
TOWARD DYNAMIC SCHEDULING THROUGH
EVOLUTIONARY COMPUTING

ANA MADUREIRA* CARLOS RAMOS* SÍLVIO CARMO SILVA†

*Institute of Engineering - Polytechnic of Porto
GECAD – Knowledge Engineering and Decision Support Research Group

Porto, PORTUGAL
{anamadur, csr}@dei.isep.ipp.pt http://www.dei.isep.ipp.pt/~anamadur/

† Minho University, Dept. of Production and Systems

Braga – PORTUGAL
scarmo@dps.uminho

Abstract: - Real world scheduling requirements are related with complex systems operating in dynamic
environments. This means that they are frequently subject to several kinds of random occurrences and
perturbations, such as new job arrivals, machine breakdowns, employee’s sickness and jobs cancellation
causing prepared schedules becoming easily outdated and unsuitable. Scheduling under this environment is
known as dynamic. These problems pose additional challenges for optimization techniques. This paper
outlines the limitations of static approaches to scheduling in the presence of dynamic environments and gives a
review of currently developing research on real world scheduling problems, which are often complex,
constrained and dynamic. We decided to explore the use of Evolutionary computing techniques for solving
real-world optimization problems. Therefore, in this paper, we present a Genetic Algorithm based scheduling
method, which is of practical utility, embedded in a simple framework to solve difficult problems in
manufacturing environments.

Key-Words: - Dynamic Scheduling, Job-Shop Scheduling, Evolutionary Algorithms, Genetic Algorithms,
Resource-Oriented Scheduling, Manufacturing.

1 Introduction

A major challenge in the area of global market
economy is to develop new techniques for solving
real-world scheduling problems. Indeed, any
industrial organization can only be economically
visible by maximizing customer services,
maintaining efficient, low cost operations and
minimizing total investment.
With rising global competition, it is becoming
increasingly more important for industry to optimize
its activities. However, the complexity of real world
optimization problems has prevented the industry
from exploiting the potential of optimization
algorithms. The industry has, therefore, relied on
either trial-and-error or over-simplification for
dealing with its optimization problems. This has led
to a loss of opportunity for saving costs and time.
The growth of research in the field of Evolutionary

computing has been encouraged by a desire to
harness this opportunity.
Research on the theory and practice of scheduling
has been pursued for many years. Theoretical
scheduling problems concerned with searching for
optimal schedules subject to a limited number of
constraints have adopted a variety of techniques
including branch-and-bound and dynamic
programming. But these approaches are NP-
complete and have shown some limitations. One of
these limitations is the inability to express domain
knowledge and to exploit it. For literature on this
subject, see for example[8][13][17][22][26][27][31].
In spite of all the previous trials the scheduling
problem is well known as one of the most difficult
NP-hard combinatorial optimization
problems[26][31] and still known to be NP-
complete[22][24][25]. This fact incites researchers
to explore new directions.

Since its entry into the mainstream of academic
research in the late 1950's, the field of scheduling
has been addressed by a diversity of authors from
different perspectives. Research in combinatorial
optimization has evolved from basic formulations of
single machine and Job-Shop scheduling problems,
while work in control theory alternatively has
emphasized dynamics and stochastic scheduling
models, and the field of artificial intelligence has
promoted constraint satisfaction and heuristic search
paradigms.
Over the years, a vast and diverse body of literature
has arisen from these various roots, and a large body
of knowledge and algorithms now exists for tackling
scheduling applications. At the same time, the
complexities and idiosyncrasies of practical
scheduling environments continue to pose
significant challenges for current techniques and
there is a continuing need to expand the scope of
scheduling research to address practical problems.
As many real-world optimization problems take
place in environments constantly changing. Because
of this, optimization algorithms instead of looking
for single optimal solutions should continuously
track the optimum through time. Real world
scheduling requirements are related with complex
systems operated in dynamic environments. This
means that they are frequently subject to several
kinds of random occurrences and perturbations, such
as new job arrivals, machine breakdowns,
employees’ sickness, jobs cancellation and due date
and time processing changes, causing prepared
schedules becoming easily outdated and unsuitable.
Scheduling under this environment is known as
dynamic.
Many real-world optimization problems are
changing non-deterministically over time. In those
cases, the purpose of the optimization algorithm
changes from finding an optimal solution to being
able to continuously track the optimum through
time.
In recent years, there has been a significant level of
research interest in evolutionary approaches for
solving large real world scheduling problems which
are often complex, constrained and multicriteria in
nature. Typical examples of such problems include
production scheduling, vehicle routing, personnel
rostering, educational timetabling etc.
Evolutionary Algorithms are Metaheuristics,
inspired by natural evolution in a broader sense, that
have often been shown to be effective for difficult
combinatorial optimization problems appearing in
various industrial, economical, and scientific
domains. These techniques seem to be very well

