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Abstract: - In this paper an analysis is made of the influence of the sampling period in the control performance 
of a pole-placement adaptive controller for a real-time distributed control system under output jitter 
conditions. Results show that the lower the sampling frequency the better control performance is obtained for 
the same jitter conditions.  
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1   Introduction 
Real-time distributed control systems are nowadays 
widely used in embedded applications. Distributed 
control architectures induce jitter, either in the 
sampling period (called input jitter, sampling jitter or 
read-in jitter) or in the actuation moment (called 
sampling to actuation jitter, output jitter or read-out 
jitter) eventually leading to performance degradation 
[1],[2],[3],[4],[5]. In this paper an evaluation is made 
of the control performance of a real-time distributed 
system with a pole-placement controller under 
several jitter conditions for different sampling period 
values.  
 
2   The real-time distributed system 
The block diagram of the real-time distributed 
control system is shown in figure 1. The system has 
three nodes: the sensor node, the controller node and 
the actuator node. The nodes are connected using the 
CAN bus.  
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Fig.1- Block diagram of the distributed control 
system. 
 
The communication scheme is shown in figure 2. 
The sensor node sends a message (M1) with the 
sampled value of the output of the plant to the 

controller node that computes the actuation value for 
the next sample and sends that value and the 
actuation order (M2) to the actuation node. 
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Fig.2- Communication model scheme for the system. 
 
The system was simulated using TrueTime a 
MATLAB/Simulink based simulator for real-time 
control systems [6],[7],[8]. The simulator facilitates 
co-simulation of controller task execution in real-
time kernels, network transmissions and continuous 
plant dynamics. Each node of the system was 
implemented using a TrueTime Kernel block and the 
CAN bus was implemented with a TrueTime 
Network block [9]. 
The plant models a cruise control system and its 
transfer function is given by equation (1). 
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This model was taken from [10]. 
 
3   The adaptive controller 
The system controller used was an adaptive controller 
[11]. The adaptive controller has two loops. The 
inner loop includes the variable dynamics controller 
and the process. The outer loop is composed by the 
recursive process parameter estimator and a design 
calculator block and is responsible for the adjustment 
of the parameters of the controller. The controller 
was implemented in MATLAB inside the TrueTime 
Kernel of the controller node. 



3.1 System identification 
The generic form of the discrete time transfer 
function is given by equation (2). 
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where A and B are given by equations (3) and (4) 
and K is the discrete dead time. 
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The model for the SISO system is given by equations 
(5) and (6)    
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The discrete model can be represented by equation 
(7). 
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The discrete transfer function is given by equation 
(10). 
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This leads to equation (11).  
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The discrete function for the model was obtained 
using the parametric-type model ARX [12]. System 
parameters were estimated using the least squares 
criterion and a recursive implementation for this 
method was adopted to run online during the 
simulation. The sampling period was chosen to be 
2.75s, 1.925s and 1.1s as will be explained. 
The regressors are given by equation (12). 
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3.2 The control function 
The control function uses the pole-placement 
technique. The closed loop behaviour was 
determined by choosing adequate values for the pole 
of the closed loop system. An observer polynomial, 
with faster dynamics, was also chosen.  The closed 
loop pole was chosen as mα =0.2 and the observer 
pole as 0α =0.4. The parameters of the control 
function were obtained by directly solving the 
resultant Diophantine’s equation. The resulting 

equation is given in equation (13). 
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4   Test description 
The choice of the sampling period was made 
following the rule of thumb presented by [13] 
according to what, for first order systems, the 
number of samples per rise time (Nr) should be 
chosen between 4 and 10. The chosen values were 
2.75s and 1.1s corresponding to Nr= 4 and Nr=10, 
respectively and a middle point of 1.925s. 
Several tests were made with different output jitter 
conditions. In all the tests the sampling jitter is equal 
to zero. The output jitter was introduced by the 
change in the value of the parameter exectime of the 
controller task according with the task models 
defined by the TrueTime simulator [9].  
A first test was made with exectime = 0. The output 
jitter measured for that situation equals 7.56*10-4s 
and is only due to the system architecture (processing 
delays inside the nodes and network access delays).  
The output jitter introduced is of two kinds: constant 
or variable following a pre-defined sequence. In the 
constant case the values used correspond to 25%, 
50% and 75% of the sampling period. The jitter 
sequences are of two kinds: random and modified 
gamma. Two random sequences were generated 
using the MATLAB rand function, distributed over 
75% and 100% of the sampling period. The modified 
gamma sequences were generated using MATLAB 
gamrnd function and were then modified to allow 
jitter to be concentrated in the upper half of the 
sampling period. The histograms of the jitter 
sequences for h=1.925s, are presented in figures 3 to 
6.  

