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Abstract— In the future IP networks, a wide range of dif-
ferent service classes must be supported and different classes
of customers will pay different prices for their used network
resources based on Service-Level-Agreements. In this paper,
we link resource allocation scheme with pricing strategies and
explore the problem of maximizing the revenue of network
providers by resource allocation among multiple service classes
under a certain Service-Level-Agreement and a given amount of
network resources. A revenue-aware resource allocation scheme
is proposed under linear pricing strategy, which has the closed-
form solution to the optimal resource allocation for maximizing
the revenue per time unit gained in a network node. The optimal
allocation scheme is derived from revenue target function by
Lagrangian optimization approach.

Keywords: Network resource allocation, QoS, Pricing strat-
egy, Revenue maximization.

I. I NTRODUCTION

Resource allocation in the multiservice communication net-
works presents a very important problem in the design of
the future multi-class Internet. The main motivation for the
research in this field lies in the necessity for structural changes
in the way the Internet is designed. The current Internet
offers a single class of ’best-effort’ service, although some
traffic prioritization will be active in the new network router
implementations. The future IP networks must carry a wide
range of different traffic types being still able to provide per-
formance guarantees to real-time sessions such as Voice over
IP (VoIP), Video-on-Demand (VoD), or Video-Conferencing.
Efficient and effective communication needs careful Quality
of Service (QoS) design by means of appropriate resource
allocation among competing traffic flows with different service
classes. On the other hand, for the future multi-class Internet,
users will have to pay the network providers based on pricing
strategies agreed in their Service-Level-Agreements. Obvi-
ously, the pricing strategy will specify the relationship between
the price paid by each class of users and the QoS (e.g., delay,
jitter) provided by the network provider, which normally states
that the network provider will get a revenue when the offered
QoS meets the minimal performance requirement and suffer
a penalty when the offered QoS fails to meet that. Network
designers are facing a complicated problem of optimizing
the network control to satisfy both the issue of performance
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guarantees for multi-class traffics and the issue of maximizing
the revenues of service providers.

Pricing research in the networks has been quite intensive
during the last few years (e.g., [6], [3], [10], [11]). Also alot of
work (e.g., [14], [9], [7]) has been done concerning the issues
of resource allocation and fairness in a single-service environ-
ment. But the combination of pricing strategies and resource
allocation among multiple service classes have not been ana-
lyzed widely. A number of works [12], [2], [13], [8] recently
use end-users’ utility as the maximizing objective for resource
allocation schemes. All of these approaches have a common
objective of maximizing the network performance in terms
of the users’ utility. Our research differs from these studies
by linking resource allocation scheme with pricing strategies
of multiple service classes to maximize the revenue gained
under a certain amount of resources. A revenue-maximizing
pricing scheme for the service provider is presented in [1],
where a noncooperative (Nash) flow control game is played
by the users (followers) in a Stackelberg game with the goal
of setting a price to maximize revenue. Our scheme proposed
in this paper is to maximize the revenue under given pricing
strategies by the optimal resource allocation among competing
traffic flows from different service classes.

This paper extends our previous QoS and pricing research
([5], [4]) and takes into account revenue maximization issue
by introducing new revenue-aware resource allocation scheme
into multiservice IP networks. In a network node supporting
multiple service classes, packets are queued in a multi-queue
system, where each queue corresponds to one service class.
Based on a pricing strategy which specifies the relationship
between the paid prices and the offered service performances,
the network provider will get a revenue or suffer a penalty
whenever serving one incoming packet. In this paper, a
revenue-aware resource allocation scheme is proposed under
linear pricing strategy, which has the closed-form solution to
the optimal resource allocation derived from revenue target
function by Lagrangian optimization approach.

The rest of the paper is organized as follows. In Section 2,
three pricing strategies (linear, flat and piecewise linear) are
presented and the linear one is generally defined. Revenue-
aware resource allocation scheme is derived in Section 3,
where the optimal allocating solution is given for maximizing
the revenue of service providers. Section 4 contains simulation
part demonstrating the revenue-maximizing ability of our
proposed resource allocation scheme. Finally, in Session 5,
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Fig. 1. Three linear pricing functions. Horizontal axis: delay; vertical axis:
price.

we present concluding remarks.

