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Abstract

This paper continues to study the problem of optimally admitting a finite number customers from an auxiliary
buffer with a low holding cost into a single–server queue with a high holding cost without observing the status
of the single-server queue, which was introduced in Part I. This paper first proves a few asymptotic properties of
the sequence of optimal schedules indexed by the number of customers. In particular, it is proven that the first
inter-admission time converges to 0 as the number of customers increases. Then, a number of optimal schedules
were numerically computed for different cost ratio and the number of customers. On the basis of the numerical
results and queueing theoretic intuition, it is conjectured that in each optimal schedule the inter-admission times
are monotonically non-decreasing if arranged in chronological order.
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1 Introduction
This paper continues to examine the the problem

of optimally admitting a finite number of customers
from an auxiliary buffer with a low holding cost into a
single–server queue with a high holding cost without
observing the status of the single-server queue, which
was introduced in Part I [3]. The optimization prob-
lem is described as

minimize
N∑

i=1

[
t̃Ni + E(R̃i)

]

subject to t̃Ni ≥ 0, i = 1, 2, · · · , N
or equivalently

minimize g(x2, x3, · · · , xN ) (1)
subject to xi ≥ 0, i = 2, 3, · · · , N
where

g(x2, x3, · · · , xN )

≡
N∑

i=2

(N − i + 1)xi + C
N∑

i=1

E(R̃i) (2)

Note that E(R̃i) can be viewed either as a func-
tion of (t̃N1 , t̃N2 , · · · , t̃NN ) or (x2, x2, · · · , xN ). The sim-
plicity of the problem easily leads to some questions

and speculations on the optimal schedules. For exam-
ple, if the controller were able to observe the queue
length of main system, the optimal feedback admis-
sion control would be obviously that the controller ad-
mits a customer whenever the main system becomes
empty. Thus, the inter-admission times would depend
on the random service times of customers, and the ex-
pected value of these inter-admission times would be
all identical to the expected value of the service time,
1. Compared with such a closed-loop control prob-
lem, the controller cannot observe the main system
in the scheduling problem addressed by this paper,
and the admission control is static (off–line) in na-
ture. The auxiliary buffer initially holds the full load
of customers, so the cost at the auxiliary buffer ac-
crues at a high rate. As the auxiliary buffer unloads
these customers to the main system, the cost burden
at the auxiliary buffer lessens. At the same time,
the main system, which is initially empty, begins to
have positive probability of being crowded as the aux-
iliary buffer unloads the customers to the main system.
Therefore, inter-admission times at the early stage of
the optimal schedule are speculated to be shorter than
those at the later stage. This paper explores such an
edge effect. Constructing mathematically valid state-
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ments is found to be rather difficult. This paper can be
viewed as an effort to produce and prove mathemat-
ically concrete statements regarding the edge effect.
Part I [3] has established that in optimal scheduling
for a sufficiently large number of customers the time
to complete all the admissions should be at least the
total expected service time of all the customers. Al-
though Part I [3] shows that sufficiently long time is
taken to admit the whole set of customers optimally,
Section 2 in the present paper proves that in optimal
scheduling for a sufficiently large number of customers
the first inter-admission time (tN2 − tN1 = tN2 ≡ x∗

2) is
arbitrarily close to 0. Such a proposition in this paper
were partially motivated by the question of whether
there exists an atomic time unit based on which one
can discretize the problem of optimal scheduling and
still schedule various numbers of admissions optimally.
The results in this paper show that there is no posi-
tive lower bound on the inter-admission times of the
optimal schedules; thus, there is no such an atomic
time unit. In section 3, the method of numerical com-
putation of the optimal schedule and the results of
numerical evaluations are discussed.

