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Abstract: - In this paper we propose a new robust scheme of nonpeaking nonlinear observers. The ob-
servation strategy is issued from differential algebra where the unmeasured states are given as outputs of a
time-varying linear differentiator that guarantees robustness against measurement errors. We show that for a
certain initial condition, then-dimensional differentiator does not exhibit the peaking phenomenon, generally
encountered in high-gain observer design. A discrete-time version is included to deal with sampled signals.
The developed nonlinear observer reproduces the unmeasured states whatever the form of the nonlinear sys-
tem that meets the algebraic observability conditions.Key-Words: Nonlinear observers; Differentiation;
Lyapunov theory; Time-varying systems; Discrete-time systems.

1 Introduction

Nonlinear observer design has received widespread
attention since the development of Kalman theory [1]
and Luenberger observers [2]. However, the way to
constructive nonlinear observer design still an open
issue. In addition, robustness of high-gain observers
with respect to measurement errors remains a diffi-
cult and a challenging task. Moreover, the peaking
phenomenon, generally encountered in high-gain ob-
server design is also an important problem that de-
ters a lot of applications of the developed observer in
closed-loop configurations.

In this paper we give a systematic procedure
for designing optimal nonlinear observers subject to
noisy measurements. Our approach is based upon
differential algebra and enjoys the property of be-
ing easily implemented in either continuous-time or
discrete-time manner. The nonlinear system is sup-
posed to meet the algebraic observability conditions
that translates the possibility of expressing the system
states as a static functions that involve the input, the
output, and finite number of their higher derivatives.
Since the observation methodology turns on a fun-
damental problem of estimation of the higher deriva-
tives of the system measured outputs, in this paper we
plan to give a systematic procedure to conceive a sta-
ble high-order time-derivative tracker that decouple
the effect of noise from the derivatives estimates. For
a particular choice of initial conditions of the time-

derivative tracker, we show that the higher derivatives
are nonpeaking. Consequently, any state that involves
these derivatives will be also nonpeaking. The main
disadvantage of such observation methodology is the
loss of the asymptotic convergence of the observer
states. Under the assumption that the sates belong
to an invariant predefined set, a positive parameter
is selected to regulate the precision of the estimated
states. We show that choosing this parameter suffi-
ciently large does not affect the transient behavior of
the observer sates.

The time-derivative estimation is achieved with-
out any knowledge of the dynamical model of the
signal to be differentiated. Ignoring the signal model
while designing such differentiators is indispensable
to conceive a nonpeaking system. In recent years,
estimation of output derivatives has received a re-
vival of interest in control and observation litera-
tures, see for instance [3], [4], [5], [6], [7], [8],
[9]. Both continuous-time and discrete-time high-
gain observers have been applied to estimate the
higher derivatives of given reference signals [9], [10],
[8]. These estimates were used for several purposes
as target tracking [10], semi-global stabilization of
nonlinear systems [6] and nonlinear observer design
[5]. Recall that high-gain observers are readily con-
structed as a copy of the dynamics of the original sys-
tem with a proportional injection term that involves
the system and the observer outputs. It is well-known
that high-gain output injection is indispensable to de-
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feat the inherent nonlinearities, however, this propor-
tional injection arises two main drawbacks: the peak-
ing phenomenon and noise amplification. Unfortu-
nately, the high-gain observer is an observer which
involves proportional injection term, and hence, the
compromise between differentiation error, peaking,
and noise filtering cannot be realized by the classical
Luenberger observers.

