
Influence of the Sampling Period in the Performance of a
Real-time Distributed System under Jitter Conditions

ANA ANTUNES1, FERNANDO MORGADO DIAS1, ALEXANDRE MANUEL MOTA2

1Escola Superior de Tecnologia de Setúbal do Instituto Politécnico de Setúbal
Campus do IPS, Estefanilha, 2914-508 Setúbal

2 Departamento de Electrónica e Telecomunicações
Universidade de Aveiro, 3810 Aveiro

PORTUGAL

Abstract: - In this paper an analysis is made of the influence of the sampling period in the control performance
of a pole-placement adaptive controller for a real-time distributed control system under output jitter
conditions. Results show that the lower the sampling frequency the better control performance is obtained for
the same jitter conditions.

Key-Words: - jitter, real-time systems, distributed control, adaptive controller, control performance.

1 Introduction
Real-time distributed control systems are nowadays
widely used in embedded applications. Distributed
control architectures induce jitter, either in the
sampling period (called input jitter, sampling jitter or
read-in jitter) or in the actuation moment (called
sampling to actuation jitter, output jitter or read-out
jitter) eventually leading to performance degradation
[1],[2],[3],[4],[5]. In this paper an evaluation is made
of the control performance of a real-time distributed
system with a pole-placement controller under
several jitter conditions for different sampling period
values.

2 The real-time distributed system
The block diagram of the real-time distributed
control system is shown in figure 1. The system has
three nodes: the sensor node, the controller node and
the actuator node. The nodes are connected using the
CAN bus.

Sensor
node (S)

Controller
node (C)

Actuator
node (A)

CAN bus

Plant

Fig.1- Block diagram of the distributed control
system.

The communication scheme is shown in figure 2.
The sensor node sends a message (M1) with the
sampled value of the output of the plant to the

controller node that computes the actuation value for
the next sample and sends that value and the
actuation order (M2) to the actuation node.

S C

C A

M1

M2

Fig.2- Communication model scheme for the system.

The system was simulated using TrueTime a
MATLAB/Simulink based simulator for real-time
control systems [6],[7],[8]. The simulator facilitates
co-simulation of controller task execution in real-
time kernels, network transmissions and continuous
plant dynamics. Each node of the system was
implemented using a TrueTime Kernel block and the
CAN bus was implemented with a TrueTime
Network block [9].
The plant models a cruise control system and its
transfer function is given by equation (1).

05.0
05.0

)(
)(

+
=

ssU
sY (1)

This model was taken from [10].

3 The adaptive controller
The system controller used was an adaptive controller
[11]. The adaptive controller has two loops. The
inner loop includes the variable dynamics controller
and the process. The outer loop is composed by the
recursive process parameter estimator and a design
calculator block and is responsible for the adjustment
of the parameters of the controller. The controller
was implemented in MATLAB inside the TrueTime
Kernel of the controller node.

3.1 System identification
The generic form of the discrete time transfer
function is given by equation (2).

)(
)()(1

1
1

−

−
−− =

qA
qBzqG K (2)

where A and B are given by equations (3) and (4)
and K is the discrete dead time.

n
n qaqaqA −−− +++= K1

1
1 1)((3)

m
m zbqbbqB −−− +++= K1

10
1)((4)

The model for the SISO system is given by equations
(5) and (6)

)()()(tButAx
dt

tdx
+= (5)

)()(txty = (6)
The discrete model can be represented by equation
(7).

)()()(khukhyhkhy Γ+Φ=+ (7)
where

Ahe=Φ (8)

 Bdse
h

As∫=Γ
0

 (9)

The discrete transfer function is given by equation
(10).

[])()(01)(11 −− ΓΦ−= qqIqG (10)

This leads to equation (11).

1

1

1 1
)(

−

−

−
=

aq
bqqG (11)

The discrete function for the model was obtained
using the parametric-type model ARX [12]. System
parameters were estimated using the least squares
criterion and a recursive implementation for this
method was adopted to run online during the
simulation. The sampling period was chosen to be
2.75s, 1.925s and 1.1s as will be explained.
The regressors are given by equation (12).





