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Abstract: - In this paper we propose a new robust scheme of nonpeaking nonlinear observers. The ob-
servation strategy is issued from differential algebra where the unmeasured states are given as outputs of a
time-varying linear differentiator that guarantees robustness against measurement errors. We show that for a
certain initial condition, the:-dimensional differentiator does not exhibit the peaking phenomenon, generally
encountered in high-gain observer design. A discrete-time version is included to deal with sampled signals.
The developed nonlinear observer reproduces the unmeasured states whatever the form of the nonlinear sys-
tem that meets the algebraic observability conditiok®y-Words: Nonlinear observers; Differentiation;
Lyapunov theory; Time-varying systems; Discrete-time systems.

1 Introduction derivative tracker, we show that the higher derivatives
are nonpeaking. Consequently, any state that involves
gse derivatives will be also nonpeaking. The main
sadvantage of such observation methodology is the
ss of the asymptotic convergence of the observer

constructive nonlinear observer design still an opé tes._ Un_dert the dasf_sun;pnop that thf sates beI(t)ng
issue. In addition, robustness of high-gain observe(f)s":m invanant predetined set, a positive parameter
with respect to measurement errors remains a diﬁ_selected to regulate the precision of the estimated

cult and a challenging task. Moreover, the peakir? atetls. | We S;OW tha}[t CfPO?St'r?gtth's parfltr)niter.suff;-
phenomenon, generally encountered in high-gain o ehtly large does not affect the transient behavior o

server design is also an important problem that d & observer sates.

ters a lot of applications of the developed observer in The time-derivative estimation is achieved with-

closed-loop configurations. out any knowledge of the dynamical model of the
In this paper we give a systematic procedurggnal to be differentiated. Ignoring the signal model
for designing optimal nonlinear observers subject while designing such differentiators is indispensable
noisy measurements. Our approach is based ugorconceive a nonpeaking system. In recent years,
differential algebra and enjoys the property of bestimation of output derivatives has received a re-
ing easily implemented in either continuous-time asival of interest in control and observation litera-
discrete-time manner. The nonlinear system is supres, see for instance [3], [4], [5], [6], [7], [8],
posed to meet the algebraic observability conditiof@]. Both continuous-time and discrete-time high-
that translates the possibility of expressing the systgyain observers have been applied to estimate the
states as a static functions that involve the input, thegher derivatives of given reference signals [9], [10],
output, and finite number of their higher derivative$8]. These estimates were used for several purposes
Since the observation methodology turns on a fuas target tracking [10], semi-global stabilization of
damental problem of estimation of the higher derivatonlinear systems [6] and nonlinear observer design
tives of the system measured outputs, in this paper {8 Recall that high-gain observers are readily con-
plan to give a systematic procedure to conceive a staructed as a copy of the dynamics of the original sys-
ble high-order time-derivative tracker that decouptem with a proportional injection term that involves
the effect of noise from the derivatives estimates. Ftire system and the observer outputs. It is well-known
a particular choice of initial conditions of the timethat high-gain output injection is indispensable to de-

Nonlinear observer design has received Widespret
attention since the development of Kalman theory [
and Luenberger observers [2]. However, the way



feat the inherent nonlinearities, however, this propaderivative tracker and then we deduce the discrete-
tional injection arises two main drawbacks: the peatime version of the observer by exact discretization. It
ing phenomenon and noise amplification. Unfortwill be highlighted that the peaking will be totaly re-
nately, the high-gain observer is an observer whichoved in the first instants by a suitable choice of ini-
involves proportional injection term, and hence, thtéal conditions, in the same time, the tracker remains
compromise between differentiation error, peakingobust against measurement errors that may occur at
and noise filtering cannot be realized by the classiaty moment.
Luenberger observers.

