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Abstract: - Real world scheduling requirements are related with complex systems operating in dynamic 
environments. This means that they are frequently subject to several kinds of random occurrences and 
perturbations, such as new job arrivals, machine breakdowns, employee’s sickness and jobs cancellation 
causing prepared schedules becoming easily outdated and unsuitable. Scheduling under this environment is 
known as dynamic. These problems pose additional challenges for optimization techniques. This paper 
outlines the limitations of static approaches to scheduling in the presence of dynamic environments and gives a 
review of currently developing research on real world scheduling problems, which are often complex, 
constrained and dynamic. We decided to explore the use of Evolutionary computing techniques for solving 
real-world optimization problems. Therefore, in this paper, we present a Genetic Algorithm based scheduling 
method, which is of practical utility, embedded in a simple framework to solve difficult problems in 
manufacturing environments. 
 
Key-Words: - Dynamic Scheduling, Job-Shop Scheduling, Evolutionary Algorithms, Genetic Algorithms, 
Resource-Oriented Scheduling, Manufacturing.   
 
 
1   Introduction 
 
A major challenge in the area of global market 
economy is to develop new techniques for solving 
real-world scheduling problems. Indeed, any 
industrial organization can only be economically 
visible by maximizing customer services, 
maintaining efficient, low cost operations and 
minimizing total investment. 
With rising global competition, it is becoming 
increasingly more important for industry to optimize 
its activities. However, the complexity of real world 
optimization problems has prevented the industry 
from exploiting the potential of optimization 
algorithms. The industry has, therefore, relied on 
either trial-and-error or over-simplification for 
dealing with its optimization problems. This has led 
to a loss of opportunity for saving costs and time. 
The growth of research in the field of Evolutionary 

computing has been encouraged by a desire to 
harness this opportunity.  
Research on the theory and practice of scheduling 
has been pursued for many years. Theoretical 
scheduling problems concerned with searching for 
optimal schedules subject to a limited number of 
constraints have adopted a variety of techniques 
including branch-and-bound and dynamic 
programming. But these approaches are NP-
complete and have shown some limitations. One of 
these limitations is the inability to express domain 
knowledge and to exploit it. For literature on this 
subject, see for example[8][13][17][22][26][27][31]. 
In spite of all the previous trials the scheduling 
problem is well known as one of the most difficult 
NP-hard combinatorial optimization 
problems[26][31] and still known to be NP-
complete[22][24][25]. This fact incites researchers 
to explore new directions. 



Since its entry into the mainstream of academic 
research in the late 1950's, the field of scheduling 
has been addressed by a diversity of authors from 
different perspectives. Research in combinatorial 
optimization has evolved from basic formulations of 
single machine and Job-Shop scheduling problems, 
while work in control theory alternatively has 
emphasized dynamics and stochastic scheduling 
models, and the field of artificial intelligence has 
promoted constraint satisfaction and heuristic search 
paradigms. 
Over the years, a vast and diverse body of literature 
has arisen from these various roots, and a large body 
of knowledge and algorithms now exists for tackling 
scheduling applications. At the same time, the 
complexities and idiosyncrasies of practical 
scheduling environments continue to pose 
significant challenges for current techniques and 
there is a continuing need to expand the scope of 
scheduling research to address practical problems. 
As many real-world optimization problems take 
place in environments constantly changing. Because 
of this, optimization algorithms instead of looking 
for single optimal solutions should continuously 
track the optimum through time. Real world 
scheduling requirements are related with complex 
systems operated in dynamic environments. This 
means that they are frequently subject to several 
kinds of random occurrences and perturbations, such 
as new job arrivals, machine breakdowns, 
employees’ sickness, jobs cancellation and due date 
and time processing changes, causing prepared 
schedules becoming easily outdated and unsuitable. 
Scheduling under this environment is known as 
dynamic.  
Many real-world optimization problems are 
changing non-deterministically over time. In those 
cases, the purpose of the optimization algorithm 
changes from finding an optimal solution to being 
able to continuously track the optimum through 
time.  
In recent years, there has been a significant level of 
research interest in evolutionary approaches for 
solving large real world scheduling problems which 
are often complex, constrained and multicriteria in 
nature. Typical examples of such problems include 
production scheduling, vehicle routing, personnel 
rostering, educational timetabling etc.  
Evolutionary Algorithms are Metaheuristics, 
inspired by natural evolution in a broader sense, that 
have often been shown to be effective for difficult 
combinatorial optimization problems appearing in 
various industrial, economical, and scientific 
domains. These techniques seem to be very well 