In this paper we plan to reformulate the high-gain
differentiation scheme by replacing the proportional
P injection term with a multiple-integral time-varying
injection term that involves theqth integral of the sig-
nal to be differentiated. Actually, the notion of adding
an integral path is not quite new. The first idea of
proportional integral PI observers has been proposed
by Wojciechwski [11] and further developed by Beale
and Shafai [12], and Niemann et al [13].The proposed
time-derivative tracker differs from the conventional
P and PI observers proposed in [12], [13], [14]. Our
objective is to cancel the proportional term P from the
observer dynamics and replace it by a novel injection
term that depends upon theqth integral of the mea-
sured output. The static high-gain will be replaced
by a time-varying one so as to avoid the peaking phe-
nomenon in the sense of Sussmann and Kokotovic
[15]. We show that theqI term permits to decou-
ple the effect of noise from the derivative estimates
and noise is filtered more and more by increasing the
order of integrationq. The discrete-time differenti-
ation model is also included to deal with sampled
signals. Throughout this paper, we note byIR the
set of real numbers,ZZ≥0 is the set of positive inte-
ger numbers, andδi,j stands for the kronecker sym-
bol. ‖f(t)‖∞ = supt≥0 |f(t)|. |f(t)| is the abso-
lute value of the functionf(t). y(i) is theith deriva-
tive of y. A′ is the matrix transpose ofA. ‖A‖ =
max

{√
λ : λ is the eigenvalue ofAT A

}
. For any

vectorv, ‖v‖2S = v′Sv. ‖A‖∞ = maxi

∑n
j=1 |ai,j |.

λmin(A) : is the smallest eigenvalue ofA. λmax(A)
: is the largest eigenvalue ofA. S +(n, IR) denotes
the set of positive definite matrices of ordern. ε is a
small positive parameter andI is the identity matrix
with appropriate dimension.eig(A) is the set of the
eigenvalues ofA. M (A) is the measure of the ma-
trix A equal toλmax {(A + A′)/2}. eA is the matrix
exponential.

2 Nonpeaking robust time-
derivative tracker

In this section, we commence by developing
the continuous-timenth order time-varying time-

derivative tracker and then we deduce the discrete-
time version of the observer by exact discretization. It
will be highlighted that the peaking will be totaly re-
moved in the first instants by a suitable choice of ini-
tial conditions, in the same time, the tracker remains
robust against measurement errors that may occur at
any moment.

2.1 Robustness against uncertainties

The objective is to conceive a time-varyingnth order
tracker that estimates the reliable higher-derivatives
of a scalar output signaly(t). We assume that there
is no deterministic mathematical model fory(t). In-
deed, we can consider that the signaly(t) is the out-
put of the following system

ẋ(t) = A x(t) + B y(n)(t),
y(t) = Cx(t) + d(t),

(1)

wherex =
[

y ẏ · · · y(n−1)
]′

(t) ∈ IRn is the
state vector, andy(n)(t) is the unknown model input.
The nominal matrices are defined as:A ∈ IRn×n :
(A)i,j = δi,j−1, 1 ≤ i, j ≤ n, B ∈ IRn×1 : Bi =
δn,i, 1 ≤ i ≤ n andC ∈ IR1×n : Ci = δ1,i, 1 ≤
i ≤ n.

In references [5] and [9], we proposed a time-
varying high-gain observer of the form

˙̂η(t) = Aη̂(t) + P−1(t)C ′ (y(t)− C η̂(t)) ,

Ṗ (t) = −µP (t)−A′P (t)− P (t)A + C ′C,
P−1(0) = εI, µ ∈ IR>0,

(2)

to estimate the first(n − 1)th derivatives ofy(t).
Recall that the static form of the last matrix differ-
ential equation(−µP − A′P − PA + C ′C = 0)
has been proposed in [16] for nonlinear observer
design where the system dynamics is assumed to
be known. Although system (2) is a nonpeaking
differentiation system, the presence of the propor-
tional injection termP−1(t)C ′ (y(t)− C η̂(t)) =
P−1(t)C ′C (x(t)− η̂(t)) + P−1(t)C ′d amplifies
enormously the amount of noise forµ large. This
means that whatever the method of calculation of the
differentiation gainP−1(t)C ′, the tracker (2) could
not decouple the effect of noise from the derivative
estimates. For this reason, we reformulate the dy-
namics of the tracker as a time-varying observer of
the form

