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Abstract: The constrained multiple sequence alignment (CMSA) problem is to align a set of strings such that 
the given patterns (the constraint) appear in the same positions in a specified order in each of the strings in the 
resulting alignment. The best previous result for the pair-wise version takes O(mn2) time and space [2, 10], 
where m is the number of patterns (defined later) and n is the maximum string lengths. In this paper, we deal 
with the pair-wise case when the positions of occurrences of the patterns in one of the strings are given. This 
version arises in applications naturally but is not discussed previously [8, 2, 10]. In this paper, we present an 
algorithm taking O(n2) time and O(n + r) space for this version, where r is the number of occurrences of all the 
patterns. This result in turn improves the 2-approximation algorithm proposed in [2] for CMSA from O(Ck2mn2) 
time and O(k2mn2) space to O(Ck2n2) time and O(kn) space for the original problem, where k is the number of 
sequences and C is the maximum number of valid “constrained lists” (defined later). 
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1  Introduction 
Sequence alignment is essential in computational 
biology. Classical methods consider the alignment of 
residues on the sequences. This problem has been 
extensively studied (see, for example, [6]). As 
biological knowledge, predictions and hypotheses 
grow rapidly, it turns out to be important and 
desirable to incorporate biological information into 
alignment procedures, instead of merely comparing 
residues or corresponding quantities (e.g. polarity).  

Constrained sequence alignment is proposed by 
Tang et al. [8]. They considered RNases for an 
example. RNases contain three conserved His12 (H), 
Lys41 (K) and His119 (H) active site residues as 
their major structural feature [8]. Thus if we are 

aligning RNase sequences, it is demanding that each 
of these conserved residues appears in the same 
columns in the resulting alignment.  
 In a follow-up work by Chin et al. [2], a more 
efficient algorithm for the pair-wise constrained 
alignment is proposed. The algorithm runs in O(mn2) 
time and space. For CMSA, they give a 
2-approximation algorithm which takes O(Cmk2n2) 
time and O(mk2n2) space, where m is the number of 
patterns in the constraint, n is the maximum string 
length, and k is the number of input strings. C is 
defined in Sec. 4. 
 Tsai et al. [10] generalized the definition of 
patterns, from single characters to substrings. Their 
algorithm is equally efficient as that in [2].  



In this paper, we focus on the pair-wise version 
when the positions of occurrences of the given 
patterns on one of the strings are known. Biologists 
are generally able to annotate important regions on a 
protein sequence known to have some function. 
Important regions can have different degrees: 
necessary, relevant, irrelevant, etc. This suggests that 
an effective tool must be able to consider both 
necessary and relevant regions. Previous results 
either focuses only on necessary regions [2, 8, 9, 10], 
or only on relevant regions [3]. Also, it is important 
to allow gaps when recognizing an occurrence of a 
motif; this is not considered in previous constrained 
alignment results [8, 2, 10].  

The remainder of this paper is organized as 
follows. Section 2 formally defines the problem and 
some other terms. Section 3 gives the main algorithm. 
Section 4 shows how the results in Sec. 3 can be 
utilized to improve it. Finally, some concluding 
remarks are given. 

 
 

2  Preliminaries 
Let ∑ be the alphabet where the residues of 
sequences are drawn. For a sequence X, let X(i) be 
the ith character on X, and denote string 
X(i)X(i+1)…X(j) as X[i..j].  
 An alignment of strings S1, …, Sk is a set of 

strings S1′, …, Sk′, where Si′ is obtained by inserting 
some spaces “−” into Si for all i = 1, …, k, and |Si′| = 
|Sj′| for all 1 ≤ i, j ≤ k. Define #spaces(c; Si′) to be the 
number of “−”s in Si′ at or before position c. 
 Let δ be the cost function. Let S1′, …, Sk′ be an 
alignment. The score of this alignment is given by 

∑l≤k∑i<j δ(Si′(l), Sj′(l)), which is the commonly used 
sum-of-pairs score. 
 Now we define some terms used in this paper. 