II. PRICING STRATEGY

Three pricing strategies are presented here which are be-
lieved to be the most used ones. First some parameters and no-
tions are defined. We consider a network node which supports
multiple service classes. There incoming packets are queued in
a multi-queue system (each queue corresponds to one service
class) and the resources in the network node (e.g. processor
capacity and bandwidth) are shared among those service
classes. The number of classes is denoted bym. Literature
usually refers to the gold, silver and bronze classes; in this
case,m = 3. The metric of service performance considered
in this paper is packet delay which is most concerned by
end users. The packet delay of classi in the network node
is referred to asdi(t). Hereafter, time indext is dropped for
convenience. For each service class, a pricing functionri(di) is
defined to rule the relationship between the QoS (packet delay
here) provided by a network provider and the price paid by
its customers. Obviously, it is non-increasing with respect to
the delaydi. Some examples of pricing functions are given in
Figs. 1, 2, and 3, which show the most used pricing strategies:
linear, flat and piecewise linear functions, respectively.In
this paper, our study concentrates on the revenue-maximizing
issue under linear pricing functions and the analysis underflat
pricing strategy is postponed to its sequel. The solution tothe
piecewise linear pricing strategy is a straightforward extension
to the above two cases. Specifically, Linear pricing strategy for
classi is characterized by the following definition.

Definition 1: The function

ri(di) = bi − kidi, i = 1, 2, ...,m, bi > 0, ki > 0 (1)

is called linear pricing function, wherebi andki are positive
constants and normallybi ≥ bj and ki ≥ kj hold to ensure
differentiated pricing if classi has higher priority than classj
(in this paper, we assume that class 1 is the highest priority
and classm is the lowest one).

Fig. 1 depicts three linear pricing functions for gold, silver
and bronze classes and it is commented in detail below. For
gold class, the pricing functionr1(d1) = 200 − 10d1 means
that when the delayd1 is smaller, the price paid by the gold
class of customers is higher - in this case, maximally 200
units of money. It is natural that for the highest priority class,
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Fig. 2. Three flat pricing functions. Horizontal axis: delay; vertical axis:
price.
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Fig. 3. Three piecewise linear pricing functions. Horizontal axis: delay;
vertical axis: price.

constant shiftb1 is selected to be the highest which determines
the maximum price paid by customers. On the other hand, the
penalty paid to the customers with the highest priority class
is also the highest if the network provider fails to meet the
minimum delay requirement (in this case, 20 time units for
the gold class); the growing rate of penalty along with the
delay depends on the slopek1 and it is also the highest. Same
observations hold for silver and bronze classes. For bronze
class,r3(d3) = 80−2d3 means that the price paid by that class
of customers is maximally 80 units of money, i.e., constant
shift b3 is the lowest. On the other hand, the penalty paid
to the bronze class of customers is the lowest when failing to
meet its minimal delay requirement (in this case, 40 time units
for the bronze class) and the growing rate of penalty is also the
lowest. For example, assume that a packet experiences a delay
of 30 time units in the network node. If the packet belongs
to the gold class, i.e.,d1 = 30, then r1(d1) = r1(30) =
200−10∗30 = −100 means the network provider should pay
100 units of money to the customer as the penalty; whereas,
if the packet belongs to the bronze class, i.e.,d3 = 30, then
r3(d3) = r3(30) = 80 − 2 ∗ 30 = 20 means the network
provider will get 20 units of money for serving that packet.
These are actually what we expect based on the requirement
of Service-Level-Agreement.

