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Abstract

This paper introduces the problem of optimally admitting a finite number of customers from an auxiliary
buffer with a low holding cost into a single–server queue with a high holding cost without observing the status
of the single-server queue. This paper formulates a static (off-line) optimization of the admission schedule for a
finite number of customers, assuming that the single–server queue is initially empty. It is proven that the overall
admission rate under the optimal schedule converges to the service rate of the main system as the number of
customers increases. Part II (the sequel) of this paper will present numerical solutions and prove more asymptotic
properties of the sequence of optimal schedules indexed by the number of customers.
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1 Introduction

This paper introduces a problem of optimally schedul-
ing the transfer of N customers from one queueing
facility with a lower holding cost to another queue-
ing facility with a higher holding cost in the tandem
queuing system. The system to be studied is depicted
in Figure 1. The system basically comprises of two
queues in tandem; we refer to the first queue as the
controller and the second queue as the main system.
The controller is an auxiliary buffer that controls the
admission of customers to the main system. The main
system is a single–server queue. Initially, the con-
troller has a finite number of customers, and the main
system is empty. In the main system, the service time
of each customer has the exponential distribution with
expected value 11, and service times of customers are
statistically independent. Regarding the service disci-
pline of the queue, we allow any work–conserving ser-
vice discipline that does not discriminate customers

1The results in this paper are not limited by the assumption
that the expected service time is 1. For example, if the average
service time is 1/µ, then the right-hand side of the inequality
of Lemma 1 becomes 1/µ instead of 1, the right-hand side of
the equality in Theorem 1 becomes µ, etc. This assumption can
be viewed as a convenient choice of time unit, which makes the
presentation simple.

on the basis of their remaining service times [7, p113].
There are two important additional components of our
model:

• The controller cannot observe the state of the
main system (single–server queue).

• The controller’s queue is “less expensive.” In par-
ticular, we assume that the customer indexed by i
incurs a cost t̃i+CE(Ri), where t̃i is the time that
the customer spends in the controller’s queue, Ri

is the time that it spends in the main queueing
system, and C is a constant larger than 1. ( E(Ri)
denotes the expected value of the random variable
Ri.)

These assumptions are primarily motivated for macro-
scopically modeling various types of data transports
through communications networks. The customers in
the queueing model can be considered as data units
(packets, messages, files, etc. [2]). The controller rep-
resents the premise of the data source, and the main
system represents the network service delivering data
to the final destination. Thus, for example, the ran-
dom delay of the protocol data units (PDUs) in the
network connection is modeled by the queueing delay
in the main system. (We do not specify the layer of
the PDU. We can view the transfer of data from source
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premise to the network domain at different levels of
data granularity.) In this example, the randomness of
the PDU’s delay in a network from entry to exit is due
to a number of mechanisms. One is the statistical mul-
tiplexing of data traffic with that of other connections
at the intermediate switching nodes constituting the
network connection. If the network contains a multi-
access link, the signal interference and collision reso-
lution mechanism also contributes to the randomness
[12]. Such randomness is specified by the randomness
of the service time in the single-server queue in the
system model depicted in Fig. 1. (In this example,
we need to note that this random service time does
not exclusively represent the transmission time of the
PDU in switches. Rather, the random queuing delay
in the main system resulting from the random service
time represents the random end–to–end latency of the
PDU in the network caused by aforementioned mecha-
nisms. The service rate of the single–server queue can
be also viewed as the average bandwidth provided by
the network service.)

There are initially a fixed number, N , of cus-
tomers in the controller, and the main system ini-
tially is empty. The controller has the responsibility
of scheduling the admission (transmission) of these N
customers into the main system. This paper concerns
the admission schedule of these N customers. The goal
of the scheduling is to minimize the weighted sum of
the total queueing delay in the controller and the to-
tal expected queueing delay in the main system. In
that weighted sum, the expected delays in the main
system is given more weight. This uneven weight pe-
nalizes the queueing delay in the main system more
than the delay in the controller. This captures the es-
sential idea that the congestion in the network is more
harmful because of the wasted network resources re-
sulting buffer overflows and retransmissions. While
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Figure 1: A system consisting of a controller and a
single–server queue (main system)

network level flow (congestion) control (e.g., the con-
troller’s actions in our model) cannot reduce the total
delay experienced by a typical data unit, it is supposed
to shift delay from a network (e.g. the main system in
our model) to the buffer of a source (e.g. the controller
in our model) in order to avoid wasteful congestion in
the network [2].