suited to that kind of problem, since basically,
nature is a continuously changing challenge.
This paper outlines the limitations of static
approaches to scheduling in the presence of dynamic
environments and gives a review of currently
developing research on real-world scheduling
problems, which are often complex, constrained and
dynamic.
The main purpose of this paper is to describe a
framework based on Genetic Algorithms for solving
a class of real-world scheduling problems, where the
products (jobs) to be processed have due dates,
release times and different assembly levels. This
means that parts to be assembled may be
manufactured in parallel, i.e. simultaneously.
Therefore, in this work, we define a job as a
manufacturing order for a final item, simple or
complex. It may be simple, like a part, requiring a
set of operations to be processed. We call it a
Simple Product or Simple Final Item. Complex
Final items, requiring processing of several
operations on a number of parts followed by
assembly operations at several stages, are also dealt
with.
We adopt a strategy to scheduling known as Re-
source-Oriented Scheduling (ROS). This is related
with vertical loading [32], but much more detailed in
order to define start and completion times of jobs in
the available processors. In ROS each job is taken in
turn for scheduling on a resource or machine at a
time. Although any objective function may be
considered, resource-oriented scheduling has an
underlined aim of getting good use of
resources[4][5].
Our approach, implementing ROS, starts by solving
a surrogated set of a Single Machine Scheduling
Problems (SMSP), whose solutions are repaired, if
necessary, by means of a suitable mechanism, in
order to arrive to feasible solutions for the original
problem.
The remaining sections are organized as follows:
Section 2 characterizes real world scheduling
problems. Some concepts and classifications related
to dynamic scheduling are presented. Section 3
summarizes related work. In section 4 the
scheduling problem under consideration is
described. The proposed GA based scheduling
system is described on section 5.Finally, the paper
presents some conclusions and puts forward some
ideas for future work.

2 Real World Scheduling Problems

Scheduling may be defined as the allocation of
resources over time to perform tasks. It is a decision
process whose goal is the optimization of one or
more objectives [22]. The objective is to find a
schedule, which optimizes some performance
measure. The most extensively investigated one is
the makespan, i.e. the time elapsed from the
beginning of processing until the last operation in
the last job has been finished. In our approach, the
makespan objective is not realistic, since it does not
consider due dates, and it is not well suited for
dynamic environments where jobs can arrive
continuously over time.
We consider more realistic performance measures
such as those that reflect schedule implementation
costs and are to be minimized, meaning that a low
value for the objective function corresponds to a
good scheduling solution. We are talking about
some regular performance, such as, maximum
lateness Lmax, summed lateness ∑L, maximum
tardiness Tmax and weighted summed tardiness
∑WT. For literature on this subject see for
example[8][13][17][22][26][27][31].
 In generic terms, the scheduling process can be also
defined as the assignment of time-constrained jobs
to time-constrained resources within a pre-defined
time framework, which represents the complete time
horizon of the schedule. An admissible schedule will
have to satisfy a set of hard and soft constraints
imposed on jobs and resources. So, a scheduling
problem can be seen as a decision making process
for operations starting and resources assignment to
be used. A variety of characteristics and constraints
related with jobs and production system, such as
operation processing time, release and due dates,
precedence constraints and resource availability, can
affect scheduling decisions.
In practice, many scheduling problems include
further constraints and relaxation of others. This
means that problems can become more complex and
more general. Thus, for example, precedence
constraints among operations of the different jobs
are common because, most of the times, mainly in
discrete manufacturing, products are made of several
components that can be seen as different jobs whose
manufacturing must be coordinated. Additionally,
since a job can be the result of manufacturing and
assembly of parts at several stages, different parts of
the same job may be processed simultaneously on
different machines. Moreover, in practice,
scheduling environment tends to be dynamic, i.e.
new jobs arrive at unpredictable intervals, machines