_ In thi_s paper we plan to reformulate the high-_gaig_l Robustness against uncertainties
differentiation scheme by replacing the proportional
P injection term with a multiple-integral time-varyingThe objective is to conceive a time-varyingh order
injection term that involves thgth integral of the sig- tracker that estimates the reliable higher-derivatives
nal to be differentiated. Actually, the notion of addingf @ scalar output signaj(t). We assume that there
an integral path is not quite new. The first idea ¢$ no deterministic mathematical model fgft). In-
proportional integral Pl observers has been proposéeed, we can consider that the signél) is the out-
by Wojciechwski [11] and further developed by Bealgut of the following system
and Shafai [12], and Niemann et al [13].The proposed — As(t)+ By™(),

time-derivative tracker differs from the conventional x(:) —On(B 4 dlt Q)
P and PI observers proposed in [12], [13], [14]. Our y(t) = Ca(t) +d(),
objective is to cancel the proportional term P from t rec=[y § - yoD }, (1) € R™ is the

observer dynamics and replace it by a novel injectiortl ¢ ¢ ™) (4 is th K del inout

term that depends upon tlgeh integral of the mea- Sate veclor, ang . (t) is the unknown 'mo ix"gpu '

sured output. The static high-gain will be replace he nominal matnce; are defined %gfllR :

by a time-varying one so as to avoid the peaking ph Dig = dij-1,1 =4, < n B e R™ : B =

nomenon in the sense of Sussmann and Kokotovit?’ 1 <i<nandCeR P Ci=01, 1 <

[15]. We show that theyT term permits to decou-* = ™" .

ple the effect of noise from the derivative estimates 'Y‘ refgrence; [5] and [9], we proposed a time-

and noise is filtered more and more by increasing tHarymng high-gain observer of the form

order of integratiory. The discrete-time differenti- ;) — A5(¢) + P=1(t)C" (y(t) — C'i(t)),

ation model is also included to deal with sampledp(t> — —uP(t)— A'P(t) — POA+C'C,  (2)

signals. Throughout this paper, we note Bythe P=1(0) = el, p € Roo,

set of real numbersZ > is the set of positive inte-

ger numbers, and; ; stands for the kronecker sym+o estimate the firstn — 1)th derivatives ofy(¢).

bol. ||f(t)ll.c = sup,>o [f(t)]. [f(t)| is the abso- Recall that the static form of the last matrix differ-

lute value of the functiorf(t). y¥ is theith deriva- ential equation(—uP — A'P — PA + C'C = 0)

tive of 5. A’ is the matrix transpose of. ||A|| = has been proposed in [16] for nonlinear observer

max{ﬁ .\ is the eigenvalue OTATA}_ For any design where the system dynamlps is assume_d to
) . be known. Although system (2) is a nonpeaking

vectorv, [[vf[g = v'Sv. |4, = max; 327 ai ;|- differentiation system, the presence of the propor-

Amin(A) 1 is the smallest eigenvalue @f. Anax(A4) tional injection termP~L(t)C’ (y(t) — CAt)) =

. is the largest eigenvalue of. . (n,R) denotes PL)C'C (x(t) — A(t)) + P~(t)C'd amplifies

the set of positive definite matrices of ordere is a enormously the amount of noise forlarge. This

small positive parameter anfdis the identity matrix means that whatever the method of calculation of the

with appropriate dimensioreig(A) is the set of the itferentiation gainP~(¢)C’, the tracker (2) could

eigenvalues ofd. .#(A) is the measure of the mamot decouple the effect of noise from the derivative

trix A equal toAnax {(A + A')/2}. e is the matrix estimates. For this reason, we reformulate the dy-

exponential. namics of the tracker as a time-varying observer of

the form

2 Nonpeaking robust time- &) = &) —k,0)& (),

. . = —k
derivative tracker &) = &)~ ke a), 5
In this section, we commence by developing g'q(t) : y(t)_0£(t)_k£q(t)§1(t)’
the continuous-timenth order time-varying time- (1) = A&(t) — K;(t)&(t),



where K;(t) = [ ki(t) ka(t) -+ kn(t) ]’ ¢ where H,, is the solution of the matrix equation
R™ andKe = | ke, (1) key(t) - ke (1) ]' € —Ho—-AHo - HoA+C'C = 0. For notation

IR are called herein the integral gain and the Simplicity /7 will stand for H(¢). Lete = 2 — x be
subsystem gain, respectively. The design of the tinf&€ error between the state vectors of systems (1) and
varying observer gains is detailed in the followin§?). and define

theorem.