2 First Inter-admission Time
In this section we show an edge effect displayed

in optimal schedules. (Recall that the main system
is initially empty.) Even if it takes the total ex-
pected service time to complete the admission for the
case of a large number of customers under an opti-
mal schedule (Theorem 1 of Part I), the first two ad-
jacent admission will be proven to be very close to-
gether in an optimal schedule. We will show that the
first inter-admission time becomes arbitrarily small
as the number of customers increases. Recall that
tN1 = 0 ≤ tN2 ≤ tN3 ≤ · · · ,≤ tNN are defined to be
the admission times of an optimal schedule. The main
result of this section is limN→∞ tN2 = 0.

In establishing this result, we will use interest-
ing properties of an optimal schedule regarding the
probability that the main system becomes idle in
an early time interval. Recall that we denote by a
left–continuous function XπN (t) the population of the
main system at time t under the optimal schedule
πN . Consider a sequence of positive numbers, {qN}
indexed by N . We will consider the conditional prob-
ability that the main system stays busy from time tN3
to qN given that e3 sees only one customer upon entry:

cN

≡ P [ XπN (t) > 0, ∀t ∈ (tN3 , qN )|XπN (tN3 ) = 1] (3)

Lemma 1 If for some ε > 0,

qN ≤
(

1
C

− ε

)
N ∀N, (4)

then {cN} is bounded below by a positive number.

Proof: In proving this we will often compare the op-
timal schedule πN with the modified schedule π̂N for
which eN is admitted at time t = 0 instead of tNN ;

πN = ( 0, tN2 , tN3 , · · · , tNN−1, t
N
N )

π̂N = ( 0, tN2 , tN3 , · · · , tNN−1, 0 )

Note that there are at least two admissions at time 0
under the modified schedule π̂N . As a result of the
modification, the cost incurred in the controller is re-
duced by tNN ;

fa(π̂N ) − fa(πN ) = −tNN (5)

Now we compare the costs associated with the two
schedules in the main system. Recall that the cost
does not depend on service disciplines as long as they
are work–conserving and do not discriminate against
the service times. For both schedules, we assume that
customer eN has the lowest priority, and other cus-
tomers can preempt eN . For the cost comparison in
the main system, we use the coupling argument; We
use an identical sample path of S1, S2, · · · for both
schedules in our analysis. We denote by Ri(πN ) and
Ri(π̂N ) the response times of customer ei for sched-
ules πN and π̂N , respectively, both under this service
discipline. Because other customers can preempt cus-
tomer eN , customer eN does not impede the service of
other customers. Also, the admission time of each cus-
tomer except eN remains unchanged in the schedule
modification. As a result, we have

Ri(πN ) = Ri(π̂N ), ∀i �= N

for each realization of the set of random service vari-
ables S1, S2, · · · , SN . Then, total increase of cost in
the main system is CE{RN (π̂N )− RN (πN )}. We de-
note by a left–continuous function Xπ̂N (t) the popula-
tion of the main system at time t under the modified
schedule π̂N . Consider the event, which is determined
by random variables S1, S2, · · · , SN , that the main sys-
tem becomes idle before time qN under the modified
schedule π̂N ; denote this event by EN . In this event
EN , RN (π̂N ) is less than qN because eN has to depart
from the system before time qN for this event to oc-
cur. (Recall that eN is admitted at time 0 in schedule
π̂N .) Therefore, we have E[RN (π̂N ) |EN ] ≤ qN , and
thus

E[ RN (π̂N ) − RN (πN ) | EN ] ≤ qN



Consider the complementary event Ec
N that the main

system stays busy until time qN under π̂N . In this
event, eN is still in the main system at time qN , and
the response time RN (π̂N ) is qN plus the time from
qN till the system becomes idle. (Recall that eN has
the lowest preemptive priority.) Due to memoryless
property of the exponential distribution, the the ex-
pected time conditioned on event Ec

N between adjacent
departures after qN is still 1 while Xπ̂N (t) is positive.
Also, note that there are no more than N customers.
Therefore, we have E[RN (π̂N ) | Ec