have faults, jobs are cancelled and due dates and
time processing changes frequently. This non-basic
Job Shop Scheduling Problem (JSSP)[21], focused
in our work, which we name Extended JSSP
(EJSSP), has major extensions and differences in
relation to the classic or basic JSSP. We must
emphasize the existence of operations on the same
job, on different components, processed
simultaneously on different machines, followed by
components assembly operations. This is not typical
in scheduling problems addressed in the literature, in
spite of being very typical of real world
manufacturing. Moreover, we can observe that this
approach to job definition, emphasizing the
importance of considering complex jobs, which
mimic customer orders of products, is in accordance
with real-world scheduling in manufacturing.
The static scheduling problem refers to the situation
in which all jobs are simultaneously available for
processing. The complexity increases for dynamic
problems. Whenever an unexpected event happens
in a manufacturing environment, a scheduling
decision must be made in real time about the
possible reordering of jobs.
From the point of view of combinatorial
optimization the question of how to sequence and
schedule jobs in a dynamic environment looks rather
complex and is known to be NP-hard to almost
every state [9].
Graves [30] referred that “It may be quite easy to
construct a schedule; what is difficult is the constant
revision required by the dynamic environment.”
The process of finding a feasible sequence and as-
signing starting times to respective operations before
the production process takes place may be defined
as predictive scheduling.
Dynamic scheduling, rescheduling or reactive
scheduling is the process of revising a given
schedule due to unexpected perturbations on
manufacturing system operation. Thus, scheduling
can be seen as a continuous process, which starts by
constructing a predictive schedule for subsequently
and iteratively to be revised and changed as time
passes and disturbances occur.
The robustness and flexibility are important
characteristics of a solution. A solution is robust if it
resists to random external modifications. A solution
is flexible if it is easy to repair in case of
environment changes. Some important related work
on this subject can be seen in [12].
Dynamic scheduling must be able to perform
scheduling in highly dynamic, uncertain
environments where there is incomplete information
and changes often occur; modify previously formed
schedules in compliance with the most recent

dynamic information, minimizing the disruption of
earlier schedules and still aiming for the most
effective possible use of resources and achievement
of goals and provide enough flexibility to react
robustly to any disruption in an efficient and timely
manner.
The dynamic events commonly considered in the
research can be divided into two main
categories[24]:
• Events based resources: machine breakdown,

operator illness, unavailability of specific tools,
loading limits, unavailability of materials, material
arrival times, defective material, etc.

• Events based jobs: jobs that arrive early/late, new
jobs, dynamic priorities, updated the deadlines,
rush jobs, etc.

•
Many research works have surveyed the limitations
of predictive scheduling, and have been
investigating the importance and impact of real-time
information, see for example [16][24].
The problem of repairing schedules in the most
effective way in the presence of real-time
information is one that is receiving increasing
attention. There are two alternatives, which have
been discussed in literature, see for example [3]. The
first one which is the simplest one is to regenerate a
new schedule from scratch for every event
(reschedule), but this solution is not efficient
because disturbances tend to appear very often, and
creating a completely new schedule every time an
event occurs would be time consuming and costly.
Furthermore, frequent changes to the schedule can
cause instability of the system that can be costly.
The second alternative is to repair the existing
schedule (schedule/revise) with minor changes to
maintain stability.
Some different approaches to schedule
repair/rescheduling have been proposed. Leon et
al.[33] developed robustness measures and robust
scheduling repair methods for job shops to deal with
machine breakdowns and processing time variability
using a right-shift control policy in order to
minimize the expected makespan. The policy always
maintains the original sequence and is very efficient
for situations in which sequence changes are costly.
Cowling [24] has surveyed rescheduling and
schedule-repair techniques. He has proposed two
measures, utility and stability, to decide whether to
reschedule or schedule repair. For Lee et al. [10] the
choice between rescheduling and reschedule repair
depends on the severity of the disruptions.

3 Previous Work

A vast amount of literature about Genetic Algorithm
applications to the scheduling problem has been
published in the last few decades. One of the earliest
published works on the application of GA to
scheduling is that by Davis[18]. Many GAs have
been proposed and analysed for the static case of the
JSSP, referred on [19][29]. Other Metaheuristics
such as Tabu Search and Simulated Annealing have
also been developed for solving the JSSP [5].
Recently the scheduling problems in dynamic
environments have been investigated by a number of
authors in the evolutionary community, see for
example [11][20][28]. The dynamism of the
problem is usually treated considering the approach
of a “Rolling Time Horizon”[23], where new jobs
can arrive all the time. Initially, the scheduling
problem with all known jobs is solved. Then,
whenever a new job arrives, the part of the solution
consisting of operations already started before the
changing occurrence is fixed and a new problem is
created, consisting of the operations not yet
processed and the operations from the new jobs.
Thus, the dynamic problem is decomposed into a set
of static sub-problem that can be solved
independently by a standard GA. Some works that
use that approach can be found in [7][15].
In [14] the author surveys the techniques that have
been published in the literature to make evolutionary
algorithms suitable for dynamic optimisation
problems. The author grouped the different
techniques into three categories:
• react on changes, where as soon as a change in the

environment has been detected explicit actions are
taken;

• maintaining diversity throughout the run, where
convergence is avoided all the time and it is hoped
that a spread-out population can adapt to
modifications more easily;

• and the memory-based approaches, where the
evolutionary approach is supplied with memory to
be able to recall useful information from past
generations.