Definition 1. A pattern P is a language 

P(1)P(2)…P(|P|), where P(l) ⊂ ∑ for 1 ≤ l ≤ |P|. We 
say that P occurs at position i in string X if X[i + l] ∈ 
P[l] for 0 ≤ l ≤ |P| − 1. If P occurs in X at positions i1 

< … < ic, then ix is denoted as startx(X; P) (note the 

subscript). Also let endx(X; P) = ix + |P| − 1. We also 
say that [startx(X; P), endx(X; P)] is the occurrence 
interval for P in X. 

This definition is beneficial for dealing with 
degenerate forms. For a pattern Pl, define cost(Pl) to 
be the cost of matching two occurrences of Pl. We 
refer to this kind of pattern as type-1 pattern. 

We now give a counterpart to the above 
definition for patterns. 

Definition 2. A pattern P is a string 

P(1)P(2)…P(|P|), where P(l) ∈ ∑ for 1 ≤ l ≤ |P|. We 
say that P occurs at interval [i, j] in string X if 

dE(X[i..j], P) ≤ t, where t is a threshold value and dE 
is the weighted edit distance. Suppose that P occurs 

at intervals [i1, j1], [i2, j2], …, [ic, jc], where i1 ≤ i2 
≤ … ≤ ic. Then we denote ix as startx(X; P) and jx as 
endx(X; P). 

We will refer to this kind of pattern as type-2 
pattern. The definition for patterns in [10] uses 
Hamming distance and does not allow gaps in 
occurrences.  

Definition 3. A constraint is a sequence (rather 

than merely a set) of patterns 〈P1, …, Pm〉.  
Definition 4. An alignment S1′, …, Sk′ satisfies 

constraint P1, …, Pm if there exists intervals [c1, 

c1′], …, [cm, cm′] where c1 < … < cm such that for all 
1 ≤ i ≤ k and all 1 ≤ l ≤ m, Pl occurs at interval [cl, cl′] 
in Si′ and all [cl, cl′]’s are disjoint (referred to as the 
non-overlapping condition). The interval [cl − 
#spaces(cl; Si′), cl′ − #spaces(cl; Si′)] is said to be a 
“correct” interval of occurrence of Pl in Si. 

We can now give the definition of the problem. 

Definition 5. (Constrained Sequence Alignment 
Problem) Given a set of sequences and a constraint, 



find an alignment satisfying the constraint with the 
minimum score.  

Since the multiple sequence alignment problem 
is NP-hard [1], it is clear that CMSA is also NP-hard. 
Tang et al. [8] and Tsai et al. [10] solved this 
problem by a progressive method, and Chin et al. 
adopted an approximation algorithm [2]. The method 
proposed in this paper improves Chin et al.’s 
2-approximaiton algorithm.  

The (pair-wise) case considered in this paper is 
stated as follows (referred to as “one-annotated 
case”): 

Given two strings S1 and S2 and a constraint 

〈P1, …, Pm〉, along with m “correct” intervals [c1, 
c1′], ..., [cl, cl′] of occurrences (one for each pattern) 
in S1 for each Pl such that the non-overlapping 
condition (see Def. 4) is satisfied. Find an alignment 
of S1 and S2 satisfying the constraint such that the 
score is minimized. 

Note that this version can be solved by the 
O(mn2) time and space algorithm in [2] (with some 
modifications). However, it is natural to ask whether 
the additional information given in this version (i.e., 
the positions of occurrences in one of the strings) can 
be utilized to improve the time and space bounds. 
The answer turns out to be positive, and is explored 
in the next section. 

We now formalize a useful property used later. It 
is mentioned in [7] using the notion of grid graphs. 
Define score(X, Y) to be the score of the optimal 
alignment of strings X and Y.  

Lemma 6. If min1≤j′≤j score(X, Y[j′..j]) = score(X, 
Y[j*..j]), then for all y > j, min1≤y′≤y score(X, Y[y′..y]) 
= minj*≤y′≤y score(X, Y[y′..y]), and for all y < j, 
min1≤y′≤y score(X, Y[y′..y]) = min1≤y′≤ j* score(X, 
Y[y′..y]). 
 