Theorem 1 Consider the time-varying linear systenBe = [ OBfl ] , B= [ Ogl } , 2= [ ¢ } , (9)
n X
3 (i g €
[i}(t)—(/l H CC)[i‘}(t)

+ [ ?f }y(t),

H(t)=—pH(t)— A'H(t) — H{t)A + C'C,
wherey. is a sufficiently large positive constant; € et H_ be the solution of the following matrix equa-
RI*9 (Ag); ; = dij—1 is the anti-shift matriX, tion
¢ € R? andi € IR™ are the observer states, and

then
(4)
3= (A . H*lc’c) 2+ Bed— By™.  (10)

the nominal matrices are defined as —pHo — AHoo — HiA+C'C =0, (11)
i— { Ae  —BC ] € R(9)x(n+a) _ _
Onxg A " and settingl’ = 2’ Hy2, Ay = A — HZ'C'C and
0 AH = HZ'— H ! then
0 gx1l ~ c’ ' 1Xn+q
1 +2d B{Hooz — 2y™ B'Hooz.

Then for any uniformly bounded signg(t) € ¢,
measured with an erroti(t), such thatH (0) > I Using (11), we have
there exist a finite tim@& and two positive constants

Ky, and K; such that v

< 2 (~nHoo + 2HAHC'C) 2 4 2dBHox 2
sup ||(t) — z(t < — 2™B'H
tZTll ) —x(®)ll g, Y oL 12)
o < - @_QHH;AHC’OHOJ v
K EARLCI T "B
= L ) (®) + 2dBHocz = 2B Hec
i Mq+n+2 Mqug

Remark thatH. can be rewritten asH, =

Proof. In the sequel the time variablewill be
such that

omitted for notation simplicity. From equation (4),“D“H°QD“
Kﬁ(t) =1\ ov i _
we have{ K1 (1) } = H~1(¢)C". The explicit solu D,, = diag [1/% 12, - 1/‘un+q] . (13)
tion of H(¢) is
e I Then we obtain the following bounds
H(t) = e e At H(0)e A g
t - . —
+ [ A NG G Aar (@) pADAI SV < pd D’ (14)

0
From the last equation, we see tHé(?) is always such that\ and A are the minimum and the max-
positive definite becauseA, C') is an observable imum eigenvalues ofd.., respectively. We have

pgir. After a finite time,H converges to a static ma-HggDMH — 1/u9, and HEID“H = 1/pa*". This
trix of the form .

Hy = /00 e Ht=T) o= A (t=T) 1 Ce=A(t=T) 47
0 - =~
(i) 200 ld| | BD,| 1D, 21
i,j

. C1|d|
:W’131,1§n+q, (8) Mqi%\/v

gives

2d By Hoo

IA

(15)

IN




whereC; = 2)\/v/A and Using the Gronwall-Bellman inequality, we get

2 BHoz < 2\ [y | B'D,[ 1D,z W< e ETw(r)
Cy |y (16) vl (23)
< /L‘HTW + 26, patnts ey |

Inequality (12) becomes K

) Pute 5 TW(T) = =2, K; = 2C; and using the
Vo< (u QHHzAHO’CH z )V p

’ 17) factthatlel|; <[5, then we obtain
b eV Sl
- Ko A

From equations (11) and (4), the dynamics of the d|fbuPHx*x”H = m + K gty ol
ferenceG = H — Hy is G = —uG — AG - GA
which gives

From the last inequality, we see that the effect of the
G — e—ute—ﬁ’tGa))e—gt_ (18) pertur_bationd is attepuated more and more by in-
creasing the order of integratignIn the next subsec-
=,n+q—1  tion, we prove that tracker (4) is a nonpeaking system

1
We haveHHgO h = PIUY < ,
if certain initial conditions are considered.

1

c -2

< T andHH00
~1

e = \/ﬁHHgo

~_1
such thatc = \/EHHOO2

Moreover
L 2.2 Peaking
1G] < Coe™ Aax (4t 41) . (19)
We have seen from inequality (23) that noise reduc-
whereCy = ||G(0)]|. Using tion depends on the values pfandg. In this sub-
B B section, we show that large values;oflo not affect
Amax (e“”e““) the transient behavior of tracker (4). It means that

choosingu large augments the precision of tracker
(4) and dwindles the effect of noise without defacing
the transient behavior. We summarize the resultin the
following statement.