 −−=)1()1()(111 kukyky (12)

3.2 The control function
The control function uses the pole-placement
technique. The closed loop behaviour was
determined by choosing adequate values for the pole
of the closed loop system. An observer polynomial,
with faster dynamics, was also chosen. The closed
loop pole was chosen as mα =0.2 and the observer
pole as 0α =0.4. The parameters of the control
function were obtained by directly solving the
resultant Diophantine’s equation. The resulting

equation is given in equation (13).
K)1()())1()(()(10 −−−−−= kyskyskrakrtku efobsef

)1(−+ ku (13)

4 Test description
The choice of the sampling period was made
following the rule of thumb presented by [13]
according to what, for first order systems, the
number of samples per rise time (Nr) should be
chosen between 4 and 10. The chosen values were
2.75s and 1.1s corresponding to Nr= 4 and Nr=10,
respectively and a middle point of 1.925s.
Several tests were made with different output jitter
conditions. In all the tests the sampling jitter is equal
to zero. The output jitter was introduced by the
change in the value of the parameter exectime of the
controller task according with the task models
defined by the TrueTime simulator [9].
A first test was made with exectime = 0. The output
jitter measured for that situation equals 7.56*10-4s
and is only due to the system architecture (processing
delays inside the nodes and network access delays).
The output jitter introduced is of two kinds: constant
or variable following a pre-defined sequence. In the
constant case the values used correspond to 25%,
50% and 75% of the sampling period. The jitter
sequences are of two kinds: random and modified
gamma. Two random sequences were generated
using the MATLAB rand function, distributed over
75% and 100% of the sampling period. The modified
gamma sequences were generated using MATLAB
gamrnd function and were then modified to allow
jitter to be concentrated in the upper half of the
sampling period. The histograms of the jitter
sequences for h=1.925s, are presented in figures 3 to
6.

Fig.3- Output jitter distribution for sequence rand75.

Fig.4- Output jitter distribution for sequence
rand100.

Fig.5- Output jitter distribution for sequence gam1.

Fig.6- Output jitter distribution for sequence gam2.

The sequences for the other values of h were
obtained in a similar way.
In all the tests a perturbation was introduced in the
system through the control signal.

5 Test Results
The results for the control performance are presented
in table 1 that reports the quadratic mean square
error obtained comparing the reference signal with
the output signal of the system.

Test number Exectime MSE
1 0 0.1867
2 25%h 0.1277
3 50%h 0.1755
4 75%h 46.5918
5 rand75 0.1961
6 rand100 0.2250
7 gam1 18.2614
8 gam2 24.7575

Table 1- Mean square error obtained for h=2.75s
between samples 25 and 80.

Test number Exectime MSE
1 0 0.1509
2 25%h 0.1514
3 50%h 0.1490
4 75%h 8.3867
5 rand75 0.1439
6 rand100 0.1228
7 gam1 0.1794
8 gam2 0.2576

Table 2- Mean square error obtained for h=1.925s
between samples 20 and 120.

Test number Exectime MSE
1 0 0.1418
2 25%h 0.1179
3 50%h 0.1159
4 75%h 0.0834
5 rand75 0.1338
6 rand100 0.1021
7 gam1 0.1124
8 gam2 0.0909

Table 3- Mean square error obtained for h=1.1s
between samples 40 and 200.

Figures 7 to 21 present the control and error signals
for tests 2, 3, 4, 6 and 8 for the different sampling
periods. Tests 2, 3 and 4 were obtained under
constant jitter of 25%, 50% and 75% of h,
respectively. Tests 6 and 8 were obtained under
variable jitter with the sequences obtained as stated
before. These test were chosen because they present
the worst jitter conditions.

Fig.7- Signals for test 2 with h=2.75s.

Fig.8- Signals for test 3 with h=2.75s.

Fig.9- Signals for test 4 with h=2.75s.

Fig.10- Signals for test 6 with h=2.75s.

Fig.11- Signals for test 8 with h=2.75s.

Fig.12- Signals for test 2 with h=1.925s.

Fig.13- Signals for test 3 with h=1.925s.

Fig.14- Signals for test 4 with h=1.925s.

Fig.15- Signals for test 6 with h=1.925s.

Fig.16- Signals for test 8 with h=1.925s.