ξ̇1(t) = ξ2(t)− kξ1(t) ξ1(t),
ξ̇2(t) = ξ3(t)− kξ2(t) ξ1(t),

...
ξ̇q(t) = y(t)− Cx̂(t)− kξq(t) ξ1(t),
˙̂x(t) = A x̂(t)−KI(t) ξ1(t),

(3)
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whereKI(t) =
[

k1(t) k2(t) · · · kn(t)
]′ ∈

IRn andKξ =
[

kξ1(t) kξ2(t) · · · kξq(t)
]′ ∈

IRq are called herein the integral gain and theξ-
subsystem gain, respectively. The design of the time-
varying observer gains is detailed in the following
theorem.

Theorem 1 Consider the time-varying linear system[
ξ̇
˙̂x

]
(t) =

(
Ã−H−1C̃ ′C̃

) [
ξ
x̂

]
(t)

+
[

Bξ

0

]
y(t),

Ḣ(t) = −µH(t)− Ã′H(t)−H(t)Ã + C̃ ′C̃,

(4)

whereµ is a sufficiently large positive constant,Aξ ∈
IRq×q : (Aξ)i,j = δi,j−1 is the anti-shift matrix,
ξ ∈ IRq and x̂ ∈ IRn are the observer states, and
the nominal matrices are defined as

Ã =
[

Aξ −BξC
0n×q A

]
∈ IR(n+q)×(n+q),

Bξ =


0
0
...
1

 ∈ IRq×1, C̃ =
[

C ′

0q×1

]′
∈ IR1×n+q. (5)

Then for any uniformly bounded signaly(t) ∈ C n,
measured with an errord(t), such thatH(0) � I
there exist a finite timeT and two positive constants
K0, andK1 such that

sup
t≥T

‖x̂(t)− x(t)‖H∞
≤

K0

µ
+ K1


∣∣∣y(n)(t)

∣∣∣
µq+n+ 1

2
+
|d(t)|
µq+ 1

2

 . (6)

Proof. In the sequel the time variablet will be
omitted for notation simplicity. From equation (4),

we have

[
Kξ(t)
KI(t)

]
= H−1(t)C̃ ′. The explicit solu-

tion of H(t) is

H(t) = e−µte−Ã′ tH(0)e−Ã t

+
∫ t

0

e−µ(t−τ)e−Ã′ (t−τ)C̃ ′C̃e−Ã (t−τ)dτ. (7)

From the last equation, we see thatH(t) is always
positive definite because(A, C) is an observable
pair. After a finite time,H converges to a static ma-
trix of the form

H∞ =
∫ ∞

0

e−µ(t−τ)e−Ã′ (t−τ)C̃ ′C̃e−Ã (t−τ)dτ

=

(
H̃∞

)
i,j

µi+j−1
, 1 ≤ i, j ≤ n + q, (8)

where H̃∞ is the solution of the matrix equation
−H̃∞ − Ã′H̃∞ − H̃∞Ã + C̃ ′C̃ = 0. For notation
simplicity H will stand forH(t). Let e = x̂ − x be
the error between the state vectors of systems (1) and
(4), and define

B̃ξ =
[

Bξ

0n×1

]
, B̃ =

[
0q×1

B

]
, z =

[
ξ
e

]
, (9)

then

ż =
(
Ã−H−1C̃ ′C̃

)
z + B̃ξ d− B̃y(n). (10)

Let H∞ be the solution of the following matrix equa-
tion

−µH∞ − Ã′H∞ −H∞Ã + C̃ ′C̃ = 0, (11)

and settingV = z′H∞z, A0 = Ã − H−1
∞ C̃ ′C̃ and

∆H = H−1
∞ −H−1, then

V̇ = z′
(
A
′

0H∞ + H∞A0 + 2H∞∆HC̃ ′C̃
)

z

+2d B̃′ξH∞z − 2y(n) B̃′H∞z.