< o2max{ (A+A")/2} ¢ _ eVaFnt

then we obtain

|G| < Coe~ v, (20)
Theorem 2 For 1 large, system (4) is a nonpeak-
Since||H || < H' forall H~'(0) < H', then ing differentiation observer for alH(0) = L1
S F(n+q, R). ¢ is a small positive parameter cho-

1 ~ o~ 1
2 HH;’QAHC’CHOQ2 sen in the intervalo, 1[.

_1 _ 1
<9 HHOO2 GH-'HL®

< Cypptlatm)—2—(u—vaFn)t, Proof. From (4), we see that the tracker is a stable

N time-varying linear system perturbed by the ingut
whereC; = 2Cy¢* does not depend gn Finally, 3
T

Letn = be the state vector of (4) far = 0,

vV < (u Cop*latn)—2g=(n=vatn)t) y then (4) is a nonpeaking system, in the sense of Suss-
(21jnann and Kokotovic [15], if and only if the following

’ Cl \d\ system
+ W VV + vV, y
L e 71 =~

Let W = V, then fort > T = n= (A —H ~C/C) o (24)
In (2Cop*a+™=2) /(1 — \/q + n), we have H=-uyH-AH-HA+C'C,

W< *%W is nonpeaking. Taking’ = 7'Hn as a Lyapunov

|d| 22) function candidate to (24), then we get
+ & T +oT .
i ( " ’ V < —uV. (25)



ThenV < e *'V/(0), or 3 The discrete-time case

2 —pt 2 )
Il < (e I O[Ol ) [Amin(H (2))- (26) In most practical situations, signals are monitored in
Since discrete-time manner. For this reason, it is recom-
T I mended to conceive a discrete-time tracker that ro-
Amin (H (£)) 2 Amin (e He N tH(0)e At) bustly estimate the higher derivatives of a given sig-
nal from its uncertain discrete-time samples. In this
) section, we show that by exact discretizing the con-
tinuous tracker (4), one could obtain a time-varying
and (Z, 5) is observable, then digital tracker that preserves all the advantages of the
continuous-time tracker developed in sectit The
)\ </f e‘“(t_T)e‘g/(t_T)Cv"CN'e_’Z(t_T)dr> . breakdown of the digital tracker is given by the fol-
Ao = lowing theorem.

t A ~
+Amin </ e~ H(t=T) o= A (t=7) o= AC=T) 47
0

vt > 0. Moreover
Amin (e"”e‘ﬁ/tH(o)e—ﬁt) Theorem 3 If the sampling period is chosen to sat-
~ - isfy the condition
Z )\min (eiut : I) )\min (eiA/tH(O)eiAt) .

Then max eig (\/E e‘gé) <1, (29)

Amin(H (1)) > e " Ain (e’;‘/tH(O)e"Z”) e (27)
_ then for all Hy € . *(n + q,IR), the state vectat;,
Using of the discrete-time system

A ~ 1 ~, ~
Aunin (6*14 tH(O)(f‘“) > :/\min (e*A tefAt) ‘ i o ¢
o [ Sk+1 } _ (6A5_5H];10/06A6) { Sk }
> le—Q//[(—A)t _ le—\/r—&-qt Tp+1 Tg
) ) ’ Be
o g Yk

—ut Hiqq 20672/6[‘]](,67%54—56/5,

2 < ¢’ 0)|12 28
Il < e O @9

then

robustly estimates the successive higher derivatives
Fort = _ln((ﬂeﬁ))t/vn+q>)/( p+Vn+q), the of the pounded signalyr),cz., up to the order
function e " reaches its maximumn — 1. dj is the measurement error andis called
e (VT + e the smoothing parameter chosen in fe 1[. The
nominal matrices are defined as in theorem 1.

value

e nt )
max (
—(p+v/n+q)t
20 \et D+ eco Proof. For § small enough such that we could ne-