This model addresses the admission (transmission)
schedule of the finite amount of data. In relation to the
admission control of steady arrival streams, the study
in this paper can add insights to the case of rare ar-
rivals in big bulk. This paper addresses the question:
how should a large bulk of information be fed into
when the stream of bulk arrivals has extremely low
intensity? The problem is motivated by data collec-
tion and dissemination systems that must deal with
rare but critical moments at which the data volume
abruptly increases. For example, in a network con-
stituting a surveillance system, sensors are connected
to the command and control center. In such a net-
work, when an alarming situation arises, suddenly a
large volume of data needs to be delivered to the com-
mand and control center. Finite number of PDUs and
the assumption of initially empty main system are fit
to model such a situation. While the tandem-queue
model seems be an oversimplified view of the network
connection, it has the advantage of providing simple
intuition that can be applied to a wide variety of net-
work topologies. All the uncertainties in the delays
experienced by data units within the network are char-
acterized by the randomness of the service times.

Note that this paper concerns deterministic off-line
scheduling of admissions. This idea of off-line schedul-
ing problem follows from the assumption that the con-
troller cannot observe the state of the main system’s
queue, and that it has to schedule the admission times
of all the customers based on the probability distri-
bution of the service time. Communication networks
are often characterized by service stations that act in-
dividually, each processing only a local knowledge of
its immediate environment. Even when information
can be exchanged among stations, there are propa-
gation delays and processing delays that render such
information partially obsolete [3]. This effect is espe-
cially evident in high–speed, wide–area networks. The
time scales in such networks are so fast that very lim-
ited real–time feedback is possible; in particular, many
of the flow control actions have to be made essen-
tially open–loop such as the rate control schemes [2].
Even at low–speed transmission, the need to sched-
ule/control the flow of data with imperfect or no state
information arises as we extend the network deploy-



ment to the space (e.g., interplanetary internet [1, 4]
) due to the extremely long propagation delays.

Although long interpretation of the tandem-queue
model has just been presented for motivation, the
primary interest of the present paper is the queue
scheduling problem itself and general intuitions ob-
tained from its study. In order to apply the results
to specific networking situations, more detailed refine-
ment of the model would be necessary. In section
2 the mathematical formulation of the deterministic
scheduling problem will be presented. In section 3,
the related problems found in the literature and their
relation to the present paper’s problem are explored.
As the closed-form solution is not in sight, the present
paper focuses on the asymptotic admission rate of op-
timal schedules. Section 4 will show that the average
admission rate under the optimal schedule approaches
the service rate of the queue server as the number of
customers N increases. In the sequel [8] to the present
paper, numerical evaluation of optimal schedules and
the edge effect due to the finite number of customers
will be shown. In particular, it will be proven that
the first inter-admission time converges to 0, as N
increases. It is interesting to see the edge effects in
Part II and the convergence of the average rates in
the present paper.

2 Formulation

In the system described in Figure 1, there are ini-
tially (at time 0 by convention) a fixed number, N ,
of customers in the controller, and the main system is
initially empty. The controller has the responsibility
of scheduling the admission of these N customers into
the main system. This paper concerns the admission
schedule of these N customers. The controller has the
knowledge that the main system is empty initially but
cannot observe the main system’s queue status there-
after (no feedback information). The scheduling deci-
sions to be made by the controller can be represented
by a finite sequence, π̃N = (t̃N1 , . . . , t̃NN ), of N non-
negative real numbers, where each number represents
the time when a customer is admitted to the main
system. The goal of scheduling is to minimize a cost
function. We now define the cost function. For sched-
ule π̃N = (t̃N1 , . . . , t̃NN ), denote by R̃i, i = 1, 2, · · · , N
the flow time (synonymously, response time) of the
customer indexed by i in the main system. (The flow
time is defined as the time from when the customer
is admitted into the main queueing system until the
customer exits; it is service time plus waiting time, if

any.) Then, the end-to-end delay of the customer in-
dexed by i is t̃Ni + R̃i. We include the sum of expected
end-to-end queueing delays,

∑N
i=1

[
t̃Ni + E(R̃i)

]
, as

an additive part of the cost function in order to re-
flect the undesirable nature of long end-to-end de-
lay. The additional penalty for congestion in the
main system is represented by term

∑N
i=1 C∗E(R̃i)

with C∗ > 0. Thus, the cost function is defined as∑N
i=1

[
t̃Ni + E(R̃i)

]
+

∑N
i=1 C∗E(R̃i). Using nota-

tion C = 1 + C∗, we can rewrite the cost function
as

N∑
i=1

t̃Ni +
N∑

i=1

CE(R̃i) (1)

Note that terms
∑N

i=1 CE(R̃i) is a function of the
schedule π̃N = (t̃N1 , . . . , t̃NN ), and the scheduling prob-
lem is to find the schedule that minimizes the cost.