suited to that kind of problem, since basically, 
nature is a continuously changing challenge. 
This paper outlines the limitations of static 
approaches to scheduling in the presence of dynamic 
environments and gives a review of currently 
developing research on real-world scheduling 
problems, which are often complex, constrained and 
dynamic.  
The main purpose of this paper is to describe a 
framework based on Genetic Algorithms for solving 
a class of real-world scheduling problems, where the 
products (jobs) to be processed have due dates, 
release times and different assembly levels. This 
means that parts to be assembled may be 
manufactured in parallel, i.e. simultaneously. 
Therefore, in this work, we define a job as a 
manufacturing order for a final item, simple or 
complex. It may be simple, like a part, requiring a 
set of operations to be processed. We call it a 
Simple Product or Simple Final Item. Complex 
Final items, requiring processing of several 
operations on a number of parts followed by 
assembly operations at several stages, are also dealt 
with. 
We adopt a strategy to scheduling known as Re-
source-Oriented Scheduling (ROS). This is related 
with vertical loading [32], but much more detailed in 
order to define start and completion times of jobs in 
the available processors. In ROS each job is taken in 
turn for scheduling on a resource or machine at a 
time. Although any objective function may be 
considered, resource-oriented scheduling has an 
underlined aim of getting good use of 
resources[4][5].  
Our approach, implementing ROS, starts by solving 
a surrogated set of a Single Machine Scheduling 
Problems (SMSP), whose solutions are repaired, if 
necessary, by means of a suitable mechanism, in 
order to arrive to feasible solutions for the original 
problem. 
The remaining sections are organized as follows: 
Section 2 characterizes real world scheduling 
problems. Some concepts and classifications related 
to dynamic scheduling are presented. Section 3 
summarizes related work. In section 4 the 
scheduling problem under consideration is 
described. The proposed GA based scheduling 
system is described on section 5.Finally, the paper 
presents some conclusions and puts forward some 
ideas for future work.    
 
 
 
 



2 Real World Scheduling Problems 
 
Scheduling may be defined as the allocation of 
resources over time to perform tasks. It is a decision 
process whose goal is the optimization of one or 
more objectives [22]. The objective is to find a 
schedule, which optimizes some performance 
measure. The most extensively investigated one is 
the makespan, i.e. the time elapsed from the 
beginning of processing until the last operation in 
the last job has been finished. In our approach, the 
makespan objective is not realistic, since it does not 
consider due dates, and it is not well suited for 
dynamic environments where jobs can arrive 
continuously over time.  
We consider more realistic performance measures 
such as those that reflect schedule implementation 
costs and are to be minimized, meaning that a low 
value for the objective function corresponds to a 
good scheduling solution. We are talking about 
some regular performance, such as, maximum 
lateness Lmax, summed lateness ∑L, maximum 
tardiness Tmax and weighted summed tardiness 
∑WT. For literature on this subject see for 
example[8][13][17][22][26][27][31].  
 In generic terms, the scheduling process can be also 
defined as the assignment of time-constrained jobs 
to time-constrained resources within a pre-defined 
time framework, which represents the complete time 
horizon of the schedule. An admissible schedule will 
have to satisfy a set of hard and soft constraints 
imposed on jobs and resources. So, a scheduling 
problem can be seen as a decision making process 
for operations starting and resources assignment to 
be used. A variety of characteristics and constraints 
related with jobs and production system, such as 
operation processing time, release and due dates, 
precedence constraints and resource availability, can 
affect scheduling decisions.  
In practice, many scheduling problems include 
further constraints and relaxation of others. This 
means that problems can become more complex and 
more general. Thus, for example, precedence 
constraints among operations of the different jobs 
are common because, most of the times, mainly in 
discrete manufacturing, products are made of several 
components that can be seen as different jobs whose 
manufacturing must be coordinated. Additionally, 
since a job can be the result of manufacturing and 
assembly of parts at several stages, different parts of 
the same job may be processed simultaneously on 
different machines. Moreover, in practice, 
scheduling environment tends to be dynamic, i.e. 
new jobs arrive at unpredictable intervals, machines 