( _piceq_ )“W’m glect the terms of powe, we haveg“ ~T+64,
= Vg §CeAd ~§C, e A0 6, e ~T—§A.
EEO(MJF Vi +4) This gives
For i large, we have
peeo \ VAT Hoyn = o(I—6AVH, (I-64)+6C'C
i e ) wr = o (1-87) i (1-04)
p—00 eeo(u-l-\/n-l- q) = oH, — o8 HLA— 06A H,
— 1 -1 + 08?A'HA+6C'C
uin;o o+ \/n +4q

This implies that the peaking is absent foedarge. |fwe puto = 1— A suchthad < A < 1and neglect—
Finally, we conclude that the tracker does not exhib{g the term of powe#?, then fors ~ 1 andu =

any peaking in the first instants of the state recofe have
struction and behaves more resistant to any eventual

perturbation that comes corrupting the reference S|g Hyi1 — Hy,
naly at any moment. lim —————

6

—=H=-puH-AH-HA+C'C.
6—0 1)



and In order to highlight the correspondence between
the developed discrete-time tracker and the classi-
Skt1 — &k N o cal IR differentiators, we shall omit thgsubsystem
%i_r% ij{ i | = (A — H‘lc”C) { } from the structure of the tracker (30), then its dynam-
—_— ics reduces to the following system:

>

+ |: BOE :| Y. i’kJrl = eAéilA’Ik + (5ng10/ (yk - CGA(;@;C) s
Hyq = ge A He=A 4 5CC.
The condition of stability of the discrete-time tracker
is a direct consequence of the stability of the discreté. in the last system ia x n matrix. By taking the
Lyapunov equation special case = 3, we obtain

(33)

Hy = (Voo 0) Hy (Vae 47) +6C'C. (30) g — iok 22:22: (_k),jﬂ (A'8)'6C"C(A5Y!
i=0 J:

k=0  i=0 j=0
Then the matrixd;, could be written as 5 pg? kS
- T2
oo
k Tk~ ~ ~ 1k _ k 2 253 k354
=4 Zo_k |:€7A 5:| C/C |:67A5:| ) (31) - ZU —ké k=6 - 5
k=0 = K50 K K
2 2 4
SinceA is nilpotent fork > n + ¢, then which is equal to
~ ¢ ) o%a bo(o+1
- o0 _ (A’ 5) fprs =0 % - : o)° :
efA s — 2(71)17 8% 530(a+1) l& (02 +40+1)
— il (1=0)? 1-0)° 27 (-0
= ) 18%0(o+1)  18%0(c®+40+1)  18°0(0+110%+110+1)
~ 1 3 4 5
ntq—1 ' (Alé) - 2 (1-o) 2 (1-0) 4 (1—0)
= Y ()t with A =1.  Then
1.
=0
(1—-0)(o?+0+1)
This gives SH'C' = 3(c—-1)2%(c+1)/5 |. (34)
(1-0)%/0?
L, 1k
A ele . .
The resulting: —transfer functions of the tracker (33)

(for n = 3) are:

=6 > (- CC,
2. ~
=0 Xi(z2) (1-0%)22+(30%—30)2z—303+30?
-3 2 2 5 (35)
then Y(z) 22+ B0—-6)22+(6—-302)z2—2+0
~, k o = k R
sl erc el %) _ (-1
= X (36)
ntq—1ntq— 1 Y (2) 26
=9 Z Z ZIJI ( )CC(A5> (-30+30%+3-30%)2-1-50°+902 -3¢
= 5+ (80—-6)22+(6-30%)z—-2+03
Consequently, using (31), we have the expression of
Hy T
L) (37)
n+q—1n+q— 1 -, RN Y(Z)
520 Z Z || ( )CC<A5> (z—1) 1-0®+30%-30
i= v 02 24 B80—-6)22+(6—-302)2z—2+03

(32)
Sinces < 1, then the infinity sum converges to a From (36), and (37) we see the forward difference
constant matrix that depends enandd. The user formulas 2= and & , issued from classical nu-
can use the properties of the sums of geometric seneerical dlfferentlatlon, followed by an IIR discrete
to determine the final expression Hf,. filters.