2.1 On the Cost Function to Minimize

2.1.1 Cost as a function of t̃N1 , t̃N2 , . . . , t̃NN

We first clarify that in our notation of a schedule
π̃N = (t̃N1 , . . . , t̃NN ) we do not impose monotonicity
t̃Ni ≤ t̃Ni+1; that is, the customer indexed by i can be
admitted later than the customer indexed by i + 1.
(We define π̃N this way in order to facilitate proving
lemmas and theorems to be presented in subsequent
sections.) Therefore, schedule π̃N = (t̃N1 , . . . , t̃NN ) and
any of its permutations yield an identical value of cost
(1).

The cost function (1) can be also viewed as the cost
incurred in the controller

fa(π̃N ) ≡
N∑

i=1

t̃Ni (2)

plus the cost incurred in the main system

fm(π̃N ) ≡
N∑

i=1

CE(R̃i) (3)

Denote by S̃i, i = 1, 2, · · · , N the service time of the
customer that is admitted at the time t̃i (the ith el-
ement in the sequence π̃N ). We assume that ser-
vice times of customers are statistically independent
and all have the exponential distribution with mean
1. As illustration, for a First-Come-First-Serve disci-
pline and schedule π̃N = (t̃N1 , . . . , t̃NN ) with property
t̃N1 ≤ t̃N2 ≤ . . . ≤ t̃NN , we have

R̃1 = S̃1

R̃i = max[ 0, R̃i−1 − (t̃Ni − t̃Ni−1) ] + S̃i , 2 ≤ i ≤ N



Beyond this illustration, we note that the cost in the
main system (3) is determined by π̃N = (t̃N1 , . . . , t̃NN )
and invariant of service disciplines, even if they may
be preemptive, as long as the customer to be served
at each moment is decided independently of the re-
maining service times of the customers. We briefly
justify this statement. We denote by Xπ̃N (t) the ran-
dom function (or a stochastic process) that represents
the number of customers in the main system at time t
under schedule π̃N . For clarity we define this function
(each sample path) to be left–continuous. It is well
known (e.g. as in the proof of Little’s law in [6]) that

N∑
i=1

E[ R̃i ] = E

[ ∫ ∞

0

Xπ̃N (t)dt

]

Function Xπ̃N (t) jumps up by 1 at times t̃Ni , i =
1, 2, · · · , N . While Xπ̃N (t) > 0, i.e., during the server’s
busy period, downward jumps of Xπ̃N (t) follow the
Poisson process [10] without regard to the service dis-
cipline, due to the memoryless property [5] of the
exponentially distributed service times. Therefore,
the statistical nature of stochastic process Xπ̃N (t) is
invariant of the service disciplines, and thus so is∑N

i=1 E[ R̃i ]. The objective is to find, for any given
N , a sequence π̃N that minimizes the total cost

fa(π̃N ) + fm(π̃N ) ≡ f(π̃N )

For any fixed N , this can be viewed as a determin-
istic nonlinear programming problem with the vari-
ables t̃N1 , . . . , t̃NN with non-negativity constraint. In
formulating this optimization problem, monotonicity
t̃N1 ≤ t̃N2 ≤ . . . ≤ t̃NN is not imposed. In words, the
customer indexed by i can be admitted later than the
customer indexed by i + 1. Note that the cost asso-
ciated with π̃N = (t̃N1 , . . . , t̃NN ), f(π̃N ), is obviously
identical to the cost associated with any permutation
of π̃N .

2.1.2 Cost as a convex function of inter-
admission times

We can express the optimization problem through an-
other set of variables. For any vector indicating the
admission times (schedule), for the purpose of evalu-
ating the cost we can take the permutation whose el-
ements are monotonically increasing; i.e., for the pur-
pose of evaluating the cost only consider a schedule
π̃N = (t̃N1 , . . . , t̃NN) such that t̃N1 ≤ t̃N2 ≤ . . . ≤ t̃NN .
Then, we define new variables xi ≡ t̃Ni − t̃Ni−1, i =
2, 3, · · · , N . Thus, we have

R̃1 = S̃1 (4)

R̃i = max[ 0, R̃i−1 − xi ] + S̃i , 2 ≤ i ≤ N (5)

Note that for the optimal schedule t̃N1 is obviously 0,
so we can exclude schedules that does not have t̃N1 = 0.
Thus, The cost function can be expressed as

f(π̃N ) =
N∑

i=2

t̃Ni +
N∑

i=1

CE(R̃i)

=
N∑

i=2

i∑
l=2

xl +
N∑

i=1

CE(R̃i)