N ] ≤ qN + N , and
thus

E[ RN (π̂N ) − RN (πN ) | Ec
N ] ≤ qN + N

Combining all these, we see that the increase of the
cost in the main system as a result of the schedule
modification is

fm(π̂N ) − fm(πN )
≤ P (EN )CqN + P (Ec

N)C(qN + N)
= CqN + CP ( Ec

N )N (6)

From (5) and (6), the change of cost due to the sched-
ule modification is

fa(π̂N ) − fa(πN ) + fm(π̂N ) − fm(πN )
≤ −tNN + CqN + CP ( Ec

N )N

Due to hypothesis (4), we have

fa(π̂N ) − fa(πN ) + fm(π̂N ) − fm(πN )
≤ −tNN + C(1/C − ε)N + CP ( Ec

N )N

From Theorem 1 in Part I [3], for any γ > 0, we have
tNN > (1 − γ)N for sufficiently large N . Therefore, for
any γ > 0, if N is sufficiently large, we have

fa(π̂N ) − fa(πN ) + fm(π̂N ) − fm(πN )
≤ −(1 − γ)N + C(1/C − ε)N + CP ( Ec

N )N
= [γ + CP ( Ec

N ) − Cε] N (7)

Now we define conditional probability

ĉN ≡ P [ Xπ̂N (t) > 0, ∀t ∈ (tN3 , qN ) | Xπ̂N (tN3 ) = 3 ]

(Probability that the main system remains busy in
time interval (tN3 , qN ) under π̂N , conditioned on the
event that there is no departure in [0, tN3 )) Recalling
again that eN has the lowest preemptive priority, we
have

P ( Ec
N )

≡ P [ Xπ̂N (t) > 0, ∀t ∈ (0, qN ) ]

= P [Xπ̂N (tN3 ) = 3 ]ĉN + P [Xπ̂N (tN3 ) = 2 ] ×
P [ Xπ̂N (t) > 0, ∀t ∈ (tN3 , qN ) | Xπ̂N (tN3 ) = 2 ] +

P [Xπ̂N (tN3 ) = 1, S1 + SN ≥ tN2 ] ×
P [ Xπ̂N (t) > 0, ∀t ∈ (tN3 , qN ) |

Xπ̂N (tN3 ) = 1, S1 + SN ≥ tN2 ]
≤ { P [Xπ̂N (tN3 ) = 3 ] + P [Xπ̂N (tN3 ) = 2 ] +

P [Xπ̂N (tN3 ) = 1, S1 + SN ≥ tN2 ] }ĉN

≤ ĉN (8)

Suppose that there exists a sequence {Nk} such that
cNk

→ 0 as k → ∞. We argue that this implies
ĉNk

→ 0 as k → ∞ (proof in Appendix A ), and
thus P ( Ec

Nk
) → 0 from inequality (8). For each k,

compare π̂Nk with πNk . From expression (7), if we
pick γ < Cε, the cost of schedule π̂Nk is less than that
of πNk for sufficiently large k. This contradicts opti-
mality of schedule πNk . Therefore, {cN} is bounded
below by a positive number. Q.E.D.
We now examine the following properties of the opti-
mal schedule.

Lemma 2

tN2 ≤ ln C and tN3 ≤ t∗ for each N,

where t∗ is the unique solution to equation

(C + t − ln C) exp(−t) = 1/C (9)

Proof: We use the first–come–first–serve (FCFS) dis-
cipline for our analysis for this proof. Suppose that
tN2 > ln C. Then, we can consider modifying the
optimal schedule πN into another schedule π̆N , in
which we hasten the admission times of customers
e2, e3, · · · , eN by some δ < tN2 − ln C;

πN = ( 0, tN2 , tN3 , · · · , tNN−1 , tNN )

π̆N = ( 0, tN2 − δ, tN3 − δ, · · · , tNN−1 − δ, tNN − δ )

Then, the cost in the controller is reduced by δ(N−1);

fa(π̆N ) − fa(πN ) = −δ(N − 1) (10)