III. R EVENUE-AWARE RESOURCEALLOCATION SCHEME

Let us consider a network node which has the resource ofC
bit/s (processing capacity and/or bandwidth) and will support
m service classes totally. The traffic flows fed into the network
node are Poisson streams with arrival rateλ1, λ2, ..., λm,
respectively. We assume that the distribution of packet length
of all classes is exponential and usēLi (bits) to denote the
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mean packet length of classi. The portion of the resource
allocated to classi is denoted aswiC, i = 1, 2, ...,m and wi

is referred to as the weight allotted to classi. Without loss
of generality, only non-empty queues are considered, and thus
wi 6= 0. If some weightwi = 1, thenm = 1. Therefore, the
natural constraint for the weights is

∑m

i=1 wi = 1, wi ∈ (0, 1].
When the weight assigned to classi is wi, classi can be

guaranteed to have a portion of the resourcewiC; and the
packets of classi arrive at queuei with rateλi. Therefore, the
mean packet delay of classi d̄i in the network node can be
denoted as

d̄i =
1

wiC

L̄i
− λi

=
L̄i

wiC − λiL̄i

(2)

based on queueing theory. The natural constraint of Eq. (2) is
wiC > λiL̄i due to the fact that delay can not be negative.

The metric of revenue used in this paper is the revenue
gained per time unit since a network provider will obtain a
revenue or penalty whenever one packet is served. Unless
stated otherwise, we shall hereafter refer to the revenue per
time unit as revenue. We use the mean packet delayd̄i in
Eq. (2) to estimate the real packet delaydi. Then the revenue
gained in a network nodeF may be defined as follows when
the linear pricing function in Eq. (1) is deployed:

F =

m
∑

i=1

λiri(di) =

m
∑

i=1

λi(bi −
kiL̄i

wiC − λiL̄i

) (3)

As a result of the above definition, the issue of revenue max-
imization under linear pricing strategy by resource allocation
can be formulated as follows:

max F =
m

∑

i=1

λi(bi −
kiL̄i

wiC − λiL̄i

) (4)

s.t.

m
∑

i=1

wi = 1, 0 < wi ≤ 1 (5)

wiC > λiL̄i (6)

Theorem 1.For linear pricing strategy, the globally maximum
revenue F gained in a network node is achieved by using the
following optimal resource allocation scheme

wi =

√

λikiL̄i(C +

∑

m

j=1

√
λjkjL̄j√

λikiL̄i

λiL̄i −
∑m

j=1 λjL̄j)

C
∑m

j=1

√

λjkjL̄j

(7)
for i = 1, 2, ..., m and it is unique whenwi ∈ (0, 1].
Proof: Based on Equations (4) and (5), we can construct the
following Lagrangian equation.

P =

m
∑

i=1

λi(bi −
kiL̄i

wiC − λiL̄i

) + σ(1 −
m

∑

i=1

wi) (8)

Set partial derivatives ofP in Eq. (8) to zero:

∂P

∂wi

=
λikiL̄iC

(wiC − λiL̄i)2
− σ = 0. (9)

It follows that

σ =
λikiL̄iC

(wiC − λiL̄i)2
(10)

leading to the solution

wi =

√

λikiL̄i

Cσ
+

λiL̄i

C
, i = 1, 2, ...,m. (11)

Substituting Eq. (11) to Eq. (5), we get

√
σ =

∑m

i=1

√

λikiL̄iC

C − ∑m

i=1 λiL̄i

(12)

And when
√

σ in Eq. (12) is substituted to Eq. (11), the closed-
form solution in Eq. (7) is obtained.

Because of the constraint in Eq. (6)wiC > λiL̄i, obviously,

m
∑

j=1

wjC = C >

m
∑

j=1

λjL̄j (13)

Hence, the closed-form solution in Eq. (7)wi > 0. Moreover,
based on (13), the following inequality holds

λiL̄i −

√

λikiL̄i

∑m
j 6=i

j=1

λjL̄j

∑m
j 6=i

j=1

√

λjkjL̄j

≤ C

leading to in Eq. (7) the numerator less than the denominator.
Hence, we can conclude that0 < wi ≤ 1.

To prove that the closed-form solution in Eq. (7) is the only
and optimal one in the interval (0, 1], we consider second order
derivative ofP.

∂2P

∂w2
i

= − 2λikiL̄ic
2

(wiC − λiL̄i)3
< 0 (14)

due to the constraintwiC > λiL̄i in (6). Therefore, the
revenue per time unitF is strictly convex with the allotted set
of weights{w1, ..., wi, ..., wm} in the interval0 < wi ≤ 1,
having one and only one maximum. This completes the proof.
Q.E.D.