=
N∑

j=2

(N − j + 1)xj +
N∑

i=1

CE(R̃i)

≡ g(x) (6)

where x ≡ (x2, x3, · · · , xN ). Now, we show that this
cost function is convex. The convexity of the cost func-
tion ensures that a local minimum is a global minimum
as well. This property is useful for numerical evalua-
tion of the minimum, which will be presented in the
sequel [?] to the present paper. In the cost function
(6), part

∑N
j=2(N − j + 1)xj is obviously convex of

(x2, x3, · · · , xN ). Also, from Eqns. (4) (5) we can
prove that R̃i is a convex function of (x2, x3, · · · , xN )
for any realization of S̃1, S̃2, · · · , S̃N . (Note that the
point-wise maximum of two convex functions is con-
vex.) Therefore,

∑N
i=1 E[ R̃i ] is again a convex func-

tion of (x2, x3, · · · , xN ). Therefore, the cost (6) is a
convex function of (x2, x3, · · · , xN ).

2.2 On the Minima

Now we establish the existence of a minimum for
each N . Function fa is continuous of variables
t̃N1 ,. . .,t̃NN . For each realization of random variables
S1, S2, · · · , SN , R̃i is continuous of variables t̃N1 ,. . .,t̃NN ;
therefore, so is E[R̃i]. Thus, the cost function is con-
tinuous of variables t̃N1 ,. . .,t̃NN . The cost function in-
creases without bound as a variable t̃Ni increases, so
for the search of the minimum we can limit our atten-
tion to a compact set of variables {(t̃N1 , . . . , t̃NN )|0 ≤
t̃Ni ≤ B } for a sufficiently large B. Therefore, the
continuous cost function on this compact set has a
minimum value in the set [11, p89].

Let us recall that the value of the cost function is
invariant of permutation operation of the schedule vec-
tor π̃N . We denote by πN = (tN1 , tN2 , · · · , tNN ) a min-
imizer of the cost function that has the monotonicity
property

tN1 ≤ tN2 ≤ · · · ≤ tNN (7)



Note that obviously tN1 = 0. We denote by ei

the i-th customer admitted to the main system
under the optimal schedule. Thus, we can refer to
the N customers by e1, e2, · · · , eN , and their admis-
sion times under the optimal schedule are tN1 ≤ tN2 ≤
· · · ≤ tNN , respectively. The closed form solution
πN = (tN1 , tN2 , · · · , tNN ) is deemed difficult to obtain.
We will derive some asymptotic properties of optimal
schedules corresponding to the increase of N . Note
that for each N , the minimizer of the cost function
having the aforementioned monotonicity property may
not be unique. This paper observes the asymptotic
property of an arbitrary sequence of optimal schedules
{πN} indexed by N , which is constructed by taking
an optimal schedule for each N . We denote by Si the
service time of ei, for i = 1, 2, · · · , N . We denote by
Ri(π̃N ) the response time of ei (the customer that is
admitted to the main system ith in order under the
optimal schedule) in the case of a general schedule π̃N .
Thus, the response time of ei in the case of the optimal
schedule is denoted by Ri(πN ).

3 Related Works

The problem of optimally scheduling a finite num-
ber of arrivals to a queueing facility produced inter-
esting studies [14, 13, 9], historically independent of
the present paper. A similar problem of scheduling
the arrival times of a finite number of customers to
a single–server queueing system is found in references
[14, 9]. The scheduling problem in these papers is
formulated for naval operations or manufacturing job
shop scheduling, and the scheduling objective is differ-
ent from the present paper; their scheduling objective
is to minimize the weighted sum of the total expected
queueing delay in the main system and the expected
system completion time (the time at which the last
customer leaves the main system queue, which is the
length of the “server availability” [9]). Thus, the cost
function is different from the one formulated in the
present paper.

We now clarify this difference of cost functions. The
objective of [14, 9] if translated into the context and
notation of the present paper, would be to minimize
the cost function,

cs

[
N∑

i=2

xi + E(R̃N )

]
+ cw

N∑
i=1

E(R̃i)

where cs, cw > 0. The minimization of this cost can

be equivalently stated as minimizing:

fp(x2, x3, · · · , xN ) (8)

≡
[

N∑
i=2

xi + E(R̃N )

]
+ cw

N∑
i=1

E(R̃i)

(Note that cw can be any positive number; it is not
limited to the case cw > 1.) The part of this cost
function (8),

[∑N
i=2 xi + E(R̃N )

]
, explicitly shows its

difference from cost function to be minimized in the
present paper.