For the cost comparison in the main system, we again
use a coupling argument. (We use an identical sample
path of S1, S2, · · · for both schedules in our analysis.)
In the event S1 ≤ tN2 − δ, the response times in the
main system associated with πN and π̆N are the same.
In the event S1 > tN2 − δ, the total response time in
the main system increases as a result of the schedule
modification, but not more than by Cδ(N − 1). The



random variable S1 has an exponential distribution,
so we have P (S1 > tN2 − δ) = exp{−(tN2 − δ)} and

fm(π̆N ) − fm(πN )
≤ Cδ(N − 1) exp{−(tN2 − δ)} (11)

Combining (10) and (11), we have

fa(π̆N ) − fa(πN ) + fm(π̆N ) − fm(πN )
≤ −δ(N − 1) + Cδ(N − 1) exp{−(tN2 − δ)}
=

[
C exp{−(tN2 − δ)} − 1

]
δ(N − 1)

Because tN2 − δ > ln C, we have

P (S1 > tN2 − δ) = exp{−(tN2 − δ)}
< exp{−(ln C)} = 1/C

so the change of the total expected cost is negative.
This contradicts the optimality of πN . Hence, we
proved tN2 ≤ ln C.

Function g(t) ≡ (C + t − ln C) exp(−t) is strictly
monotone decreasing in t for t > 0, and we have g(0) =
C − ln C > 1/C and limt→∞ g(t) = 0. Therefore,
there is a unique solution, t∗, to equation (9). Also,
g(ln C) = 1 > 1/C, so t∗ > ln C. Suppose tN3 > t∗.
Then, pick a sufficiently small number δ with property
tN3 − δ > t∗. Compare the optimal schedule πN with
another schedule πN

1 ;

πN = ( 0, tN2 , tN3 , · · · , tNN−1, tNN )

πN
1 = ( 0, tN2 , tN3 − δ, · · · , tNN−1 − δ, tNN − δ )

Obviously,

fa(πN
1 ) − fa(πN ) = −(N − 2)δ (12)

In the event that the main system is empty under the
optimal schedule πN at time tN3 − δ, (i.e. XπN (tN3 −
δ) = 0 ), the total response times in the main system
do not change as a result of the schedule modification.
In the event XπN (tN3 −δ) > 0, the increase of the total
response time is no more than (N − 2)δ. Therefore,

fm(πN
1 ) − fm(πN )

≤ C P
[

XπN (tN3 − δ) > 0
]

(N − 2)δ (13)

From (12) and (13), the total change of the cost is

fa(πN
1 ) − fa(πN ) + fm(πN

1 ) − fm(πN )
≤ { C P

[
XπN (tN3 − δ) > 0

] − 1 } ×
(N − 2)δ (14)

We now consider another schedule, which delays the
admission of e2 to ln C and keeps the admission of
other customers unchanged from πN ;

πN
2 = (0, ln C, tN3 , tN4 , · · · , tNN )

Then, for each t ∈ (ln C, tN3 ),

P [XπN (t) > 0]
≤ P [XπN

2
(t) > 0]

= P (S1 ≤ ln C, S2 > t − ln C) +
P (S1 > ln C, S1 + S2 > t)

= (C + t − ln C) exp(−t) ≡ g(t) exp(−t)

Because tN3 − δ > t∗ and g(t) is strictly decreasing in
t

P [XπN (tN3 − δ) > 0]
≤ g(tN3 − δ) exp[−(tN3 − δ)]
< g(t∗) exp(−t∗) = 1/C

Therefore, the cost change in (14) is negative;

fa(πN
1 ) − fa(πN ) + fm(πN

1 ) − fm(πN ) < 0

This contradicts the optimality of πN . Therefore,
tN3 ≤ t∗. Q.E.D.

Now we can show that the first inter-admission time
becomes arbitrarily small for a large N .