In addition, the theoretical maximum revenue gained by a
network provider can be calculated as follows.
Theorem 2. When the optimal resource allocation scheme is
deployed according to Theorem 1, the theoretical maximum
revenue obtained in a network node is

Fmax =

m
∑

i=1

(λibi) −
(
∑m

i=1

√

λikiL̄i)
2

C − ∑m

i=1 λiL̄i

(15)

Proof: When the optimal weights in Eq. (7) are substituted to
Eq. (3), the theoretical maximum ofF is

Fmax =
m

∑

i=1

(λibi −
λikiL̄i

∑m

i=1

√

λikiL̄i
√

λikiL̄i(C − ∑m

i=1 λiL̄i)
)

=
m

∑

i=1

(λibi −
√

λikiL̄i

∑m

i=1

√

λikiL̄i

C − ∑m

i=1 λiL̄i

)

=
m

∑

i=1

(λibi) −
(
∑m

i=1

√

λikiL̄i)
2

C − ∑m

i=1 λiL̄i

Q.E.D.
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IV. SIMULATIONS

In this section we present the simulation results which
demonstrate the effectiveness of our resource allocation
scheme for maximizing the revenues of network providers
under linear pricing strategy and a given amount of resources.
A number of simulations have been conducted under different
parameter settings. In each case, we first numerically deter-
mine the optimal allocation scheme using Theorem 1, and
then we investigate through simulations the benefits of the
optimal scheme by comparing the revenues obtained under
the optimal allocation with those obtained under a natural
scheme of proportional allocation as well as the theoretical
maximum revenues. A representative set of these simulations
are presented herein. Throughout this section, we shall focus
on a network node where its resourceC equals106 bit/s and
the number of service classes supportedm = 3 (namely,
gold, silver and bronze classes). The base arrival rates andthe
mean packet lengths of the above three classes are provided
in Table 1. A multiplicative load factor ρ > 0 is used
to scale these base arrival rates to consider different traffic
intensities; i.e.,λjρ will be used in the simulations as class-
j arrival rate. As mentioned above, we use a scheme that
proportionally allocates the resource among all service classes
for comparison with our revenue-aware resource allocation
scheme. Specifically, theproportionalscheme allots the weight
of classi as follows:wi = λiL̄i

∑

m

j=1
(λjL̄j)

, i = 1, 2, ...,m. Note

that this proportional scheme is a natural way to allocate
network resources.

A. The first set of simulations

In the first set of simulations, the parameters related to three
used linear pricing functions are summarized as follows:b1 =
200, k1 = 10000, for gold class,b2 = 150, k2 = 5000, for
silver class, andb3 = 80, k3 = 2000 for bronze class (note
that the time unit is second hereafter).

First we investigate the evolution of revenue along with the
time under our optimal allocation scheme and the proportional
scheme. In this case, the base arrival rates in Table 1 are
used and one allocation scheme with a set of given weights
(w1 = 0.60, w2 = 0.25, w3 = 0.15, referred to as given
scheme) is also used for comparison with our scheme. Fig.
4 presents the simulation results, where the x-axis represents
the time (the measurement period is 100 seconds here) and
the y-axis represents the revenue per second. It is observed
that the largest revenue is achieved under our optimal al-
location scheme compared with those achieved under the
proportional scheme and the given scheme. Moreover, the
simulated revenue under our optimal scheme is quite close
to the theoretical maximum revenue calculated by Eq. (15).
Since the parameters used in Eq. (15) are constant in this case,
the theoretical maximum remains unchanged; whereas, as the
real packet delay is variable, the simulated revenue varies
along with the time. Fig. 4 shows that the revenue obtained
under our optimal allocation scheme is very close to the
theoretical maximum, which demonstrates the effectiveness
of our scheme for revenue maximization. Additionally, the
revenue obtained under the proportional scheme is larger than

i = 1 i = 2 i = 3

(gold class) (silver class) (bronze class)