Madureira et al.[6] present several local search
meta-heuristics for the problem of scheduling a
single machine to minimize total weighted tardiness.
A genetic algorithm for the static single machine
total weighted tardiness problem is presented, and a
multi-start version named metaGA is proposed. The
obtained computational results permit to conclude
about their efficiency and effectiveness. For that
reason, the resolution of the dynamic single machine
total weighted tardiness problem using a scheduling

system based on Genetic Algorithms (GA) is
questioned. This approach extends the resolution of
static Single Machine Scheduling Problems (SMSP)
to dynamic SMSP in which changes can occur
continually. In Madureira et al. [2] is presented a
new strategy of dealing with dynamism of the
problem, i.e. a scheduling system based on genetic
algorithms to solve the dynamic version of the static
weighted tardiness Single Machine Scheduling
Problem. A population regenerating mechanism is
put forward.
Madureira et al. [1] describes initially a scheduling
system, based on Genetic Algorithms to solve the
dynamic Job-Shop Scheduling Problem,

4 Problem Definition

Most real-world multi-operation scheduling
problems can be described as dynamic and extended
versions of the classic or basic Job-Shop
scheduling[21] combinatorial optimization problem.
In a Job-Shop each job has a specified processing
order through the machines, i.e. a job is composed
of an ordered set of operations each of which is to be
processed, for certain duration, on a machines. In the
basic Job-Shop scheduling problem (JSSP) several
constraints on jobs and machines are considered:
machines are always available and never
breakdown, there are no precedence constraints
among operations of the different jobs; each
machine can process only one job at a time; the
processing of each operation cannot be interrupted;
each job can be processed only on a machine at a
time; setup times are independent of the schedules
and are included in processing times; processing,
release and due times of jobs are deterministic and
known in advance. These are the most common
assumptions and restrictions in academic JSSP.
In practice, many scheduling problems include
further restrictions and relaxation of others [21].
Thus, for example, precedence constraints among
operations of the different jobs are common
because, most of the times, mainly in discrete
manufacturing, products are made of several
components that can be seen as different jobs whose
manufacturing must be coordinated. Additionally,
since a job can be the result of fabrication and
assembly of parts at several stages, different parts of
the same job may be processed simultaneously on
different machines. Moreover, in practice,
scheduling environment tend to be dynamic, i.e. new
jobs arrive at unpredictable intervals, machines
breakdown, jobs are cancelled and due dates and
processing times change frequently. This non-basic

JSSP, focused in our work, which we call Extended
Job-Shop Scheduling Problem (EJSSP), has major
extensions and differences in relation to the classic
or basic JSSP. The existence of operations on the
same job, on different parts and components,
processed simultaneously on different machines,
followed by components assembly operations,
which characterizes EJSSP, is not typical of
scheduling problems addressed in the literature.
However, such is very common in practice. This
approach to job definition, emphasizing the
importance of considering complex jobs, which
mimic customer orders of products, is in accordance
with real world scheduling in manufacturing.

5 GA based Scheduling System

This work is concerned with the solution of problem
instances of the EJSSP. It starts focusing on the
solution of the dynamic deterministic JSSP
problems. For solving these, we developed a
framework, leading to a dynamic scheduling system
having as a fundamental scheduling tool a GA-based
scheduling method with two main pieces of
intelligence. One such piece is a GA-based
scheduling method for deterministic scheduling
problems. This includes a Genetic Algorithm for
single machine problems and an inter-machine
activity coordination mechanism that attempts to
ensure a good feasible solution for the deterministic
EJSSP. The other piece is a dynamic adaptation
mechanism that includes a method for
neighbourhood regeneration under dynamic
environments, increasing or decreasing it according
new job arrivals or cancellations.
The proposed approach consists on a centralised
GA-based scheduling system. One advantage of this
is that the solutions (schedules) planned for single
machines guarantees some consistency of
manufacturing. The original Extended Job-Shop
Scheduling Problem is decomposed into a series of
deterministic Single Machine Scheduling Problems
solved one at a time, consecutively. The obtained
solutions are then incorporated into the main
problem.
The proposed approach to solve the dynamic EJSSP
consists on generating a predictive schedule in
advance using the information available. When
disruptions occur in the system during the execution,
the predictive schedule is modified or revised in
order to consider the recent modifications.