Theorem 1
lim

N→∞
tN2 = 0

Proof: Suppose not. Then, there is an increas-
ing sequence {Nk} such that {tNk

2 |k = 1, 2, 3, · · ·} is
bounded below by a positive number. We will show
that then by hastening admission of e2 we can reduce
the cost when Nk is large, thus contradicting optimal-
ity.

Compare the optimal schedule πN with the modi-
fied schedule π̄N that admits e2 at time 0 and keeps
the admission times of other customers the same as in
πN ;

πN = (0, tN2 , tN3 , tN4 , · · · , tNN )
π̄N = (0, 0 , tN3 , tN4 , · · · , tNN )

By changing the admission time of e2, we decrease the
cost in the controller by tN2 ;

fa(π̄N ) − fa(πN ) = −tN2 (15)

Now, we consider the change of cost incurred in the
main system. Regarding the service discipline, we as-
sume without affecting the cost incurred in the main
system that e2 has the lowest priority, and all other
customers can preempt e2. All customers other than
e2 are served according the the FCFS discipline. Then,
we have

Ri(π̄N ) = Ri(πN ), ∀i �= 2,



so the expected change of the cost is

fm(π̄N ) − fm(πN ) = CE[R2(π̄N ) − R2(πN )]

In the event S1 ≥ tN2 , under the modified schedule π̄
e2 is not served in [0, tN2 ] but waits in the main system,
so e2’s response time increases by tN2 as a result of the
schedule modification;

E
[

R2(π̄N ) − R2(πN ) | S1 ≥ tN2
]

= tN2 (16)

Now,

E
[

R2(πN ) | S1 < tN2
]

= P
(
S2 ≤ tN3 − tN2 | S1 ≤ tN2

) ×
E

[
R2(πN ) | S2 ≤ tN3 − tN2 , S1 ≤ tN2

]
+

P
(
S2 > tN3 − tN2 | S1 ≤ tN2

) ×
E

[
R2(πN ) | S2 > tN3 − tN2 , S1 ≤ tN2

]
≥ P

(
S2 > tN3 − tN2 | S1 ≤ tN2

) ×
E

[
R2(πN ) | S2 > tN3 − tN2 , S1 ≤ tN2

]
= P

(
S2 > tN3 − tN2

) ×
E

[
R2(πN ) | S2 > tN3 − tN2 , S1 ≤ tN2

]
(17)

If we condition on S2 > tN3 −tN2 in addition to S1 < tN2 ,
the response time of e2 is tN3 − tN2 plus the time from
tN3 until the main system becomes empty because e2

has the lowest preemptive priority. We now define
such conditional expected value of the queue depletion
time. (Recall that XπN is left–continuous.)

dN ≡ E[inf{t ≥ tN3 |XπN (t) = 0} |
XπN (tN3 ) = 1 ] − tN3

To continue from (17), we have

E
[
R2(πN ) | S1 < tN2

]
≥ P

(
S2 > tN3 − tN2

)
(dN + tN3 − tN2 )

≥ P
(
S2 > tN3 − tN2

)
dN (18)

Now we consider the response time of e2 for the modi-
fied schedule π̄N under the condition S1 < tN2 . Recall
that e2 enters the main system at time 0 together with
e1 in this schedule. By a reasoning similar to the case
of the optimal schedule, we have

E
[
R2(π̄N ) | S1 < tN2

]
= P

(
S2 ≤ tN3 − S1 | S1 ≤ tN2

) ×
E

(
S1 + S2 | S2 ≤ tN3 − S1, S1 ≤ tN2

)
+

P
(
S2 > tN3 − S1 | S1 ≤ tN2

)
(tN3 + dN )

≤ P
(
S2 ≤ tN3 − S1 | S1 ≤ tN2

)
tN3 +

P
(
S2 > tN3 − S1 | S1 ≤ tN2

)
(tN3 + dN )

= tN3 + P
(
S2 > tN3 − S1 | S1 ≤ tN2

)
dN (19)