Using (11), we have

V̇ ≤ z′
(
−µH∞ + 2H∞∆HC̃ ′C̃

)
z + 2dB̃′ξH∞z

− 2y(n)B̃′H∞z

≤ −
(
µ− 2

∥∥∥H
1
2∞∆HC̃ ′C̃H

− 1
2∞

∥∥∥)
V

+ 2dB̃′ξH∞z − 2y(n)B̃′H∞z

(12)

Remark that H∞ can be rewritten asH∞ =
µDµH̃∞Dµ such that

Dµ = diag
[
1/µ, 1/µ2, · · · , 1/µn+q

]
. (13)

Then we obtain the following bounds

µλ ‖Dµz‖2 ≤ V ≤ µ λ̄ ‖Dµz‖2, (14)

such thatλ and λ̄ are the minimum and the max-
imum eigenvalues ofH̃∞, respectively. We have∥∥∥B̃

′

ξDµ

∥∥∥ = 1/µq, and
∥∥∥B̃

′
Dµ

∥∥∥ = 1/µq+n. This

gives

2d B̃
′

ξH∞z ≤ 2µλ̄ |d|
∥∥∥B̃

′

ξDµ

∥∥∥ ‖Dµ z‖

≤ C1 |d|
µq− 1

2

√
V

(15)
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whereC1 = 2λ̄/
√

λ and

2y(n) B̃′H∞z ≤ 2µλ̄
∣∣y(n)

∣∣ ∥∥∥B̃′Dµ

∥∥∥ ‖Dµ z‖

≤
C1

∣∣∣y(n)
∣∣∣

µq+n− 1
2

√
V

(16)

Inequality (12) becomes

V̇ ≤ −
(
µ− 2

∥∥∥H
1
2∞∆HC̃ ′C̃H

− 1
2∞

∥∥∥)
V

+
C1

∣∣∣y(n)
∣∣∣

µq+n− 1
2

√
V + C1 |d|

µq− 1
2

√
V .

(17)

From equations (11) and (4), the dynamics of the dif-
ferenceG = H − H∞ is Ġ = −µG − Ã′G − GÃ
which gives

G = e−µ te−Ã′ tG(0)e−Ã t. (18)

We have
∥∥∥H

1
2∞

∥∥∥ ≤ c√
µ and

∥∥∥H
− 1

2∞

∥∥∥ ≤ c̄µn+q− 1
2 ,

such thatc̄ =
√

n
∥∥∥H̃

− 1
2∞

∥∥∥
∞

, c =
√

n
∥∥∥H̃

1
2∞

∥∥∥
∞

,

Moreover

‖G‖ ≤ C0e
−µ tλmax

(
e−Ã′ te−Ã t

)
, (19)

whereC0 = ‖G(0)‖. Using

λmax

(
e−Ã′ te−Ã

)
≤ e2λmax{(Ã+Ã′)/2} t = e

√
q+n t,

then we obtain

‖G‖ ≤ C0e
−(µ−

√
q+n) t. (20)

Since
∥∥H−1

∥∥ ≤ H−1
∞ for all H−1(0) ≤ H−1

∞ , then

2
∥∥∥H

1
2∞∆HC̃ ′C̃H

− 1
2∞

∥∥∥ ≤ 2
∥∥∥H

− 1
2∞ G H−1H

− 1
2∞

∥∥∥
≤ C2µ

4(q+n)−2e−(µ−
√

q+n) t,

whereC2 = 2C0c̄
4 does not depend onµ. Finally,

V̇ ≤ −
(
µ− C2µ

4(q+n)−2e−(µ−
√

q+n) t
)

V

+
C1

∣∣∣y(n)
∣∣∣

µq+n− 1
2

√
V + C1 |d|

µq− 1
2

√
V .