have faults, jobs are cancelled and due dates and 
time processing changes frequently. This non-basic 
Job Shop Scheduling Problem (JSSP)[21], focused 
in our work, which we name Extended JSSP 
(EJSSP), has major extensions and differences in 
relation to the classic or basic JSSP. We must 
emphasize the existence of operations on the same 
job, on different components, processed 
simultaneously on different machines, followed by 
components assembly operations. This is not typical 
in scheduling problems addressed in the literature, in 
spite of being very typical of real world 
manufacturing. Moreover, we can observe that this 
approach to job definition, emphasizing the 
importance of considering complex jobs, which 
mimic customer orders of products, is in accordance 
with real-world scheduling in manufacturing. 
The static scheduling problem refers to the situation 
in which all jobs are simultaneously available for 
processing. The complexity increases for dynamic 
problems. Whenever an unexpected event happens 
in a manufacturing environment, a scheduling 
decision must be made in real time about the 
possible reordering of jobs.  
From the point of view of combinatorial 
optimization the question of how to sequence and 
schedule jobs in a dynamic environment looks rather 
complex and is known to be NP-hard to almost 
every state [9].  
Graves [30] referred that “It may be quite easy to 
construct a schedule; what is difficult is the constant 
revision required by the dynamic environment.” 
The process of finding a feasible sequence and as-
signing starting times to respective operations before 
the production process takes place may be defined 
as predictive scheduling.  
Dynamic scheduling, rescheduling or reactive 
scheduling is the process of revising a given 
schedule due to unexpected perturbations on 
manufacturing system operation. Thus, scheduling 
can be seen as a continuous process, which starts by 
constructing a predictive schedule for subsequently 
and iteratively to be revised and changed as time 
passes and disturbances occur. 
The robustness and flexibility are important 
characteristics of a solution. A solution is robust if it 
resists to random external modifications. A solution 
is flexible if it is easy to repair in case of 
environment changes. Some important related work 
on this subject can be seen in [12]. 
Dynamic scheduling must be able to perform 
scheduling in highly dynamic, uncertain 
environments where there is incomplete information 
and changes often occur; modify previously formed 
schedules in compliance with the most recent 



dynamic information, minimizing the disruption of 
earlier schedules and still aiming for the most 
effective possible use of resources and achievement 
of goals and provide enough flexibility to react 
robustly to any disruption in an efficient and timely 
manner. 
The dynamic events commonly considered in the 
research can be divided into two main 
categories[24]: 
• Events based resources: machine breakdown, 

operator illness, unavailability of specific tools, 
loading limits, unavailability of materials, material 
arrival times, defective material, etc. 

• Events based jobs: jobs that arrive early/late, new 
jobs, dynamic priorities, updated the deadlines, 
rush jobs, etc. 

•  
Many research works have surveyed the limitations 
of predictive scheduling, and have been 
investigating the importance and impact of real-time 
information, see for example [16][24].  
The problem of repairing schedules in the most 
effective way in the presence of real-time 
information is one that is receiving increasing 
attention. There are two alternatives, which have 
been discussed in literature, see for example [3]. The 
first one which is the simplest one is to regenerate a 
new schedule from scratch for every event 
(reschedule), but this solution is not efficient 
because disturbances tend to appear very often, and 
creating a completely new schedule every time an 
event occurs would be time consuming and costly. 
Furthermore, frequent changes to the schedule can 
cause instability of the system that can be costly. 
The second alternative is to repair the existing 
schedule (schedule/revise) with minor changes to 
maintain stability.  
Some different approaches to schedule 
repair/rescheduling have been proposed. Leon et 
al.[33] developed robustness measures and robust 
scheduling repair methods for job shops to deal with 
machine breakdowns and processing time variability 
using a right-shift control policy in order to 
minimize the expected makespan. The policy always 
maintains the original sequence and is very efficient 
for situations in which sequence changes are costly. 
Cowling [24] has surveyed rescheduling and 
schedule-repair techniques. He has proposed two 
measures, utility and stability, to decide whether to 
reschedule or schedule repair. For Lee et al. [10] the 
choice between rescheduling and reschedule repair 
depends on the severity of the disruptions.  
 