From (18) and (19), we have

E
[
R2(π̄N ) − R2(πN ) | S1 ≤ tN2

]
≤ tN3 + P

(
S2 > tN3 − S1 | S1 ≤ tN2

)
dN −

P
(
S2 > tN3 − tN2

)
dN (20)

Combining (16) and (20), we have

E
[
R2(π̄N ) − R2(πN )

]
≤ P

(
S1 > tN2

)
tN2 + P

(
S1 ≤ tN2

)
tN3 +

P
(
S2 > tN3 − S1, S1 ≤ tN2

)
dN −

P
(
S1 ≤ tN2

)
P

(
S2 > tN3 − tN2

)
dN

≤ tN2 + tN3 + dN tN2 exp(−tN3 ) −
dN {exp(tN2 ) − 1} exp(−tN3 )

≤ ln C + t∗ + dN{tN2 + 1 − exp(tN2 )} exp(−tN3 )
(from Lemma 2 )

Therefore, the change of cost as a result of modifica-
tion is

fa(π̄N ) − fa(πN ) + fm(π̄N ) − fm(πN )
≤ C ln C + Ct∗ +

CdN{tN2 + 1 − exp(tN2 )} exp(−tN3 ) (21)

For the last term, we have

dN

≥ P

[
XπN (t) > 0, ∀t ∈ (tN3 ,

N

2C
)|XπN (tN3 ) = 1

]
×

(
N

2C
− tN3

)

Invoking Lemma 1, with qN = 1
2C N , we can assure

that

P

[
XπN (t) > 0, ∀t ∈ (tN3 ,

N

2C
) | XπN (tN3 ) = 1

]

is bounded below by a positive number. Therefore,
there exists some δ > 0 such that dN ≥ δN for suffi-
ciently large N . From Lemma 2, tN3 is bounded above,
so dN exp(−tN3 ) grows unbounded with N . Suppose
that {tNk

2 |k = 1, 2, · · ·} is bounded below by a positive
number. Then, factor {tNk

2 + 1 − exp(tNk
2 )} in (21) is

bounded above by a negative number. Thus, the last
term of expression (21) blows to −∞ as Nk grows.
Therefore, the change of cost becomes negative for a
large Nk, contradicting optimality of πNk . Therefore,
limN→∞ tN2 = 0. Q.E.D.

To provide some idea on the convergence rate of tN2 ,
Fig. 1 shows how tN2 varies as N increases for the cases



0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5
First inter−admission time for c = 2, 5, and 10

Figure 1: First inter-admission time of optimal sched-
ule, tN2 vs N . The top curve is for C = 10; the bottom
curve is for C = 2.

C = 2, 5, 10. The top curve is for the case C = 10,
and the bottom curve for C = 2. The curves all show
that tN2 decreases monotonically with N . These curves
also show that for a range of small N ’s the first inter-
admission time decreases rapidly. (Note that for the
simple case N = 2, we can easily derive t22 = ln C.)
For a range of large N ’s, this decreasing rate becomes
fairly slow.

3 Numerical Results
This section presents numerically computed opti-

mal schedules. We need to note that for a large N the
numerical computation for finding an optimal schedule
is prohibitively complex. In this section, we present
numerical results for manageable values of N . We
found optimal schedules for different values of C and
N . Fig. 1 plots the first inter-admission times in opti-
mal schedules for different values of N , the number of
customers. Figure 2 shows the numerically obtained
optimal schedules for the cases of C = 2, 5, 10 and
N = 20, 100, 200. In Fig. 2, we notice that in each
optimal schedule the inter-admission times are mono-
tonically non-decreasing. In other words, for the cus-
tomers admitted later, the inter-admission times are
longer. This property was observed in all our numer-
ical results. Therefore, this property is conjectured.
Letting (N−1) dimensional vector (x∗