(21)

Let W =
√

V , then for t ≥ T =
ln

(
2C2µ

4(q+n)−2
)
/(µ−

√
q + n), we have

Ẇ ≤ −µ

4
W

+ C1
2


∣∣∣y(n)

∣∣∣
µq+n− 1

2
+ |d|

µq− 1
2

 .
(22)

Using the Gronwall-Bellman inequality, we get

W ≤ e−
µ
4 T W (T )

+ 2C1


∣∣∣y(n)

∣∣∣
µq+n+ 1

2
+ |d|

µq+ 1
2

 .
(23)

Put e−
µ
4 T W (T ) =

K0

µ
, K1 = 2C1 and using the

fact that‖e‖H∞
≤ ‖z‖H∞

, then we obtain

sup
t≥T

‖x̂− x‖H∞
≤ K0

µ
+ K1


∣∣∣y(n)

∣∣∣
µq+n+ 1

2
+

|d|
µq+ 1

2

 .

From the last inequality, we see that the effect of the
perturbationd is attenuated more and more by in-
creasing the order of integrationq. In the next subsec-
tion, we prove that tracker (4) is a nonpeaking system
if certain initial conditions are considered.

2.2 Peaking

We have seen from inequality (23) that noise reduc-
tion depends on the values ofµ andq. In this sub-
section, we show that large values ofµ do not affect
the transient behavior of tracker (4). It means that
choosingµ large augments the precision of tracker
(4) and dwindles the effect of noise without defacing
the transient behavior. We summarize the result in the
following statement.

Theorem 2 For µ large, system (4) is a nonpeak-
ing differentiation observer for allH(0) = 1

ε0
I ∈

S +(n+q, IR). ε0 is a small positive parameter cho-
sen in the interval]0, 1[.

Proof. From (4), we see that the tracker is a stable
time-varying linear system perturbed by the inputy.

Let η =
[

ξ
x̂

]
be the state vector of (4) fory = 0,

then (4) is a nonpeaking system, in the sense of Suss-
mann and Kokotovic [15], if and only if the following
system{

η̇ =
(
Ã−H−1C̃ ′C̃

)
η,

Ḣ = −µH − Ã′H −HÃ + C̃ ′C̃,
(24)

is nonpeaking. TakingV = η′Hη as a Lyapunov
function candidate to (24), then we get

V̇ ≤ −µV. (25)
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ThenV ≤ e−µ tV (0), or

‖η‖2 ≤
(
e−µ t ‖H(0)‖ ‖η(0)‖2

)
/λmin(H(t)). (26)

Since

λmin(H(t)) ≥ λmin

(
e−µte−Ã′ tH(0)e−Ã t

)
+λmin

(∫ t

0

e−µ(t−τ)e−Ã′(t−τ)C̃ ′C̃e−Ã(t−τ)dτ

)
,

and
(
Ã, C̃

)
is observable, then

λmin

(∫ t

0

e−µ(t−τ)e−Ã′(t−τ)C̃ ′C̃e−Ã(t−τ)dτ

)
≥ ε

∀t > 0. Moreover

λmin

(
e−µte−Ã′tH(0)e−Ãt

)
≥ λmin

(
e−µt · I

)
λmin

(
e−Ã′tH(0)e−Ãt

)
.

Then

λmin(H(t)) ≥ e−µtλmin

(
e−Ã′tH(0)e−Ãt

)
+ ε (27)

Using

λmin

(
e−Ã′tH(0)e−Ãt

)
≥ 1

ε0
λmin

(
e−Ã′te−Ãt

)
≥ 1

ε0
e−2M (−Ã) t =

1
ε0

e−
√

n+q t,

then

‖η‖2 ≤ e−µ t

e−(µ+
√

n+q) t + εε0
‖η(0)‖2 . (28)

For t = −ln((µεε0)/
√

n + q))/(µ +
√

n + q), the

function
e−µ t

e−(µ+
√

n+q) t + εε0
reaches its maximum

value

max
t≥0

(
e−µ t

e−(µ+
√

n+q) t + εε0

)

=
√

n + q

(
µεε0√
n+q

) µ
µ+
√

n+q

εε0(µ +
√

n + q)

Forµ large, we have

lim
µ→∞

√
n + q

(
µεε0√
n+q

) µ
µ+
√

n+q

εε0(µ +
√

n + q)

= lim
µ→∞

µ

µ +
√

n + q
= 1

This implies that the peaking is absent forµ large.
Finally, we conclude that the tracker does not exhibit
any peaking in the first instants of the state recon-
struction and behaves more resistant to any eventual
perturbation that comes corrupting the reference sig-
naly at any moment.