 

3 Previous Work 
 
A vast amount of literature about Genetic Algorithm 
applications to the scheduling problem has been 
published in the last few decades. One of the earliest 
published works on the application of GA to 
scheduling is that by Davis[18]. Many GAs have 
been proposed and analysed for the static case of the 
JSSP, referred on [19][29]. Other Metaheuristics 
such as Tabu Search and Simulated Annealing have 
also been developed for solving the JSSP [5]. 
Recently the scheduling problems in dynamic 
environments have been investigated by a number of 
authors in the evolutionary community, see for 
example [11][20][28]. The dynamism of the 
problem is usually treated considering the approach 
of a “Rolling Time Horizon”[23], where new jobs 
can arrive all the time. Initially, the scheduling 
problem with all known jobs is solved. Then, 
whenever a new job arrives, the part of the solution 
consisting of operations already started before the 
changing occurrence is fixed and a new problem is 
created, consisting of the operations not yet 
processed and the operations from the new jobs. 
Thus, the dynamic problem is decomposed into a set 
of static sub-problem that can be solved 
independently by a standard GA. Some works that 
use that approach can be found in [7][15].  
In [14] the author surveys the techniques that have 
been published in the literature to make evolutionary 
algorithms suitable for dynamic optimisation 
problems. The author grouped the different 
techniques into three categories: 
• react on changes, where as soon as a change in the 

environment has been detected explicit actions are 
taken;  

• maintaining diversity throughout the run, where 
convergence is avoided all the time and it is hoped 
that a spread-out population can adapt to 
modifications more easily;  

• and the memory-based approaches, where the 
evolutionary approach is supplied with memory to 
be able to recall useful information from past 
generations. 

Madureira et al.[6] present several local search 
meta-heuristics for the problem of scheduling a 
single machine to minimize total weighted tardiness. 
A genetic algorithm for the static single machine 
total weighted tardiness problem is presented, and a 
multi-start version named metaGA is proposed. The 
obtained computational results permit to conclude 
about their efficiency and effectiveness. For that 
reason, the resolution of the dynamic single machine 
total weighted tardiness problem using a scheduling 



system based on Genetic Algorithms (GA) is 
questioned.  This approach extends the resolution of 
static Single Machine Scheduling Problems (SMSP) 
to dynamic SMSP in which changes can occur 
continually. In Madureira et al. [2] is presented a 
new strategy of dealing with dynamism of the 
problem, i.e. a scheduling system based on genetic 
algorithms to solve the dynamic version of the static 
weighted tardiness Single Machine Scheduling 
Problem. A population regenerating mechanism is 
put forward.  
Madureira et al. [1] describes initially a scheduling 
system, based on Genetic Algorithms to solve the 
dynamic Job-Shop Scheduling Problem,  

 
4 Problem Definition 

 
Most real-world multi-operation scheduling 
problems can be described as dynamic and extended 
versions of the classic or basic Job-Shop 
scheduling[21] combinatorial optimization problem. 
In a Job-Shop each job has a specified processing 
order through the machines, i.e. a job is composed 
of an ordered set of operations each of which is to be 
processed, for certain duration, on a machines. In the 
basic Job-Shop scheduling problem (JSSP) several 
constraints on jobs and machines are considered: 
machines are always available and never 
breakdown, there are no precedence constraints 
among operations of the different jobs; each 
machine can process only one job at a time; the 
processing of each operation cannot be interrupted; 
each job can be processed only on a machine at a 
time; setup times are independent of the schedules 
and are included in processing times; processing, 
release and due times of jobs are deterministic and 
known in advance. These are the most common 
assumptions and restrictions in academic JSSP.  
In practice, many scheduling problems include 
further restrictions and relaxation of others [21]. 
Thus, for example, precedence constraints among 
operations of the different jobs are common 
because, most of the times, mainly in discrete 
manufacturing, products are made of several 
components that can be seen as different jobs whose 
manufacturing must be coordinated. Additionally, 
since a job can be the result of fabrication and 
assembly of parts at several stages, different parts of 
the same job may be processed simultaneously on 
different machines. Moreover, in practice, 
scheduling environment tend to be dynamic, i.e. new 
jobs arrive at unpredictable intervals, machines 
breakdown, jobs are cancelled and due dates and 
processing times change frequently. This non-basic 

JSSP, focused in our work, which we call Extended 
Job-Shop Scheduling Problem (EJSSP), has major 
extensions and differences in relation to the classic 
or basic JSSP. The existence of operations on the 
same job, on different parts and components, 
processed simultaneously on different machines, 
followed by components assembly operations, 
which characterizes EJSSP, is not typical of 
scheduling problems addressed in the literature. 
However, such is very common in practice. This 
approach to job definition, emphasizing the 
importance of considering complex jobs, which 
mimic customer orders of products, is in accordance 
with real world scheduling in manufacturing. 
 