2, x
∗
3, · · · , x∗

N ) de-
note the inter-admission times in an optimal schedule
of admitting N customers, we conjecture: x∗

i ≤ x∗
i+1

for i = 2, 3, · · · , N −1. Also, the shape of the curves in
Fig. 2 is interesting. In the sequence of admissions ac-
cording to each optimal schedule, the inter-admission
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Figure 2: Optimal schedules for cases C = 2, 5, 10. In
each box the top curve is for C = 10; the bottom curve
is for C = 2.

times in the early admissions are rapidly increasing.
Then, they reach a plateau, and finally the last several
inter-admission times again show a rapidly increasing
trend. The numerical results and the theorems indi-
cate the following nature of optimal scheduling for a
large N : At the beginning stage of the schedule, cus-
tomers are admitted rapidly. For the most part of
the scheduling period in the middle, the admission is
more or less periodic. In the late stage of the sched-
ule, the inter-admission times are long. Although the
inter-admission times vary like this, the overall aver-
age inter-admission time is close to the average service
time.



4 Discussion
The present paper and [3] discussed optimal off-

line schedules of admitting finite numbers of customers
from an auxiliary buffer with a low holding cost to
a main queueing system with a higher holding cost.
The main queueing system was assumed to be ini-
tially empty. The analytic description of the optimal
schedules seems difficult. The main theorems of the
present paper and Part I [3] provided an interesting
perspective on the optimal schedules. While the first
inter-admission time in optimal schedules converges to
0 as the number of customers increases (Theorem 1),
the overall rate of the admission converges to the ser-
vice rate (Theorem 1 of Part I [3]). In addition, in all
optimal schedules obtained in different cases of hold-
ing cost ratios and numbers of customers, the inter-
admission times arranged in chronological order were
monotonically increasing. This property is left as a
conjecture to prove in the future.

Theorem 1 proved that limN→∞ tN2 = 0. This
proposition was partially motivated by the question
of whether there exists an atomic time unit based
on which one can discretize the problem of optimal
scheduling and still schedule various numbers of ad-
missions optimally. Theorem 1 indicates that there
is no positive lower bound on the inter-admission
times of the optimal schedules; therefore, it also in-
dicates that there is no such an atomic time unit.
For future study, it is conjectured that limN→∞ tNi =
0, for each fixed i. Further, more characterization of
the optimal schedule can can follow in the future. Ref-
erence [3] concerns the asymptotic transmission rate
averaged over the entire of schedule. The rate aver-
aged over different time intervals (different stages of
the bulk transmission) will be interesting.

Although the optimal scheduling problem discussed
in this paper was motivated by data transports
through communication networks, the main interest of
the paper and [3] was in the queueing theoretic intu-
ition for the new scheduling problem. Another dimen-
sion to be considered for future continuation of this
study may be that of modeling the network transport.
The service rate of the single–server queue can be in-
terpreted as the “average” bandwidth provided by the
network service in accordance with the service provi-
sion agreement, of which the transport mechanism is
aware. (As the present paper assumes random service
time of the queue, the model addresses a broad class
of network services that only provide “average” band-
width with fluctuation of available bandwidth, not a
special service such as the virtual–leased–line service
associated with mechanisms like Expedited Forward-

ing [2].) The scheduling can be interpreted as the
strategy of the feedback-free transport mechanism.