3 The discrete-time case

In most practical situations, signals are monitored in
discrete-time manner. For this reason, it is recom-
mended to conceive a discrete-time tracker that ro-
bustly estimate the higher derivatives of a given sig-
nal from its uncertain discrete-time samples. In this
section, we show that by exact discretizing the con-
tinuous tracker (4), one could obtain a time-varying
digital tracker that preserves all the advantages of the
continuous-time tracker developed in section??. The
breakdown of the digital tracker is given by the fol-
lowing theorem.

Theorem 3 If the sampling periodδ is chosen to sat-
isfy the condition

max eig
(√

σ e−Ãδ
)

< 1, (29)

then for allH0 ∈ S +(n + q, IR), the state vector̂xk

of the discrete-time system

[
ξk+1

x̂k+1

]
=

(
eÃ δ − δ H−1

k C̃ ′C̃eÃ δ
) [

ξk

x̂k

]
+δ

[
Bξ

0

]
yk,

Hk+1 = σe−Ã′ δHke−Ã δ + δ C̃ ′C̃,

robustly estimates the successive higher derivatives
of the bounded signal(yk)k∈ZZ≥0

up to the order
n − 1. dk is the measurement error andσ is called
the smoothing parameter chosen in the]0, 1[. The
nominal matrices are defined as in theorem 1.

Proof. Forδ small enough such that we could ne-
glect the terms of powerδ2, we haveeÃδ ∼ I + δ Ã ,
δ C̃eÃ δ ∼ δ C̃, e−Ã′ δ ∼ I − δÃ′, e−Aδ ∼ I − δ Ã.
This gives

Hk+1 = σ
(
I − δÃ′

)
Hk

(
I − δ Ã

)
+ δ C̃ ′C̃

= σHk − σδ HkÃ− σδÃ′Hk

+ σδ2Ã′HkÃ + δ C̃ ′C̃

If we putσ = 1−λ such that0 < λ < 1 and neglect-
ing the term of powerδ2, then forσ ' 1 andµ = λ

δ ,
we have

lim
δ→0

Hk+1 −Hk

δ
= Ḣ = −µH − Ã′H −HÃ + C̃ ′C̃.
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and

lim
δ→0

 ξk+1 − ξk

δ
x̂k+1 − x̂k

δ

 =
(
Ã−H−1C̃ ′C̃

) [
ξ
x̂

]

+
[

Bξ

0

]
y.

The condition of stability of the discrete-time tracker
is a direct consequence of the stability of the discrete
Lyapunov equation

Hk+1 =
(√

σe−Ã′ δ
)

Hk

(√
σe−Ã δ

)
+ δ C̃ ′C̃. (30)

Then the matrixHk could be written as

Hk = δ
k∑

k=0

σk
[
e−Ã′δ

]k

C̃ ′C̃
[
e−Ãδ

]k

. (31)

SinceÃ is nilpotent fork ≥ n + q, then

e−Ã′δ =
∞∑

i=0

(−1)i

(
Ã′ δ

)i

i!

=
n+q−1∑

i=0

(−1)i

(
Ã′δ

)i

i!
; with Ã0 = I.

This gives

δ
[
e−Ã′δ

]k

C̃ ′C̃

= δ

n+q−1∑
i=0

(−1)i

(
k Ã′δ

)i

i!
C̃ ′C̃,

then

δ
[
e−Ã′ δ

]k

C̃ ′C̃
[
e−Ã δ

]k

= δ

n+q−1∑
i=0

n+q−1∑
j=0

(−k)i+j

i!j!