5 GA based Scheduling System 
 
This work is concerned with the solution of problem 
instances of the EJSSP. It starts focusing on the 
solution of the dynamic deterministic JSSP 
problems. For solving these, we developed a 
framework, leading to a dynamic scheduling system 
having as a fundamental scheduling tool a GA-based 
scheduling method with two main pieces of 
intelligence. One such piece is a GA-based 
scheduling method for deterministic scheduling 
problems. This includes a Genetic Algorithm for 
single machine problems and an inter-machine 
activity coordination mechanism that attempts to 
ensure a good feasible solution for the deterministic 
EJSSP. The other piece is a dynamic adaptation  
mechanism that includes a method for 
neighbourhood regeneration under dynamic 
environments, increasing or decreasing it according 
new job arrivals or cancellations. 
The proposed approach consists on a centralised 
GA-based scheduling system. One advantage of this 
is that the solutions (schedules) planned for single 
machines guarantees some consistency of 
manufacturing. The original Extended Job-Shop 
Scheduling Problem is decomposed into a series of 
deterministic Single Machine Scheduling Problems 
solved one at a time, consecutively. The obtained 
solutions are then incorporated into the main 
problem.  
The proposed approach to solve the dynamic EJSSP 
consists on generating a predictive schedule in 
advance using the information available. When 
disruptions occur in the system during the execution, 
the predictive schedule is modified or revised in 
order to consider the recent modifications. 
 
 
 



5.1 GA based scheduling method 
 
An operation Oijk is described by the triplet (i, j, k), 
where i defines the machine where the operation is 
processed, j the job which belongs, and  k the graph 
precedence operation level (level 1 correspond to 
initial operations, without precedents). 
Initially, we start by decomposing the deterministic 
EJSSP problem into a series of deterministic Single 
Machine Scheduling Problems. We assume the exis-
tence of different and known job release times rj, 
prior to which no processing of the job can be done 
and, also, job due dates dj. Based on these, release 
dates and due dates are determined for each SMSP 
and, subsequently, each such problem is solved 
independently by the Genetic algorithm. Afterwards, 
the solutions obtained for each SMSP are integrated 
to obtain a solution to the main problem instance, 
i.e. the instance of the EJSSP.  
 

Table 1-  GA based scheduling method 

1st PHASE Finding a 1st job shop schedule based on
single machine scheduling problems 

Step 1 Define completion time estimates (due dates)
for each operation of each job. 

Step 2 Define the interval between starting time 
estimates (release times) for all operations of 
each job. 

Step 3 Define all SMSP 1| rj |Cmax based on information 
defined on Step1 and Step 2. 

Step 4 Solve all SMSP 1| rj |Cmax with those release 
times and due dates using a GA. 

Step 5 Integrate all the obtained near-optimal solutions 
into the main problem. 

2nd PHASE Check feasibility of the schedule and, if
necessary apply the IMACM coordination
mechanism 

Step 6 Verify if they constitute a feasible solution and
terminate with a local optimum;  

If not, apply a repairing mechanism. 

 
The completion due times for each operation of a 
job are derived from job due dates and processing 
times by subtracting the processing time from the 
completion due time of the immediately succeeding 
job operation 
This procedure begins with the last job operation 
and ends with the first. The operations starting due 
time intervals [tijk,Tijk] are also defined considering 
the job release times and the operation processing 
times. The earliest starting time tijk corresponds to 
the time instant from which the operation processing 
can be started. The latest starting time Tijk 
correspond to the time at which the processing of the 
operation must be started in order to meet its 
completion due time (due date). This means that no 
further delay is allowed. When an operation has 

more than one precedent operation, i.e. there exists a 
multilevel structure, the interval [tijk,Tijk] is the 
interval intersection from precedent operations 
correlated by the respective processing times.  
At this stage, only technological precedence con-
straints of operations and job due dates will be 
consid-ered for defining completion and starting 
times. 
The integration of the SMSP solutions may give an 
unfeasible schedule to the EJSSP. This is why 
schedule repairing may be necessary to obtain a 
feasible solution. The repairing mechanism named 
Inter-Machine Activity Coordination Mechanism 
(IMACM) [3] carries this out. The repairing is 
carried out through coordination of machines 
activity, having into account job operation 
precedence and other problem constraints. This is 
done keeping job allocation order, in each machine, 
un-changed. The IMACM mechanism establishes 
the start-ing and the completion times for each 
operation. It en-sures that the starting time for each 
operation is the highest of the two following values:  
• the completion time of the immediately precedent 

operation in the job, if there is only one, or the 
highest of all if there are more 

• the completion time of the immediately precedent 
operation on the machine. 