In addition to the difference of the cost function,
the discussions in the present paper and its sequel
are quite different in that they discuss much about
necessary asymptotic properties of optimal schedules.
For example, an edge effect on the optimal schedule
(namely, limN→∞ tN2 = 0) will be proven in the sequel
to the present paper [?], along with numerical evalu-
ation of minima. Section 4 of the present paper will
use elaborate mathematics to show that despite the
edge effect the average admission rate under the opti-
mal schedule approaches the service rate of the queue
server as the number of customers increases.

4 Overall Customer Admission
Rate

In this section we rigorously state and prove that the
rate of admitting customers into the main system ac-
cording to an optimal schedule converges to the ser-
vice rate (the reciprocal of the expected service time)
as the number of customers increases.

Lemma 1 lim infN→∞
tN
N

N ≥ 1.

Proof: Suppose lim infN→∞
tN
N

N < 1; then, there exist
some γ > 0 and an increasing sequence {Nk} indexed
by k such that tNk

Nk
< (1 − γ)Nk for all k. We will ar-

gue that the cost can then be reduced by delaying the
admission time of the last customer eN , thus contra-
dicting optimality. Let us pick some δ > 0. Compare
the costs associated with the following two schedules

πNk = ( tNk
1 , · · · , tNk

Nk−1, t
Nk

Nk
)

π̌Nk = ( tNk
1 , · · · , tNk

Nk−1, tNk

Nk
+ δ )

where πNk is the optimal schedule. Obviously, the cost
difference in the controller is

fa(π̌Nk) − fa(πNk) = δ (9)



Now we compare the cost difference in the main queue-
ing system. Assume that the first–come–first–serve
discipline is used in the main system. Recall that we
denote by S1, S2, · · · , SNk

the service requirements of
the customers e1, e2, · · · , eNk

, respectively. Let αk be
the probability that the service of the first Nk − 1
customers is finished by tNk

Nk
+ δ. A necessary condi-

tion for this event to happen is
∑Nk−1

i=1 Si ≤ tNk

Nk
+ δ.

Therefore,

αk ≤ P (
Nk−1∑
i=1

Si ≤ tNk

Nk
+ δ)

≤ P [
Nk−1∑
i=1

Si ≤ (1 − γ)Nk + δ]

(from the supposition)

Because E[Si] = 1 for each i, the weak law of
large numbers implies that the right hand side of
the inequality approaches 0 as Nk increases; thus
limk→∞ αk = 0.

To compare the costs at the main system, we
use a coupling argument; we consider an identical
realization of random variables S1, S2, · · · (an iden-
tical sample path) for the analysis of both poli-
cies. Then, regarding the response times of customers
e1, e2, · · · , eNk−1, we have Ri(π̌Nk) = Ri(πNk), i =
1, 2, · · · , Nk − 1. If under the optimal schedule πNk

the last customer eNk
finds the main system idle upon

entry, then eNk
will also find the main system idle

under the modified schedule π̌Nk . In this event, we
have RNk

(πNk) = RNk
(π̌Nk). If under the origi-

nal schedule, the service of first Nk − 1 customers
is not finished by the time tNk

Nk
+ δ, then we have

RNk
(π̌Nk) = RNk

(πNk) − δ; the probability of this
event is (1 − αk). Finally, if eNk

finds the main sys-
tem busy at time tNk

Nk
and begins to be served before

time tNk

Nk
+ δ under the optimal schedule πNk , we have

RNk
(π̌Nk) < RNk

(πNk). Putting these together, the
difference of expected cost in the main system is

fm(π̌Nk) − fm(πNk)
= CE

[
RNk

(π̌Nk) − RNk
(πNk)

]
≤ −Cδ(1 − αk) (10)

Combining (9) (10), the the difference of the total cost
is

fa(π̌Nk)−fa(πNk)+fm(π̌Nk)−fm(πNk) ≤ δ−Cδ(1−αk)

Recall now that αk → 0 and that C > 1. This im-
plies that the cost change will be negative when k is
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II

Uπ̃N (t)

t

Figure 2: Uπ̃N (t); symbol © illustrates entry of a cus-
tomer into the main system.

large enough, contradicting optimality of the original
schedule. Q.E.D.

Let us consider a sequence of time inter-
vals [0, q1), [0, q2), [0, q3), · · · , [0, qN ), [0, qN+1), · · · such
that qN −→ ∞ as N −→ ∞, where the index of the
sequence N is the number of customers in the bulk
information. In Lemma 4, we will discuss admission
rates in such time intervals for the case of the optimal
schedule. In order to establish Lemma 4, in the next
two lemmas we observe implications of relatively low
admission rates in such time intervals for a general ad-
mission schedule. Denote by Aπ̃N (qN ) the number of
admissions in the interval [0, qN) under schedule π̃N .

