta(l)}$, such that for any derivative $D_{x}^{k} \boldsymbol{u},|\boldsymbol{k}| \leq 2 \boldsymbol{m}$ of the solution $\boldsymbol{u}(\boldsymbol{t}, \boldsymbol{x})$ to the Cauchy problem (1),(12)the following estimates hold for $j=0,1, \ldots, 2 m-1$
$\left|u\left(t_{1}, x\right)-u\left(t_{2}, x\right)\right| \leq K M\left|t_{1}-t_{2}\right|$
$\left|\mathbf{D}_{\mathbf{x}}^{2 \mathrm{~m}-\mathrm{j}} \mathbf{u}\left(\mathbf{t}_{1}, \mathbf{x}\right)-\mathbf{D}_{\mathbf{x}}^{2 \mathrm{~m}-\mathrm{j}} \mathbf{u}\left(\mathbf{t}_{2}, \mathbf{x}\right)\right| \leq$
$\leq K M\left(\left|\mathbf{t}_{1}-\mathbf{t}_{2}\right|^{\frac{1}{2 m}}\right)^{B_{\beta\left(\mid t_{1}-\mathbf{t}_{2}\right.} \left\lvert\, \frac{1}{2 m}+j\right.}$
(15)
where
$\mathbf{M}=\left[\left|\mathbf{f}_{1}\right|_{0, \beta(\mathrm{t})}^{[\mathrm{t}]}+\left.\mathbf{t}_{1}{ }_{2}^{\sigma_{2}-\sigma_{1}}{ }_{2 \mathrm{~m}} \mathbf{f}_{2}\right|_{\mathbf{0 , \alpha (\mathrm { l })}} ^{[\mathrm{t}]}\right]$
The proof of this theorem is similar to the proof of the theorem 3 in [16] but reasoning as in the proof of theorem 1 of the present paper

4. Existence and uniqueness theorems.

Theorem 4.Suppose that all conditions of theorem 1 are true. Then there exits a unique solution $\boldsymbol{u}(t, x) \in C_{2 m, B_{\beta}(l)}^{[\boldsymbol{T}]}\left(\Pi_{\boldsymbol{T}}\right)$ to the Cauchy problem (1), (2) with continuous derivatives $\boldsymbol{u}_{\boldsymbol{t}}$ in $\boldsymbol{\Pi}_{\boldsymbol{T}}$.
We can get the proof of this theorem on the basis of the new priori estimates established in this work and with the aid of the method of continuity in a parameter. (see [4] and [20]). We proceed now to formulate the local existence theorem for solutions to the nonlinear problems for the equation (4). Here we consider that the function

$$
\begin{aligned}
& \mathbf{A}\left(\mathbf{t}, \mathbf{x}, \mathbf{u}, \mathbf{D}_{\mathbf{x}} \mathbf{u}, \ldots, \mathbf{D}_{\mathbf{x}}^{2 \mathrm{~m}} \mathbf{u}\right)= \\
& \mathbf{L}(\mathbf{u})+\mathbf{F}\left(\mathbf{t}, \mathbf{x}, \mathbf{u}, \mathbf{D}_{\mathbf{x}} \mathbf{u}, \ldots, \mathbf{D}_{\mathbf{x}}^{2 \mathrm{~m}} \mathbf{u}\right)+ \\
& +\mathbf{A}(\mathbf{t}, \mathbf{x}, \mathbf{0}, \ldots, \mathbf{0})
\end{aligned}
$$

where
$\mathbf{L}(\mathbf{u})=\mathbf{A}(\mathbf{t}, \mathbf{x}, \mathbf{0}, \ldots, \mathbf{0}) \mathbf{u}+$
$\left(A_{p} \mathbf{1}(t, x, 0, \ldots, 0), D_{x} u\right)+\ldots+$
$+\left(A_{p}{ }_{2 m}(\mathbf{t}, \mathbf{x}, \mathbf{0}, \ldots, 0), D_{x}^{2 m} \mathbf{u}\right)$
Theorem 5. Suppose that all assumptions with respect to the function $A\left(t, x, p^{0}, p^{1}, \ldots, p^{2 m}\right)$ hold. Moreover $0 \leq \sigma_{1}<\sigma_{2}<1$.Then there exists
\boldsymbol{t}_{0} determined by the above assumptions, such that the problem (4), (12) has in the layer $\Pi_{\mathbf{t}_{\mathbf{0}}}=\left[\mathbf{0}, \mathbf{t}_{\mathbf{0}} \nmid \mathbf{E}_{\mathbf{n}}\right.$ a unique solution $\mathbf{u}(\mathbf{t}, \mathbf{x}) \in \mathbf{C}_{\left.\mathbf{2 m}, \mathbf{t}_{\boldsymbol{0}} \mathbf{t}_{\mathbf{0}}\right]}\left(\mathrm{H}_{\mathbf{t}_{\mathbf{0}}}\right)$ with a continuous derivative $\boldsymbol{u}_{\boldsymbol{t}}$ in $\boldsymbol{\Pi}_{\mathbf{t}_{\mathbf{0}}}=[\mathbf{0 , t} \mathbf{0}\rfloor \times \mathbf{E}_{\mathbf{n}}$.