Most of the research on JSSP focuses on basic 
problems as described above. The method developed 
and just described is in line with reality and away 
from the approaches that deal solely with static and 
classic or basic job-shop scheduling problems. Thus, 
the method is likely to perform worse than the best 
available algorithms found for such problems. 
However, it is not our purpose, neither it would be 
reasonable, to rate our method against such good 
performing algorithms for academic and basic JSSP. 
Our aim is to provide an efficient tool, which we 
think we managed with our method, for obtaining 
good solutions, for a variety of criteria, for many 
real world scheduling problems, i.e. complex non-
basic JSSP as described above, which we named 
Extended JSSP. For these problems, the referred 
best performing algorithms are unable to give 
solutions. Further, through the survey we made to 
the literature we were unable to find methods to 
solve the EJSSP as here described. 
 
5.2 Dynamic Adaptation  Mechanism 
 
For non-deterministic problems some or all 
parameters are uncertain, i.e. are not fixed as we 
assumed in the deterministic problem. Non-
determinism of variables has to be taken into 
account in real world problems. For generating 



acceptable solutions in such circumstances our 
approach starts by generating a predictive schedule, 
using the available information and then, if 
perturbations occur in the system during execution, 
the schedule may have to be modified or revised 
accordingly, i.e. rescheduling is performed. 
Therefore, in this process, an important decision 
must be taken, namely that of deciding if and when 
should rescheduling happen. The decision strategies 
for rescheduling may be grouped into three 
categories [12]: continuous, periodic and hybrid 
rescheduling. In the continuous one rescheduling is 
done whenever an event modifying the state of the 
system occurs. In periodic rescheduling, the current 
schedule is modified at regular time intervals, taking 
into account the schedule perturbations that have 
occurred. Finally, for the hybrid rescheduling the 
current schedule is modified at regular time intervals 
if some perturbation occurs. 
In the scheduling system for Extended JSSP, 
implementing our approach, rescheduling is 
necessary due to two classes of events[1] [2]:   
• Partial events which imply variability in jobs or 

operations attributes such as processing times, due 
dates and release times.  

• Total events which imply variability in 
neighbourhood structure, resulting from either 
new job arrivals or job cancellations.  

While, on one hand, partial events only require 
redefining job attributes and re-evaluation of the 
objective function of solutions, total events, on the 
other hand, require a change on solution structure 
and size, carried out by inserting or deleting 
operations, and also re-evaluation of the objective 
function. Therefore, under a total event, the 
modification of the current solution is imperative. In 
this work, this is carried out by mechanisms 
described in [1] for SMSP.  
Considering the processing times involved and the 
high frequency of perturbations, rescheduling all 
jobs from the beginning should be avoided. 
However, if work has not yet started and time is 
available, then an obvious and simple approach to 
rescheduling would be to restart the scheduling from 
scratch with a new modified solution on which takes 
into account the perturbation, for example a new job 
arrival. When there is not enough time to reschedule 
from scratch or job processing has already started, a 
strategy must be used which adapts the current 
schedule having in consideration the kind of 
perturbation occurred. 
The occurrence of a partial event requires redefining 
job attributes and a re-evaluation of the schedule 
objective function. A change in job due date requires 
the re-calculation of the operation starting and 

completion due times of all respective operations. 
However, changes in the operation processing times 
only requires re-calculation of the operation starting 
and completion due times of the succeeding 
operations. A new job arrival requires definition of 
the correspondent operation starting and completion 
times and a regenerating mechanism to integrate all 
operations on the respective single machine 
problems.  In the presence of a job cancellation, the 
application of a regenerating mechanism eliminates 
the job operations from the SMSP where they 
appear. After the insertion or deletion of positions, 
neighbourhood regeneration is done by updating the 
size of the neighbourhood and ensuring a structure 
identical to the existing one. Then the scheduling 
module can apply the search process for better 
solutions with the new modified solution. 
a) Job arrival integration mechanism  
When a new job arrives to be processed, an 
integration mechanism is needed. This analyses the 
job precedence graph that represents the ordered 
allocation of machines to each job operation, and 
integrates each operation into the respective single 
machine problem. Two alternative procedures could 
be used for each operation: either randomly select 
one position to insert the new operation into the 
current solution/chromosome or use some intelligent 
mechanism to insert this operation in the schedules, 
based on job priority, for example. 
b) Job elimination mechanism  
When a job is cancelled, an eliminating mechanism 
must be implemented so the correspondent 
position/gene will be deleted from the solutions. 
c) Regeneration mechanisms 
After integration/elimination of operations is carried 
out, by inserting/deleting positions/genes in the 
current solution/chromosome, population 
regeneration is done by updating its size. The 
population size for SMSP is proportional to the 
number of operations.  
After dynamic adaptation processs, the scheduling 
method could be applied and search for better 
solutions with the modified solution. 
 