In order to describe sparsity of admissions in the
schedule π̃N , we introduce a deterministic function
Uπ̃N (t). For each schedule of admissions we can imag-
ine a fictitious case where the service time of each cus-
tomer in the main system is deterministically 1. By
Uπ̃N (t), we denote the unfinished work at the main
system at each time t under particular schedule π̃N

in the fictitious case of the deterministic service time.
Thus, Uπ̃N (t) decreases at unit rate whenever it is pos-
itive and has upward jumps of size 1 each time that a
new customer is admitted into the main system. (See
Figure 2.) We define

m(qN ) ≡ �q1/4
N � ≡ min{m| m is integer, m ≥ q

1/4
N }

d(qN ) ≡ qN

m(qN )
≤ q

3/4
N

We now split the interval [0, qN ) into m(qN ) intervals
of equal length and let Li be the ith such interval;

Li = [ (i − 1)d(qN ) , id(qN ) ]

Denote Ii ≡ {t ∈ Li | Uπ̃N (t) = 0}. Also, we denote
the measure of set Ii by µ(Ii).

Lemma 2 For sufficiently large N , if Aπ̃N (qN ) <
(1 − ε)qN , then there exists some integer i∗ such that



1) measure µ(Ii∗) is at least εq
3/4
N /2, and

2) i∗ ≤ q
1/4
N − �C� − 2

Proof: If Aπ̃N (qN ) < (1 − ε)qN , it is clear that the
measure of the set I ≡ {t ∈ [0, qN) | Uπ̃N (t) = 0 } is
at least εqN ; i.e.

µ(I) ≥ εqN (11)

Recalling that each interval Li has length d(qN ), we
establish

µ(Im(qN )−�C�−2) + µ(Im(qN )−�C�−1)
+µ(Im(qN )−�C�) + · · ·µ(Im(qN ))

≤ (�C� + 3)d(qN )

≤ (C + 4)q3/4
N

Suppose there is no such i∗ as is described above.
Then, we would have

µ(I1) + µ(I2) + · · · + µ(Im(qN )−1−�C�−2)

≤ εq
3/4
N

2
(m(qN ) − 1 − �C� − 2)

≤ εq
3/4
N

2
(q1/4

N − �C� − 2) ≤ εqN

2

Therefore, we would have µ(I) =
∑m(qN )

i=1 µ(Ii) ≤
εqN

2 + (C + 4)q3/4
N . However, for sufficiently large N ,

εqN/2+(C +4)q3/4
N < εqN , which contradicts inequal-

ity (11). Q.E.D.
The next lemma is regarding the measure of the

server’s idle time in the interval Li∗ mentioned in
Lemma 2, µ({t ∈ Li∗ | Xπ̃N (t) = 0 }). Note that this
measure is a random variable due to the randomness
of the customers’ service times. Also, note that due
to the memoryless property of the exponential prob-
ability density function, the distribution of random
variable µ({t ∈ Li∗ | Xπ̃N (t) = 0 }) is invariant to
the service discipline as long as the service discipline
is work-conserving.

Lemma 3 For sufficiently large N , if Aπ̃N (qN ) <
(1 − ε)qN , then P [ µ({t ∈ Li∗ | Xπ̃N (t) = 0 }) >

εq
3/4
N /6 ] is arbitrarily close to 1.

Proof: Let vN = inf{τ ∈ Li∗ | Uπ̃N (τ) = 0} and
zN = sup{τ ∈ Li∗ | Uπ̃N (τ) = 0}. Let kN be the
number of admissions during the interval [0, vN) and
let �N be the number of admissions during the interval
[vN , zN ). (See Figure 3.) Clearly, we then have

kN ≤ vN (12)
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Figure 3: Interval Li∗ of length q
3/4
N

Clearly, the subset Ii∗ of Li∗ , on which Uπ̃N (t) = 0,
is contained in [vN , zN ], and by the definition of i∗

we have µ(Ii∗) ≥ εq
3/4
N /2. Therefore, the subset of

[vN , zN ] on which Uπ̃N (t) > 0 has measure at most
zN − vN − εq

3/4
N /2. Therefore, we have

�N ≤ zN − vN − εq
3/4
N /2. (13)

We assume without loss of generality that the ser-
vice discipline is first-come-first-serve, and t̃N1 ≤ t̃N2 ≤
· · · ≤ t̃NN in the schedule π̃N = (t̃N1 , t̃N2 , · · · , t̃NN). De-
fine T N

i be the time at which the service of the ith
customer ends. Also consider the sum of the ser-
vice times of the customers admitted during [vN , zN ),∑kN +�N

i=kN +1 S̃i. Consider the following two events; (a)