4 Observer design able, i.e.,

First, let us begin by giving some important defini- (=39 +i+4y+y°)y

. T = - o )

tions. 2y — i+ by (41)
. . C By-2+y+v)y

Definition 1 Consider the nonlinear system de- T2 = )

CR
scribed by the following dynamic equations 2y" =g+ oy

. According to the above definition (see Eq. (41)), the
i(t) = f(z(t), u(t)), (38) nonlinear system is observable. The trajectory of the
y(t) = h(z(t)), system states are uniformly bounded. One can take
the following Lyapunov function candidate
wheref : R"” x IR™ — IR" is continuously differ-
entiable and satisfieg (0, O)_ = 0. z(t) € R"is Viz) = le + 13:% + 13;117 (42)
the state vectonu(t) € IR™ is the input vector, and 2 2 4
y(t) € R is a smooth nonsingular output. We assume S R
thaty(t) andu(t) are continuously differentiable forand show that” = 0, i.e.,V = C is a constant Lya-

all £ > 0. System (38) is said to be algebraically opPunov function. This implies that the first derivatives

servable if there exist two positive integersand v of y are_also bounded. l_:w sufﬂmently Iarge_, the
robustg-integral nonpeaking observer is readily con-

such that
structed as

‘T(t) = QS <y7 ya jja Tty y(u)v U, ﬂ7 i.L, Tty U(V)) (t)a (_3y + f]d +4y + y3) y

(39) I = 23 — 1 )

. . —7N3+5
whereg(-) : R*t x R@HD™ s R” is a differ- (3 _yQﬁ?)?nyr%s) y
entiable vector valued nonlinearity of the inputs, the 22 = 2% _ a1 5 : 5 (43)
outputs, and their derivatives. ¢ if s _ % ¢ B
. e teenssoncnsn | 3170 [§] <[ %]

Notice that the last definition has been introduced in L 7 1 0

reference [17] to characterize thmiform complete  H = —pH — A'H — HA+C'C, H™(0) = e,
observability Recall that for nonlinear systems, there ) o

exists a set of control inputs which renders systefyjiere the differentiatiog- ands)-subsystems are de-
(38) unobservable. We refer the reader to [18] for iined as in theorem 1 and the dimension of this
troductory discussions of this problem. For our cas@/€ater or equal to 3.

we define this class of bad inputs as follows. Remark 1 The design of the robust algebraic ob-

Definition 2 System (38) is algebraically observablg€rver is not limited to bounded state nonlinear sys-
for any input, if the vector valued tems, the reader is referred to the reference [19] to
see how to encounter this problem by change of co-

2(t) = ¢ (y’ iy i u(v)) (1), ordinate.

is defined ofR* ' x R¥ V™ — R forallu e . 5§ Conclusion
We call?Z the set of continuously differentiable con-

trol inputs for which the state vector (39) is defineh this paper we introduced a novel form of robust
everywhere, and we note’*, the set of bad inputs nonpeaking observers for nonlinear systems that ver-
that makes (39) singular. ify the algebraic observability conditions. The nov-

In this section we show how to use the differ(?lty of the proposed observers consists in replacing

entiation observer as a nonlinear observer. For tllll%e proportional output error by grintegral time-

purpose, consider the nonlinear system known by t}(%rying injection term in the differentiator dynamical

name of the duffing oscillator equations. For a particular choice of initial condi-
tions, we showed that the continuous-time tracker is

&1 = T, an arbitrary-order differentiation system that does not
By = —xp — a5, (40) exhibit the pegking phenomer'\on.' By increasing the
y =1+ 2o, orderq of the integral path, noise is more attenuated

and the observer remains robust against any perturba-
wherez = z(t) is the state vector ang = y(t) is tion that may attach to the signal to be differentiated.
a scalar output. System (40) is algebraically obser&-discrete-time version of the differentiation scheme



is included to deal with digital signals. The nice prog10] ——, “Algebraic riccati equation based differ-

erties of the proposed observers favorite their appli-
cations in others numerous research areas as target

tracking and semi-global stabilization of nonlinear
systems.

[11]
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