5.1 GA based scheduling method

An operation Oijk is described by the triplet (i, j, k),
where i defines the machine where the operation is
processed, j the job which belongs, and k the graph
precedence operation level (level 1 correspond to
initial operations, without precedents).
Initially, we start by decomposing the deterministic
EJSSP problem into a series of deterministic Single
Machine Scheduling Problems. We assume the exis-
tence of different and known job release times rj,
prior to which no processing of the job can be done
and, also, job due dates dj. Based on these, release
dates and due dates are determined for each SMSP
and, subsequently, each such problem is solved
independently by the Genetic algorithm. Afterwards,
the solutions obtained for each SMSP are integrated
to obtain a solution to the main problem instance,
i.e. the instance of the EJSSP.

Table 1- GA based scheduling method

1st PHASE Finding a 1st job shop schedule based on
single machine scheduling problems

Step 1 Define completion time estimates (due dates)
for each operation of each job.

Step 2 Define the interval between starting time
estimates (release times) for all operations of
each job.

Step 3 Define all SMSP 1| rj |Cmax based on information
defined on Step1 and Step 2.

Step 4 Solve all SMSP 1| rj |Cmax with those release
times and due dates using a GA.

Step 5 Integrate all the obtained near-optimal solutions
into the main problem.

2nd PHASE Check feasibility of the schedule and, if
necessary apply the IMACM coordination
mechanism

Step 6 Verify if they constitute a feasible solution and
terminate with a local optimum;

If not, apply a repairing mechanism.

The completion due times for each operation of a
job are derived from job due dates and processing
times by subtracting the processing time from the
completion due time of the immediately succeeding
job operation
This procedure begins with the last job operation
and ends with the first. The operations starting due
time intervals [tijk,Tijk] are also defined considering
the job release times and the operation processing
times. The earliest starting time tijk corresponds to
the time instant from which the operation processing
can be started. The latest starting time Tijk
correspond to the time at which the processing of the
operation must be started in order to meet its
completion due time (due date). This means that no
further delay is allowed. When an operation has

more than one precedent operation, i.e. there exists a
multilevel structure, the interval [tijk,Tijk] is the
interval intersection from precedent operations
correlated by the respective processing times.
At this stage, only technological precedence con-
straints of operations and job due dates will be
consid-ered for defining completion and starting
times.
The integration of the SMSP solutions may give an
unfeasible schedule to the EJSSP. This is why
schedule repairing may be necessary to obtain a
feasible solution. The repairing mechanism named
Inter-Machine Activity Coordination Mechanism
(IMACM) [3] carries this out. The repairing is
carried out through coordination of machines
activity, having into account job operation
precedence and other problem constraints. This is
done keeping job allocation order, in each machine,
un-changed. The IMACM mechanism establishes
the start-ing and the completion times for each
operation. It en-sures that the starting time for each
operation is the highest of the two following values:
• the completion time of the immediately precedent

operation in the job, if there is only one, or the
highest of all if there are more

• the completion time of the immediately precedent
operation on the machine.

Most of the research on JSSP focuses on basic
problems as described above. The method developed
and just described is in line with reality and away
from the approaches that deal solely with static and
classic or basic job-shop scheduling problems. Thus,
the method is likely to perform worse than the best
available algorithms found for such problems.
However, it is not our purpose, neither it would be
reasonable, to rate our method against such good
performing algorithms for academic and basic JSSP.
Our aim is to provide an efficient tool, which we
think we managed with our method, for obtaining
good solutions, for a variety of criteria, for many
real world scheduling problems, i.e. complex non-
basic JSSP as described above, which we named
Extended JSSP. For these problems, the referred
best performing algorithms are unable to give
solutions. Further, through the survey we made to
the literature we were unable to find methods to
solve the EJSSP as here described.