(
Ã′δ

)i

C̃ ′C̃
(
Ã δ

)j

Consequently, using (31), we have the expression of
H∞

δ
∞∑

k=0

σk

n+q−1∑
i=0

n+q−1∑
j=0

(−k)i+j

i!j!

(
Ã′δ

)i

C̃ ′C̃
(
Ãδ

)j

(32)
Sinceσ < 1, then the infinity sum converges to a
constant matrix that depends onσ andδ. The user
can use the properties of the sums of geometric series
to determine the final expression ofH∞.

In order to highlight the correspondence between
the developed discrete-time tracker and the classi-
cal IIR differentiators, we shall omit theξ-subsystem
from the structure of the tracker (30), then its dynam-
ics reduces to the following system:{

x̂k+1 = eAδx̂k + δH−1
k C ′

(
yk − CeAδx̂k

)
,

Hk+1 = σe−A′δHke−Aδ + δC ′C.
(33)

Hk in the last system isn × n matrix. By taking the
special casen = 3, we obtain

H∞ =
∞∑

k=0

σk
2∑

i=0

2∑
j=0

(−k)i+j

i!j!
(A′δ)i

δC ′C(Aδ)j

=
∞∑

k=0

σk


δ −k δ2 k2δ3

2

−k δ2 k2δ3 −k3δ4

2

k2δ3

2 −k3δ4

2
k4δ5

4


which is equal to

δ
1−σ − δ2σ

(1−σ)2
1
2

δ3σ(σ+1)

(1−σ)3

− δ2σ
(1−σ)2

δ3σ(σ+1)

(1−σ)3
− 1

2
δ4σ(σ2+4σ+1)

(1−σ)4

1
2

δ3σ(σ+1)

(1−σ)3
− 1

2
δ4σ(σ2+4σ+1)

(1−σ)4
1
4

δ5σ(σ3+11σ2+11σ+1)
(1−σ)5


Then

δH−1
∞ C ′ =

 (1− σ)(σ2 + σ + 1)
3
2 (σ − 1)2(σ + 1)/δ

(1− σ)3/δ2

 . (34)

The resultingz−transfer functions of the tracker (33)
(for n = 3) are:

X̂1(z)
Y (z)

=

(
1− σ3

)
z2 +

(
3 σ3 − 3 σ

)
z − 3 σ3 + 3 σ2

z3 + (3 σ − 6) z2 + (6− 3 σ2) z − 2 + σ3
(35)

X̂2(z)
Y (z)

=
(z − 1)

2δ
× (36)(

−3 σ + 3 σ3 + 3− 3 σ2
)
z − 1− 5 σ3 + 9 σ2 − 3 σ

z3 + (3 σ − 6) z2 + (6− 3 σ2) z − 2 + σ3

X̂3(z)
Y (z)

= (37)

(z − 1)2

δ2

1− σ3 + 3 σ2 − 3 σ

z3 + (3σ − 6) z2 + (6− 3 σ2) z − 2 + σ3

From (36), and (37) we see the forward difference
formulas (z−1)

δ and (z−1)2

δ2 , issued from classical nu-
merical differentiation, followed by an IIR discrete
filters.
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4 Observer design

First, let us begin by giving some important defini-
tions.

Definition 1 Consider the nonlinear system de-
scribed by the following dynamic equations{

ẋ(t) = f(x(t), u(t)),
y(t) = h(x(t)),

(38)

wheref : IRn × IRm 7→ IRn is continuously differ-
entiable and satisfiesf(0, 0) = 0. x(t) ∈ IRn is
the state vector,u(t) ∈ IRm is the input vector, and
y(t) ∈ IR is a smooth nonsingular output. We assume
that y(t) andu(t) are continuously differentiable for
all t ≥ 0. System (38) is said to be algebraically ob-
servable if there exist two positive integersµ and ν
such that

x(t) = φ
(
y, ẏ, ÿ, · · · , y(µ), u, u̇, ü, · · · , u(ν)

)
(t),

(39)
whereφ(·) : IRµ+1 × IR(ν+1)m 7→ IRn is a differ-
entiable vector valued nonlinearity of the inputs, the
outputs, and their derivatives.