 
Fig.3- Output jitter distribution for sequence rand75. 
 

 
Fig.4- Output jitter distribution for sequence 
rand100. 



 
Fig.5- Output jitter distribution for sequence gam1. 
 

 
Fig.6- Output jitter distribution for sequence gam2. 
 
The sequences for the other values of h were 
obtained in a similar way. 
In all the tests a perturbation was introduced in the 
system through the control signal. 
 
5   Test Results 
The results for the control performance are presented 
in table 1 that reports the quadratic mean square 
error obtained comparing the reference signal with 
the output signal of the system. 
 

Test number Exectime MSE 
1 0 0.1867 
2 25%h 0.1277 
3 50%h 0.1755 
4 75%h 46.5918 
5 rand75 0.1961 
6 rand100 0.2250 
7 gam1 18.2614 
8 gam2 24.7575 

Table 1- Mean square error obtained for h=2.75s 
between samples 25 and 80. 
 

Test number Exectime MSE 
1 0 0.1509 
2 25%h 0.1514 
3 50%h 0.1490 
4 75%h 8.3867 
5 rand75 0.1439 
6 rand100 0.1228 
7 gam1 0.1794 
8 gam2 0.2576 

Table 2- Mean square error obtained for h=1.925s 
between samples 20 and 120. 

Test number Exectime MSE 
1 0 0.1418 
2 25%h 0.1179 
3 50%h 0.1159 
4 75%h 0.0834 
5 rand75  0.1338 
6 rand100 0.1021 
7 gam1 0.1124 
8 gam2 0.0909 

Table 3- Mean square error obtained for h=1.1s 
between samples 40 and 200. 
 
Figures 7 to 21 present the control and error signals 
for tests 2, 3, 4, 6 and 8 for the different sampling 
periods. Tests 2, 3 and 4 were obtained under 
constant jitter of 25%, 50% and 75% of h, 
respectively. Tests 6 and 8 were obtained under  
variable jitter with the sequences obtained as stated 
before. These test were chosen because they present 
the worst jitter conditions. 
 

 
Fig.7- Signals for test 2 with h=2.75s. 
 
 

 
Fig.8- Signals for test 3 with h=2.75s. 



 
Fig.9- Signals for test 4 with h=2.75s. 
 
 
 

 
Fig.10- Signals for test 6 with h=2.75s. 
 
 
 

 
Fig.11- Signals for test 8 with h=2.75s. 

 
Fig.12- Signals for test 2 with h=1.925s. 
 
 
 

 
Fig.13- Signals for test 3 with h=1.925s. 
 
 

 
Fig.14- Signals for test 4 with h=1.925s. 



 
Fig.15- Signals for test 6 with h=1.925s. 
 
 
 

 
Fig.16- Signals for test 8 with h=1.925s. 
 
 
 

 
Fig.17- Signals for test 2 with h=1.1s. 

 
Fig.18- Signals for test 3 with h=1.1s. 
 
 
 

 
Fig.19- Signals for test 4 with h=1.1s. 
 
 
 

 
Fig.20- Signals for test 6 with h=1.1s. 



 
Fig.21- Signals for test 8 with h=1.1s. 
 
As can be seen from figures 7 to 11, for h=2.75s, 
corresponding to Nr= 4, the system oscillates for tests 
3 and 4 and for tests 6 and 8 the oscillation is so 
heavy that the system is not able to follow the 
reference signal. Test 2 is the only one where the 
system is controlled without oscillation. For 
h=1.925s, corresponding to Nr≈6, the system 
oscillates for test 8, test 4 presents heavy oscillation 
and for tests 2, 3 and 6 the system doesn’t presents 
oscillation. Finally for h=1.1s, corresponding to 
Nr=10 the system oscillates slightly for test 8 and 
doesn’t oscillates for the other situations. 
Output jitter distributed over the upper half of the 
sampling period affects control performance more 
then randomly distributed jitter. Random jitter affects 
the system in the same way as a constant jitter with 
the average value of the sequence [14] so the test 6 
usually presents better results than test 4. 
It can clearly be seen that as the sampling period 
grows the system begins to oscillate first slightly 
then heavily. 
 
4   Conclusion 
A real-time distributed system was tested under 
different jitter conditions.  
Comparison between the control performance of the 
tests made for different sampling periods shows that 
as the sampling period grows the system begins to 
oscillate slightly then heavily becoming unstable. 
Results recommend that the sampling period should 
be chosen as small as possible taking into account 
the particular characteristics of the systems and its 
implementation. 
In future work, another identification approach, 
using a different model to account for the jitter effect 
would be tested and 2nd order systems would be 
investigated as well.  
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