5.2 Dynamic Adaptation Mechanism

For non-deterministic problems some or all
parameters are uncertain, i.e. are not fixed as we
assumed in the deterministic problem. Non-
determinism of variables has to be taken into
account in real world problems. For generating

acceptable solutions in such circumstances our
approach starts by generating a predictive schedule,
using the available information and then, if
perturbations occur in the system during execution,
the schedule may have to be modified or revised
accordingly, i.e. rescheduling is performed.
Therefore, in this process, an important decision
must be taken, namely that of deciding if and when
should rescheduling happen. The decision strategies
for rescheduling may be grouped into three
categories [12]: continuous, periodic and hybrid
rescheduling. In the continuous one rescheduling is
done whenever an event modifying the state of the
system occurs. In periodic rescheduling, the current
schedule is modified at regular time intervals, taking
into account the schedule perturbations that have
occurred. Finally, for the hybrid rescheduling the
current schedule is modified at regular time intervals
if some perturbation occurs.
In the scheduling system for Extended JSSP,
implementing our approach, rescheduling is
necessary due to two classes of events[1] [2]:
• Partial events which imply variability in jobs or

operations attributes such as processing times, due
dates and release times.

• Total events which imply variability in
neighbourhood structure, resulting from either
new job arrivals or job cancellations.

While, on one hand, partial events only require
redefining job attributes and re-evaluation of the
objective function of solutions, total events, on the
other hand, require a change on solution structure
and size, carried out by inserting or deleting
operations, and also re-evaluation of the objective
function. Therefore, under a total event, the
modification of the current solution is imperative. In
this work, this is carried out by mechanisms
described in [1] for SMSP.
Considering the processing times involved and the
high frequency of perturbations, rescheduling all
jobs from the beginning should be avoided.
However, if work has not yet started and time is
available, then an obvious and simple approach to
rescheduling would be to restart the scheduling from
scratch with a new modified solution on which takes
into account the perturbation, for example a new job
arrival. When there is not enough time to reschedule
from scratch or job processing has already started, a
strategy must be used which adapts the current
schedule having in consideration the kind of
perturbation occurred.
The occurrence of a partial event requires redefining
job attributes and a re-evaluation of the schedule
objective function. A change in job due date requires
the re-calculation of the operation starting and

completion due times of all respective operations.
However, changes in the operation processing times
only requires re-calculation of the operation starting
and completion due times of the succeeding
operations. A new job arrival requires definition of
the correspondent operation starting and completion
times and a regenerating mechanism to integrate all
operations on the respective single machine
problems. In the presence of a job cancellation, the
application of a regenerating mechanism eliminates
the job operations from the SMSP where they
appear. After the insertion or deletion of positions,
neighbourhood regeneration is done by updating the
size of the neighbourhood and ensuring a structure
identical to the existing one. Then the scheduling
module can apply the search process for better
solutions with the new modified solution.
a) Job arrival integration mechanism
When a new job arrives to be processed, an
integration mechanism is needed. This analyses the
job precedence graph that represents the ordered
allocation of machines to each job operation, and
integrates each operation into the respective single
machine problem. Two alternative procedures could
be used for each operation: either randomly select
one position to insert the new operation into the
current solution/chromosome or use some intelligent
mechanism to insert this operation in the schedules,
based on job priority, for example.
b) Job elimination mechanism
When a job is cancelled, an eliminating mechanism
must be implemented so the correspondent
position/gene will be deleted from the solutions.
c) Regeneration mechanisms
After integration/elimination of operations is carried
out, by inserting/deleting positions/genes in the
current solution/chromosome, population
regeneration is done by updating its size. The
population size for SMSP is proportional to the
number of operations.
After dynamic adaptation processs, the scheduling
method could be applied and search for better
solutions with the modified solution.

6 Conclusions and Further Work

The handling of dynamism or uncertainty is a
significant issue in many real-world problems.
Uncertainty can arise from incomplete knowledge of
the problem at hand, or from incomplete knowledge
of how the problem changes over time. Although the
treatment of uncertainty has been already a focus of
investigation from academic community, the main
efforts on that way arise from the modeling of