There are several directions that can be taken in
order to create more elaborate models. First, the sim-
plest extension would be to relax the assumption of ex-
ponential service time. In the simple tandem–queue
model of this paper, the random delay in the entire
network connection (or network service in more gen-
eral interpretation) was represented by the queueing
delay of a single-server queue. In this setting, the sta-
tistical characteristics of the network delay is specified
simply by the service time distribution of the single-
server queue. Naturally, the service time distribution
that fits with the delay statistics of different network
connections widely varies. The analysis in the present
study assumed the exponential distribution. In or-
der to broaden the applicability of the tandem-queues
model, the service-time distribution needs to be gen-
eralized. It is conjectured that the asymptotic trans-
mission rate of optimal schedules still converges to
the service rate for the general distribution of the ser-
vice time. Second, empirical validation of the single–
server–queue model for the network delay is necessary.
In the real network service, data units may go through
several switches (or routers). Empirical data contain-
ing the admission times of the data units and their
network sojourn times (time from entry to exit) need
to be collected. These sojourn times then need to be
compared with the queueing delays resulting from the
single–server queue. In this case the probability distri-
bution of the random service time can be constructed
from the data. Third, we can consider the refinement
of the main system model from the single–server queue
to a network of queues. This approach, however, will
add the analytic complexity enormously.

A Appendix to Lemma 1
Recall

cN ≡ P
[
XπN (t) > 0, ∀t ∈ (tN3 , qN )|XπN (tN3 ) = 1

]
ĉN ≡ P

[
Xπ̂N (t) > 0, ∀t ∈ (tN3 , qN )|Xπ̂N (tN3 ) = 3

]

Let {cNk
} be an arbitrary subsequence of {cN}. We

will show that if limk→∞ cNk
= 0, then limk→∞ ĉNk

=
0.
Proof: For this proof we employ the first-come-first-
serve discipline for both schedules πN and π̂N . Define
a random variable A3 to be the time e3 is ready to be
served in the optimal schedule πN . Note that under
schedule πN , e1 and e2 must be served before e3 is
ready to be served. Define Â3 to be the time the
service of e3 is ready to be served in the schedule π̂N .



Note that under schedule π̂N , e1,eN , and e2 must be
served before e3 is ready to be served. Also, define

vN (τ) ≡ P [XπN (t) > 0, ∀t ∈ (tN3 , qN ) |
XπN (tN3 ) = 1, A3 = τ + tN3 ]

v̂N (τ) ≡ P [Xπ̂N (t) > 0, ∀t ∈ (tN3 , qN ) |
Xπ̂N (tN3 ) = 3, Â3 = τ + tN3 ]

Since π̂N has one less customer to admit than πN has,
after tN3 , we obtain v̂N (τ) ≤ vN (τ), ∀τ > 0. Now,

cN =
∫ ∞

0

exp(−τ)vN (τ)dτ, and

ĉN =
1
2!

∫ ∞

0

τ2 exp(−τ)v̂N (τ)dτ

≤ 1
2!

∫ ∞

0

τ2 exp(−τ)vN (τ)dτ

Suppose cNk
→ 0 as k → ∞. Define rNk

≡ 1/
√

cNk
;

then, rNk
→ ∞ and rNk

cNk
→ 0 as k → ∞. Let

Tk ≡ √
rNk

; then,

ĉNk
≤ 1

2!

∫ Tk

0

τ2 exp(−τ)vNk
(τ)dτ +

1
2!

∫ ∞

Tk

τ2 exp(−τ)vNk
(τ)dτ

The right hand side of this inequality has two terms.
We now claim that both terms converge to 0 as k
increases. Consider the first term.

1
2!

∫ Tk

0

τ2 exp(−τ)vNk
(τ)dτ

≤ 1
2!

T 2
k

∫ Tk

0

exp(−τ)vNk
(τ)dτ

=
1
2!

rNk

∫ Tk

0

exp(−τ)vNk
(τ)dτ

≤ 1
2!

rNk

∫ ∞

0

exp(−τ)vNk
(τ)dτ

=
1
2!

rNk
cNk

Since rNk
cNk

→ 0 as k increases, the first term con-
verges to 0. As for the second term

1
2!

∫ ∞

Tk

τ2 exp(−τ)vNk
(τ)dτ ≤ 1

2!

∫ ∞

Tk

τ2 exp(−τ)dτ

Because limk→∞ Tk = ∞, the second term converges
to 0 as k increases. Therefore, ĉNk

→ 0 as k → ∞.
Q.E.D.
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