Fig.17- Signals for test 2 with h=1.1s.

Fig.18- Signals for test 3 with h=1.1s.

Fig.19- Signals for test 4 with h=1.1s.

Fig.20- Signals for test 6 with h=1.1s.

Fig.21- Signals for test 8 with h=1.1s.

As can be seen from figures 7 to 11, for h=2.75s,
corresponding to Nr= 4, the system oscillates for tests
3 and 4 and for tests 6 and 8 the oscillation is so
heavy that the system is not able to follow the
reference signal. Test 2 is the only one where the
system is controlled without oscillation. For
h=1.925s, corresponding to Nr≈6, the system
oscillates for test 8, test 4 presents heavy oscillation
and for tests 2, 3 and 6 the system doesn’t presents
oscillation. Finally for h=1.1s, corresponding to
Nr=10 the system oscillates slightly for test 8 and
doesn’t oscillates for the other situations.
Output jitter distributed over the upper half of the
sampling period affects control performance more
then randomly distributed jitter. Random jitter affects
the system in the same way as a constant jitter with
the average value of the sequence [14] so the test 6
usually presents better results than test 4.
It can clearly be seen that as the sampling period
grows the system begins to oscillate first slightly
then heavily.

4 Conclusion
A real-time distributed system was tested under
different jitter conditions.
Comparison between the control performance of the
tests made for different sampling periods shows that
as the sampling period grows the system begins to
oscillate slightly then heavily becoming unstable.
Results recommend that the sampling period should
be chosen as small as possible taking into account
the particular characteristics of the systems and its
implementation.
In future work, another identification approach,
using a different model to account for the jitter effect
would be tested and 2nd order systems would be
investigated as well.

References:
[1] A. Antunes, F. M. Dias, A. M. Mota, CAN-
based real time adaptive distributed control,
Proceedings of the 8th International CAN
Conference, Las Vegas, USA, 2002.
[2] A. Stothert, I.M. MacLeod, Effect of Timing
Jitter on Distributed Computer Control System
Performance, Proceedings of the 15th IFAC
Workshop DDC’98- Distributed Computer Control
Systems, 1998.
[3] M. Sanfridson, Timing problems in real-time
computer control systems, Technical report,
Department of Royal Institute of Technology, 2000.
[4] P. M. Colom, Analysis and design of real-time
control systems with varying control timing
constraints, PhD. Thesis, Universitat Politècnica de
Catalunya, Spain, 2002.
[5] K. G. Shin, X. Cui, Computing time delay and
its effects on real-time control systems, IEEE
Transactions on control systems technology,
Vol.3,No2, 1995,pp. 218-224.
[6] A. Cervin, D. Henriksson, B. Lincoln, J. Eker,
K.-E. Årzén, How does control timing affect
performance?, IEEE Control Systems Magazine,
Vol.23, No2, 2003, pp. 16-30.
[7] A. Cervin, D. Henriksson, B. Lincoln, K.-E.
Årzén, Jitterbug and Truetime: analysis tools for
real-time control systems, Proceedings of the 2nd
Workshop on Real-Time Tools”, Copenhagen,
Denmark, 2002.
 [8] D. Henriksson, A. Cervin, K.-E. Årzén,
TrueTime: Simulation of control loops under shared
computer resources, Proceedings of the 15th IFAC
World Congress on Automatic Control, Barcelona,
Spain, 2002.
[9] D. Henriksson, A. Cervin, TrueTime 1.1 –
Reference Manual, Technical Report, Department of
Automatic Control, Lund Institute of Technology,
Sweden, 2003.
[10]http://www.engin.umich.edu/group/ctm/index.ht
ml, Control Tutorials for Matlab, University of
Michigan.
[11] K. J. Åström, B. Wittenmark, Adaptive
Contro”, Addison-Wesley, 2nd edition, 1995.
[12] L. Ljung, System Identification – Theory for
the user, Prentice Hall, 1987.
[13] K. J. Åström, B. Wittenmark, Computer
Controlled Systems, Prentice Hall, 3nd edition, 1997.
[14] B. Lincoln, A simple stability critetion for
control systems with varying time delays,
Proceedings of the 15th IFAC World Congress, 2002.