uncertainty in static deterministic scheduling
problems and the development of algorithms to
solve it [23].
In most practical environments, scheduling is an
ongoing reactive process where the presence of real
time information continually forces reconsideration
and revision of pre-established schedules.
This paper has outlined an important gap between
static and dynamic scheduling. Dynamic scheduling
or rescheduling maintains schedules in a dynamic
environment where a variety of unexpected events
can occur at any time.
We have identified two types of perturbations
commonly considered in research: perturbations
related to resources (machine breakdown, operator
illness, unavailability of specific tools, loading
limits, etc.), and perturbations related to jobs (jobs
arrive at random, new jobs, dynamic priorities,
updating the deadlines, rush jobs, etc.). We have
discussed two alternatives to deal with the problem
of updating schedules in the most effective way in
the presence of real-time information: rescheduling
and schedule revise. Rescheduling is often not
satisfactory because it is time consuming, and can
cause instability. Schedule revise is more practical
and maintains system stability.
This work is concerned with the resolution of
realistic Job-Shop Scheduling Problems (EJSSP).
Thus, not only it focuses on the solution of the
dynamic EJSSP problem but also on both the
deterministic and non-deterministic versions of it.
Moreover, it is concerned with integrated scheduling
of jobs which are products composed by several
parts or components which may be submitted to a
number of manufacturing and multi level assembly
operations, having as the main criterion meeting due
dates. We call these problems Extended EJSSP.
Considering that natural evolution is a process of
continuous adaptation, it seemed us appropriate to
consider Genetic Algorithms for tackling real Non-
Deterministic Scheduling Problems. Thus, the GA
based scheduling system developed adapts the
resolution of the deterministic problem to the
dynamic one in which changes may occur
continually. A population regenerating mechanism
is put forward, for adapting the population of
solutions, according to disturbances, to a new
population, which increases or decreases according
to new job arrivals or cancellations.
We recognize the need for further testing,
particularly for better evaluation of the suitability
the proposed framework and mechanisms under
dynamic Extended Job-Shop environments. We also
recognize that this is not an easy task because it is
difficult to find in the literature test problems with

the job structure that we selected and think
important, in industrial practice, namely jobs made
from several parts to be manufactured and
assembled through several assembly operations and
stages.
Work still to be done includes more testing of the
proposed algorithms and mechanisms under
dynamic Job-Shop environments [4]. We are also
working on the improvement of the scheduling
mechanisms and developing further testing to
improve the quality of solutions. We could not make
a comparative performance study with other
methods for two reasons: first, because no
benchmark problems were found, in the literature
surveyed, for the EJSSP we address. Second,
because the same was true for methods, i.e. none
was found addressing the EJSSP. Work still to be
done, includes more testing of the proposed
algorithms and mechanisms under dynamic Job-
Shop environments subject to several random
perturbations. We realize, however, that this is not
an easy task because it is difficult to find test
problems and computational results for the dynamic
environment considered, where the jobs to be
processed have release dates, due dates and different
job assembly levels (parallel operations).

References:

[1]. Ana M. Madureira, Carlos Ramos and Sílvio
do Carmo Silva, A GA Based Scheduling System for
The Dynamic Single Machine Scheduling Problem,
ISATP‘2001 (IEEE International Symposium
Assembly and Task Planning), Fukuoka (Japão),
2001.
[2]. Ana M. Madureira, Carlos Ramos and Sílvio
do Carmo Silva, A Genetic Algorithm for The
Dynamic Single Machine Scheduling Problem, In
4th IEEE/IFIP Intl. Conf. on Information
Technology for Balanced Automation Systems in
Production and Transportation, Berlim (Germany),
2000, pp 315-323.
[3]. Ana M. Madureira, Carlos Ramos and Sílvio
do Carmo Silva, An Inter-Machine Activity
Coordination based Approach for Dynamic Job-
Shop Scheduling, International Journal for
Manufacturing Science and Production, Freund
Publishing House Ltd., vol 4, nº2, 2001.
[4]. Ana M. Madureira, Carlos Ramos e Sílvio
C. Silva, Resource-Oriented Scheduling for Real
World Manufacturing Systems, IEEE International
Symposium Assembly and Task Planning
(ISATP‘2003), Besançon (França), 2003, pp.140-
145.