T N
kN

≤ vN + εq
3/4
N /6 and (b)

∑kN +�N

i=kN +1 S̃i ≤ zN − vN −
2εq

3/4
N /6. Note that these events are statistically in-

dependent because event (a) is determined by the ser-
vice times of the first kN customers, and event (b) by
the service times of the next �N customers. If these
two events occur, the interval [vN , zN) consists of at
most εq

3/4
N /6 time units spent to serve customers ad-

mitted before time vN and at most zN −vN −2εq
3/4
N /6

time units spent to serve customers admitted during
[vN , zN). Therefore, if events (a) and (b) occur, the
measure of idle time in Li∗ is at least εq

3/4
N /6. Thus,

we now only need to show that the probability that
both events (a) and (b) happen is arbitrarily close to
1 for sufficiently large N . Note that

E(
kN +�N∑
i=kN +1

S̃i )

= �N

≤ zN − vN − εq
3/4
N

2
(from inequality (13) )



The standard deviation of
∑kN +�N

i=kN +1 S̃i is
√

�N , and we

have
√

�N ≤ √
Aπ̃N (qN ) <

√
(1 − ε)qN < q

1/2
N . For

event (b) not to occur,
∑kN +�N

i=kN +1 S̃i must be at least

εq
3/4
N

6
1

q
1/2
N

=
εq

1/4
N

6

standard deviations above its mean, and the prob-
ability of this happening is arbitrarily close to zero
for sufficiently large N , by the Chebyshev’s inequal-
ity. Thus, the probability of event (b) is arbitrarily
close to 1 for sufficiently large N . For event (a) not
to occur, the sum of the service times of the first kN

customers must exceed vN + εq
3/4
N /6. On the other

hand, the mean of this sum of these service times is
no more than vN [cf. inequality (12)], and it easily
follows (as in the case of event (b)) that the proba-
bility of event (a) also converges to 1 as N increases.
Since these two events are statistically independent,
the probability that both events happen converges to
1 as N increases. Q.E.D.

The following lemma concerns the average admis-
sion rate in interval [0, qN) for the optimal schedule.
Recall that tNN is the time of the last admission under
the optimal schedule.

Lemma 4 If qN ≤ tNN for each N , then

lim inf
N→∞

AπN (qN )
qN

≥ 1

Proof: The basic method of the proof is that if the
number of admissions in [0, qN) were too small, then
the main system would have long idle periods that can
be exploited to reduce the costs, thus contradicting
optimality.

Suppose now that lim infN→∞ AπN (qN )/qN < 1.
Then, there exists some ε > 0 and an increasing
sequence {Nk} such that AπN (qNk

) < (1 − ε)qNk
.

Consider a sufficiently large integer N for which
AπN (qN ) < (1 − ε)qN . Then, according to Lemma
2, there exists i∗ such that for schedule πN we have
µ(Ii∗) ≥ εq

3/4
N /2 and i∗ ≤ q

1/4
N − �C� − 2. Denote

l∗ = AπN ((i∗ + �C�)q3/4
N ) + 1. Then, el∗ is the first

customer admitted (under the optimal schedule πN )
after the end of interval Li∗+�C�. Such a customer
exists because that Li∗ is not one of the last �C� + 2
intervals, and also because qN ≤ tNN . We will refer
to this customer el∗ as “special customer”. We now
consider the following modification of the assumed op-
timal schedule. Under the modified schedule, which
we denote by π̀N , this special customer is to be ad-
mitted at the beginning of the interval Li∗ , and the

.............................
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.......................................
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....................
.....................
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................................

..............................................................................................................................................................................................................................................................

· · ·· · ·
Li∗+�C�Li∗

qN0

Figure 4: Modification from the optimal schedule –
customer el∗ is admitted earlier.

admission times of the other customers are identical to
the optimal schedule πN . (Figure 4) We now compare
the costs associated with the optimal schedule and the
modified schedule. Regarding the cost incurred in the
controller, under the modified schedule only one cus-
tomer, namely el∗ , has admission time different from
under the optimal schedule. In the modified schedule,
π̀N , customer el∗ is admitted earlier, and the differ-
ence of admission times is at least �C�+1 intervals of
length d(qN ). Therefore,

fa(π̀N ) − fa(πN ) ≤ −(�C� + 1)d(qN )

Denote by hN ≥ 0 the difference between the admis-
sion time of el∗ under the optimal schedule πN and
(i∗ + �C�)d(qN ). Then, we have

fa(π̀N ) − fa(πN ) = −[ (�C� + 1)d(qN ) + hN ]