Remark. We can reduce the Cauchy problem with non-zero initial condition
$\left.u\right|_{t=0}=\varphi(x)$ to the Cauchy problem with the zero initial condition $\left.\boldsymbol{u}\right|_{\boldsymbol{t}=\boldsymbol{0}}=\mathbf{0}$ by means
of the transformation $\overline{\boldsymbol{u}}=\boldsymbol{u}(\boldsymbol{t}, \boldsymbol{x})-\boldsymbol{\varphi}(\boldsymbol{x})$, where $\varphi(x) \in C_{2 m, \beta(l)}^{[T]}\left(E_{n}\right)$.

References

[1] R. B. Barrar, "Some estimates for solutions of parabolic equations",J. Math. Anal. App. 373-397(1961)
[2] C. Ciliberto, 'Formule di maggiorazine e teoremi di esistenza per le soluzione della equazioni paraboliche in due variabili", Ricerche Mat. 3, 40-75(1945)
[3] Friedman A. "Boundary estimates for second order parabolic equations and their applications", J. Math. and Mech. 7, 5771 792(1968)
[4] Friedman A.. Partial Differential Equations of Parabolic Type. Prince - Hall, Englewood Cliffs, New Jersey.(1964).
[5] Solonnikov A."On boundary value problems for linear parabolic systems of differential equations of general forms", Trudy Mat. Inst. Steklov 83 (1965) Proc.Steklov Inst. Math. 83 (1965).
[6] Ivanovich M.D. "On the nature of continuity of solutions of linear parabolic equations of the second order" . Vesnik Moskov Univ.Ser.I, Mat. Mech. 21 ,4 (1966), 31-41. (MoscowUniversity Mathematics Bulletin N. 4 31-41(1966)).
[7] Ivanovich M.D." Estimates of solutions of general boundary- value problems for parabolic systems" . Soviet Math.Dokl. 9, 4 ,786-789(1968)
[8] Matichuk M.I. , Eidelman S.D." Parabolic Systems" with coefficients satisfying Dini s condition". Soviet . Math.Dokl. I , 165 , 3 1461-1464(1965)
[9] Eidelman D." Parabolic Systems. Noordhoff, Grioningen and North - Holland, Amsterdam.(1969).
[10] Kruzhkov S.N.,Castro A., M. Lopez, "Schauder type estimates and existence
theorems for the solution of the Cauchy problem for linear and non-linear parabolic equations(I)", Vol. 1 Universidad de la Habana 31-48(1980).
[11] Kruzhkov S.N., Castro A.Lopez M. "Schauder type estimates and existence theorems for the solution of the Cauchy problem for linear and non-linear parabolic equations (II)". Ciencias Matemáticas. Vol. I . Universidad de La Habana .37-45(1982)
[12] Matichuk M.I. , Eidelman S.D.'The Cauchy problem for parabolic systems whose coefficients have low smoothness".Ukrain. Mat. Z 22, 22-36(1970)
[13] Lopez M. , Che J. "On the Cauchy Problem for Parabolic Equations" . Journal of the Ramanujan Mathematics Society. India. Vol. 11. NO. 1. pp 1-36(1996)
[14] Lopez M. "On the Mixed Problem for Parabolic Equations". Aportaciones Matematicas(Mexican Mathematical Society).Comunicaciones 12; 81-109 (1993)
[15] Lopez M. , Che J . "On the Solvability of the First Initial Boundary Value Problem for Parabolic \ Equations". Aportaciones Matematicas (Mexican Mathematical Society). Comunicaciones 14 ; 123-139, (1994).
[16] Lopez M. , "On the solvability of the Cauchy problem for linear parabolic equations",Ciencias Matemáticas, Vol. IX, 3 Universidad de La Habana, 31- 48(1988)
[17] Lopez M. "On the local solvability of the Cauchy problem for nonlinear parabolic equations".Ciencias
Matemáticas,Vol.VII,No.3,17-24,1986.
[18] Sperner E. Jr. "Schauders existences therem for - Dini continuos data". Ark. Mat.1,19, 2 ; 193-216(1981).
[19] Lunardi A. "Existence in the small and in the large in fully nonlinear parabolic equations".Differential Equations and Applications. Vol. I,II (Colombo OH,1988)170-178. Ohio Univ.Press Athens, OH,(1989).
[20] Ladyzhenskaia A., Solonnikov V.A. and

Uraltseva N.N., 'Linear and quasilinear equations of parabolic type", Trans. Math. Mon. Vol. 23 American Mathematical Society (1968).