Notice that the last definition has been introduced in
reference [17] to characterize theuniform complete
observability. Recall that for nonlinear systems, there
exists a set of control inputs which renders system
(38) unobservable. We refer the reader to [18] for in-
troductory discussions of this problem. For our case,
we define this class of bad inputs as follows.

Definition 2 System (38) is algebraically observable
for any input, if the vector valued

x(t) = φ
(
y, ẏ, ÿ, · · · , y(µ), u, u̇, ü, · · · , u(ν)

)
(t),

is defined onIRµ+1×IR(ν+1)m 7→ IRn for all u ∈ U .
We callU the set of continuously differentiable con-
trol inputs for which the state vector (39) is defined
everywhere, and we noteU ?, the set of bad inputs
that makes (39) singular.

In this section we show how to use the differ-
entiation observer as a nonlinear observer. For this
purpose, consider the nonlinear system known by the
name of the duffing oscillator ẋ1 = x2,

ẋ2 = −x1 − x3
1,

y = x1 + x2,
(40)

wherex = x(t) is the state vector andy = y(t) is
a scalar output. System (40) is algebraically observ-

able, i.e.,
x1 =

(
−3ẏ + ÿ + 4y + y3

)
y

2y3 − ÿ + 5y
,

x2 =

(
3ẏ − 2ÿ + y + y3

)
y

2y3 − ÿ + 5y
,

(41)

According to the above definition (see Eq. (41)), the
nonlinear system is observable. The trajectory of the
system states are uniformly bounded. One can take
the following Lyapunov function candidate

V (x) =
1
2
x2

1 +
1
2
x2

2 +
1
4
x4

1, (42)

and show thaṫV = 0, i.e.,V = C is a constant Lya-
punov function. This implies that the first derivatives
of y are also bounded. Forµ sufficiently large, the
robustq-integral nonpeaking observer is readily con-
structed as

x̂1 =

(
−3ẏ + η̂3 + 4y + y3

)
y

2y3 − η̂3 + 5y
,

x̂2 =

(
3η̂2 − 2η̂3 + y + y3

)
y

2y3 − η̂3 + 5y
,[

ξ̇
˙̂η

]
=

(
Ã−H−1C̃ ′C̃

) [
ξ
η̂

]
+

[
Bξ

0

]
y,

Ḣ = −µH − Ã′H −HÃ + C̃ ′C̃, H−1(0) = εI,

(43)

where the differentiationξ- andη̂-subsystems are de-
fined as in theorem 1 and the dimension of theη̂ is
greater or equal to 3.

Remark 1 The design of the robust algebraic ob-
server is not limited to bounded state nonlinear sys-
tems, the reader is referred to the reference [19] to
see how to encounter this problem by change of co-
ordinate.

5 Conclusion

In this paper we introduced a novel form of robust
nonpeaking observers for nonlinear systems that ver-
ify the algebraic observability conditions. The nov-
elty of the proposed observers consists in replacing
the proportional output error by aq-integral time-
varying injection term in the differentiator dynamical
equations. For a particular choice of initial condi-
tions, we showed that the continuous-time tracker is
an arbitrary-order differentiation system that does not
exhibit the peaking phenomenon. By increasing the
orderq of the integral path, noise is more attenuated
and the observer remains robust against any perturba-
tion that may attach to the signal to be differentiated.
A discrete-time version of the differentiation scheme

7



is included to deal with digital signals. The nice prop-
erties of the proposed observers favorite their appli-
cations in others numerous research areas as target
tracking and semi-global stabilization of nonlinear
systems.
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