[5]. Ana M. Madureira, Carlos Ramos e Sílvio
C. Silva, Vertical Scheduling Approach to Dynamic
Scheduling Problems Using Tabu Search, 5th
MetaHeuristics International Conference
(MIC‘2003), Fukuoka (Japão), 2003.
[6]. Ana M. Madureira, Meta-heuristics for the
Single-Machine Scheduling Total Weighted
Tardiness Problem, ISATP’99 (IEEE International
Symposium Assembly and Task Planning), Portugal,
1999.
[7]. C. Bierwirth and D.C. Matfeld, Production
scheduling and rescheduling with genetic
algorithms, Evolutionary Computation, nº 7, 1999,
pp 1-17.
[8]. E. Morton and D. W. Pentico, Heuristic
Scheduling Systems, John Wiley & Sons, 1993.
[9]. H. V. D. Parunak, Characterizing the
Manufacturing Scheduling Problem, Journal of
Manufacturing Systems, nº 10, 1992, pp.241-259,
1992.
[10]. H. S. Lee, S. S. Murthy, S. W. Haider and
D.V., Primary production scheduling at steel making
industries, IBM Journal Research Development,
Vol. 40, No. 2, 1996.
[11]. Hsiao-Lan Fang, Peter Ross and Dave
Corne, A promising genetic algorithm approach to
Job Shop scheduling, rescheduling and open shop
scheduling problems, In Morgan Kaufmann (eds)
Proceedings of the Fifth International Conference
on Genetic Algorithms, 1993, pp. 375-382.
[12]. I. Sabuncuoglu and M. Bayiz, Analysis of
reactive scheduling problem in a job shop
environment, European Journal of Operational
Research, 567-586, 2000.
[13]. J. Blazewicz, K.H. Ecker, E.Pesch, G. Smith
and J.Weglarz, Scheduling Computer and
Manufacturing Processes, In Springer (eds.), 2nd
edition, New York, 2001.
[14]. J. Branke, Evolutionary Approaches to
Dynamic Optimization Problems – A Survey,
GECCO Workshop on Evolutionary Algorithms for
Dynamic Optimization Problems, 1999, pp. 134-137.
[15]. J. Branke, Efficient Evolutionary
Algorithms for Searching Robust Solutions, Fourth
Intl. Conf. on Adaptive Computing in Design and
Manufacture (ACDM 2000), 2000, pp. 275-286.
[16]. Jurgen Dorn. Reactive scheduling improving
the robustness of schedules and restricting the
effects of shop floor disturbances by fuzzy
reasoning. International Journal Human Computer
Studies, 42, 1995, pp. 687-704.
[17]. K.R. Baker, Introduction to sequencing and
scheduling, Wiley, New York, 1974.

[18]. Lawrence Davis, Handbook of Genetic
Algorithms, Van Nostrand Reinhold, New York,
1991.
[19]. Lee C.Y., S. Piramuthu and Y.K. Tsai, Job
Shop Scheduling With a Genetic Algorithm and
Machine Learning, Intl. Journal Prod. Research,
vol.35, nº4, 1997, 1997, pp.1171-1191.
[20]. Lin Shyh-Chang, E. D. Goodman and
William F. Punch, A genetic algorithm approach to
dynamic scheduling Job Shop Problem, Proceedings
of the Seventh International Conference on Genetic
Algorithms, 1997, pp 481-489.
[21]. M. C. Portmann, Scheduling Methodology:
optimization and compu-search approaches, in
Planning and scheduling of production systems”,
Chapman &Hall, 1997.
[22]. M. Pinedo, Scheduling – Theory, Algorithms
and Systems, 2nd edição, Prentice-Hall, 2002.
[23]. N. Raman and F.B. Talbot, The Job Shop
Tardiness Problem: a decomposition approach,
European Journal of Operations Research, nº69,
1993, pp 187-199.
[24]. P. I. Cowling and M. Johansson, Using real-
time information for effective dynamic scheduling,
European Journal of Operational Research, vol.
139, no. 2, 2001, pp. 230-244
[25]. Paul P.M. Stoop, The complexity of
scheduling in practice, International Journal of
Operations and Production management, Vol. 16,
No. 10, 1996, pp. 37-53.
[26]. Peter Brucker, Scheduling Algorithms,
Springer, 3rd edition, New York, 2001.
[27]. R. W. Conway, W. L. Maxwell and L. W.
Miller, Theory of scheduling, Addison-Wesley
Publishing Company, 1967.
[28]. Report from EVONET Working Group on
Evolutionary Approaches to Timetabling and
Scheduling, The state of the art in evolutionary
Approaches to timetabling and scheduling.
[29]. S Jain. and S. Meeran, Deterministic Job
Shop scheduling: past, present and future, European
Journal of Operational Research, nº113, 1999,
pp.390-434.
[30]. S. C. Graves, A review of production
scheduling, Operations Research, 29 (4), 1981, pp.
646-675.
[31]. S. French, Sequencing and Scheduling: An
introduction to the Mathematics of the Job Shop,
Ellis Horwood, Chichester, 1982.
[32]. Thomas E. Vollmann, William L. Berry and
D. Clay Whybark, Manufacturing Planning and
Control Systems, McGraw-Hill, New York, 1997.
[33]. V. J. Leon, S. D.Wu, and e R. H. Storer,
Robustness measures and robust scheduling for job
shops, IIE Transactions, 26(5), 1994, pp. 32–43.