Let us now consider the cost change in the main sys-
tem. To do the comparison, we use a coupling ar-
gument. We consider the sample paths, XπN (t) and
Xπ̀N (t), resulting from two different schedules πN and
π̀N while keeping the service time of each customer
the same. Note that the cost at the main system is
the same for any work–conserving queueing discipline.
We therefore can, and will, assume that under both
schedules, customer el∗ has the lowest service prior-
ity, and that other customers have preemptive priority
over this special customer. Thus, el∗ cannot be served
at any time another customer is in the main system,
and the service of customers other than el∗ is not im-
peded in any way by the service of el∗ . Due to the
priority discipline we have assumed, it is clear that
all customers except for el∗ have the same response
time at the main system. We can therefore compare
only the costs incurred by el∗ . Denote by Rl∗(πN )
and Rl∗(π̀N ) the response time of the customer el∗ for
the optimal schedule πN and the modified schedule
π̀N , respectively. Consider the event that the service
of customer el∗ is completed during the interval Li∗



under the modified schedule. We denote this event by
GN . Obviously, we have E[Rl∗(π̀N ) | GN ] ≤ d(qN ).
Even in the event,Gc

N , that el∗ is not finished during
the interval L∗

i under the modified schedule π̀N , the
difference of the response times Rl∗(π̀N ) − Rl∗(πN )
cannot be more than the difference in admission times
of the customer el∗ ; therefore, we have

E[ Rl∗(π̀N )−Rl∗(πN ) | Gc
N ] ≤ (�C�+1)d(qN )+hN

Therefore,

fm(π̀N ) − fm(πN )
= CP (GN )E[ Rl∗(π̀N ) − Rl∗(πN ) | GN ] +

CP (Gc
N )E[ Rl∗(π̀N ) − Rl∗(πN ) | Gc

N ]
≤ CP (GN )d(qN ) +

CP (Gc
N )[ (�C� + 1)d(qN ) + hN ]

To summarize,

fa(π̀N ) − fa(πN ) + fm(π̀N ) − fm(πN ) (14)
≤ −[ (�C� + 1)d(qN ) + hN ] + CP (GN )d(qN ) +

CP (Gc
N ) [(�C� + 1)d(qN ) + hN ]

= hN [ −1 + CP (Gc
N ) ] +

d(qN ) { −�C� − 1 + CP (GN )} +
d(qN )CP (Gc

N )(�C� + 1)

Now,

P (GN ) = P [Sl∗ ≤ µ({t ∈ Li∗ |XπN (t) = 0}) ]

≥ P [Sl∗ ≤ εq
3/4
N /6 ] ·

P [ µ({t ∈ Li∗ | Xπ̃N (t) = 0 }) > εq
3/4
N /6 ]

For sufficiently large N , P [Sl∗ ≤ εq
3/4
N /6 ] = 1 −

exp(−εq
3/4
N /6) is arbitrarily close to 1, considering

that qN increases to ∞. Also, Lemma 3 states that
P [ µ({t ∈ Li∗ | Xπ̃N (t) = 0 }) > εq

3/4
N /6 ] is arbitrar-

ily close to 1 for sufficiently large N . Therefore, as
N grows, P (GN ) converges to 1, and P (Gc

N ) converges
to 0. Therefore, the cost change associated with the
modification from the optimal schedule, as expressed
in (14), becomes negative. This contradicts optimality
of the schedule πN . Q.E.D.

Theorem 1

lim
N→∞

N

tNN
= 1

Proof: Use qN = tNN in Lemma 4. From Lemma 1
we have tNN → ∞ as N → ∞, and by definition we
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Figure 5: N/tNN vs. N

have AπN (tNN ) = N − 1. Therefore, Lemma 4 implies
lim infN→∞ N−1

tN
N

≥ 1, so

lim inf
N→∞

N

tNN
≥ 1 (15)

From Lemma 1 we also have lim infN→∞
tN
N

N ≥ 1,
which is equivalent to

lim sup
N→∞

N

tNN
≤ 1 (16)

Inequalities (15) and (16) imply

lim
N→∞

N

tNN
= 1

Q.E.D.
A natural question raised after the convergence re-

sult is how fast the convergence takes place. In order
to gain some idea on the convergence speed, numer-
ical methods were used to obtain minima for differ-
ent numbers of customers (N ’s) and different values
of C’s. The optimal admission rates obtained from
these numerical results are presented in Fig. 5. As
the mathematical optimization problem is over pos-
itive orthant of the (N − 1)-dimensional real vector
space, the numerical computation for large N becomes
prohibitive. However, the numerical evaluation for rel-
atively small values of N provides good insights.
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