6 Conclusions and Further Work 
 
The handling of dynamism or uncertainty is a 
significant issue in many real-world problems. 
Uncertainty can arise from incomplete knowledge of 
the problem at hand, or from incomplete knowledge 
of how the problem changes over time. Although the 
treatment of uncertainty has been already a focus of 
investigation from academic community, the main 
efforts on that way arise from the modeling of 



uncertainty in static deterministic scheduling 
problems and the development of algorithms to 
solve it [23]. 
In most practical environments, scheduling is an 
ongoing reactive process where the presence of real 
time information continually forces reconsideration 
and revision of pre-established schedules.  
This paper has outlined an important gap between 
static and dynamic scheduling.  Dynamic scheduling 
or rescheduling maintains schedules in a dynamic 
environment where a variety of unexpected events 
can occur at any time.  
We have identified two types of perturbations 
commonly considered in research: perturbations 
related to resources (machine breakdown, operator 
illness, unavailability of specific tools, loading 
limits, etc.), and perturbations related to jobs (jobs 
arrive at random, new jobs, dynamic priorities, 
updating the deadlines, rush jobs, etc.). We have 
discussed two alternatives to deal with the problem 
of updating schedules in the most effective way in 
the presence of real-time information: rescheduling 
and schedule revise. Rescheduling is often not 
satisfactory because it is time consuming, and can 
cause instability. Schedule revise is more practical 
and maintains system stability. 
This work is concerned with the resolution of 
realistic Job-Shop Scheduling Problems (EJSSP). 
Thus, not only it focuses on the solution of the 
dynamic EJSSP problem but also on both the 
deterministic and non-deterministic versions of it. 
Moreover, it is concerned with integrated scheduling 
of jobs which are products composed by several 
parts or components which may be submitted to a 
number of manufacturing and multi level assembly 
operations, having as the main criterion meeting due 
dates. We call these problems Extended EJSSP.  
Considering that natural evolution is a process of 
continuous adaptation, it seemed us appropriate to 
consider Genetic Algorithms for tackling real Non-
Deterministic Scheduling Problems. Thus, the GA 
based scheduling system developed adapts the 
resolution of the deterministic problem to the 
dynamic one in which changes may occur 
continually. A population regenerating mechanism 
is put forward, for adapting the population of 
solutions, according to disturbances, to a new 
population, which increases or decreases according 
to new job arrivals or cancellations.   
We recognize the need for further testing, 
particularly for better evaluation of the suitability 
the proposed framework and mechanisms under 
dynamic Extended Job-Shop environments. We also 
recognize that this is not an easy task because it is 
difficult to find in the literature test problems with 

the job structure that we selected and think 
important, in industrial practice, namely jobs made 
from several parts to be manufactured and 
assembled through several assembly operations and 
stages. 
Work still to be done includes more testing of the 
proposed algorithms and mechanisms under 
dynamic Job-Shop environments [4]. We are also 
working on the improvement of the scheduling 
mechanisms and developing further testing to 
improve the quality of solutions. We could not make 
a comparative performance study with other 
methods for two reasons: first, because no 
benchmark problems were found, in the literature 
surveyed, for the EJSSP we address. Second, 
because the same was true for methods, i.e. none 
was found addressing the EJSSP. Work still to be 
done, includes more testing of the proposed 
algorithms and mechanisms under dynamic Job-
Shop environments subject to several random 
perturbations. We realize, however, that this is not 
an easy task because it is difficult to find test 
problems and computational results for the dynamic 
environment considered, where the jobs to be 
processed have release dates, due dates and different 
job assembly levels (parallel operations). 
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