λi (packets/s) 10 15 20
L̄i (bits) 3360 3360 3360

TABLE I

THE BASE PARAMETERS FOR PACKET TRAFFIC
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Fig. 4. Revenue comparison as function of time, for the case, load factor
ρ = 1 and b1 = 200, k1=10000,b2 = 150, k2 = 5000, b3 = 80, k3 =

2000.
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Fig. 5. Revenue comparison as function of load factorρ, for the case,
b1 = 200, k1=10000,b2 = 150, k2 = 5000, b3 = 80, k3 = 2000.

the one obtained under the set of given weights, which shows
that the proportional allocation scheme is somehow acceptable
one in this case.

Next we examine the performance of our optimal allocation
scheme for the case that the same pricing functions are used
and different traffic intensities are fed into the network node.
Fig. 5 shows the simulation results, where the x-axis represents
the load factor and the y-axis represents the revenue.

We can see in Fig. 5 that the revenues obtained under
our optimal allocation scheme are extremely close to those
theoretical maximums under light and medium loads, and both
are growing almost linearly. This is as expected because few
penalties will be incurred under such loads. Under heavy loads
both curves start to level off as the penalties start to grow faster
than the revenues. Compared with our optimal scheme, the
proportional allocation scheme achieves less revenues under
all traffic loads. Although the revenue curve of the proportional
scheme also grows under light loads, it starts to decrease much
earlier as the penalties incurred under the proportional scheme
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are much larger than the ones under our optimal scheme when
the same workload is fed into the network node.

B. The second set of simulations

In the second set of simulations, the same simulations are
made under three different linear pricing functions:b1 = 200,
k1 = 5000, for gold class,b2 = 120, k2 = 2000, for silver
class, andb3 = 40, k3 = 500, for bronze class, to evaluate
the performance robustness of our optimal scheme for revenue
maximization. Figs. 6 and 7 present the simulation results.

It is observed in Fig. 6 that the revenue obtained under
our optimal scheme is the largest and it is also close to
the theoretical maximum by Eq. (15); whereas, the revenue
obtained under the proportional scheme is less than the one
obtained under the set of given weights in this case. Since
the slopeki of class i in this case is less than the one used
in the first set of simulations, the revenue of classi will
decrease more slowly along with the increase of delay in
this case, leading to the revenue curves in Fig. 7 still grows
under heavier loads compared with the ones in Fig. 5. The
point is the largest revenue is obtained by our optimal scheme
under all traffic loads and it is also very close to the curve of
theoretical maximum revenue. Therefore, the robustness ofthe
revenue-maximizing ability of our optimal allocation scheme
is demonstrated under linear pricing strategy.

V. CONCLUSIONS

In this paper, we link resource allocation scheme with pric-
ing strategies and explore the problem of maximizing the rev-
enue of network providers by resource allocation among mul-
tiple service classes under a certain Service-Level-Agreement
and a given amount of network resources. A revenue-aware
resource allocation scheme is proposed under linear pricing
strategy, which has the closed-form solution to the optimal
resource allocation for maximizing the revenue per time unit
gained in a network node. The optimal allocation scheme
is derived from revenue target function by Lagrangian opti-
mization approach. The simulations demonstrated the revenue-
maximizing ability of the optimal resource allocation scheme.

In the future work, the issue of revenue maximization under
flat pricing strategy will be investigated. Moreover, revenue
criterion as the admission control mechanism will be studied.

REFERENCES

[1] T. Basar, R. Srikant, ”Revenue-maximizing rpicing and capacity expan-
sion in a many-users regime,” Proc. of IEEE INFOCOM2002, Vol.1,
2002, pp. 294-301.

[2] Z. Cao, E. W. Zegura, ”Utility Max-Min: An Application-Oriented
Bandwidth Allocation Scheme,” IEEE INFOCOM99, New York, USA,
1999.

[3] C. Courcoubetis, F. P. Kelly, and R. Weber, ”Measurement-based usage
charges in communication networks,” Oper. Res., Vol.48, no.4, 2000,
pp. 535-548.
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