 

3  Algorithm for One-Annotated Case 
Suppose that we are given two strings S1 and S2, a 

constraint 〈P1, …, Pm〉, and m “correct” occurring 
intervals [start(S1; Pl), end(S1; Pl)] in S1, 1 ≤ l ≤ m, 
one for each pattern Pl. Let n = max{|S1|, |S2|}.  

To deal with this problem, we first find the 
positions of occurrences in S2 for each of the patterns. 
First consider type-1 patterns. For each pattern Pl in 

the constraint, we use |∑| bits to represent Pl(i), e.g., 
if ∑ = {A, T, C, G} and Pl(i) = {A, C}, then Pl(i) is 
represented as (1, 0, 1, 0). All the patterns can be 

converted in O(L|∑|) time and space, where L = 
∑1≤i≤m |Pi|. It is then easy to determine all positions of 
occurrences for all patterns in O(Ln) time. The 

overall space needed is O(L|∑| + r), where r is the 
total number of occurrences of all patterns in S2. We 

keep the list occur(S2; Pl) = 〈[start1(S2; Pl), end1(S2; 
Pl)], …, [startc(S2; Pl)(S2; Pl), endc(S2; Pl)(S2; Pl)]〉, where 
c(S2; Pl) is the number of occurrences of Pl in S2. 

For type-2 patterns, we use dynamic 
programming to compute weighted edit distance. By 
Lemma 6, along with some tie-breaking rule, it can 

be assured that if endx > endy, then startx ≥ starty. 
Also keep occur(S2; Pl). This processing takes O(Ln) 

time and O(n + r) space, where r = ∑l c(S2; Pl).  
Recall that the “correct” intervals [start(S1; Pl), 

end(S1; Pl)] for S1 is taken as input for 1 ≤ l ≤ m. To 
find the optimal constrained alignment of S1 and S2, 
we compute table T using the following recurrences: 

(1) T[0, 0] = 0. T[0, j] = T[0, j−1] + δ(−, S1[j])  
if 0 < j < start(S1, 1).  

T[i, 0] = T[i−1, 0] + δ(S2[i], −) if i > 0. 
(2) If j ∉ [start(S1; Pl), end(S1; Pl)] for all l,  

T[i, j] = min{T[i – 1, j] + δ(S2[i], −), T[i – 1, j – 1] 
+ δ(S2[i], S1[j]), T[i, j – 1] + δ(–, S1[j])}. 

(3) If j = start(S1; Pl) for some l,  
T[i, j] = T[i – 1, j – 1], if i = startx(S2; Pl) for 

some 1 ≤ x ≤ c(S2; Pl);  



T[i, j] can be left undefined otherwise. 
(4) If j = end(S1; Pl) for some l,  

T[0, j] = ∞. 
T[i, j] = min{T[startx(S2; Pl), start(S1; Pl)] + 

cost(Pl), T[i – 1, j] + δ(S2[i], –)}, if i = endx(S2; l) 
for some 1 ≤ x ≤ c(S2; Pl);  
T[i, j] = T[i – 1, j] + δ(S2[i], –), otherwise. 

(5) If j ∈ (start(S1; Pl), end(S1; Pl)) for some l, then 
T[i, j] can be left undefined.  

Observe that T has a property that if j ∈ [end(S1; 
Pl), end(S1; Pl+1)) for some l < m, or if j ≥ end(S1; Pl) 
for l = m, then T[i, j] is the minimum score of 
aligning S2[1..i] and S1[1..j] satisfying the 

(sub-)constraint 〈P1, P2, …, Pk〉. It follows that T[|S2|, 
|S1|] is the optimal score of constrained alignment of 

S1 and S2 satisfying the constraint 〈P1, …, Pm〉. 
By the sorted-property of the list occur(S2; Pl), 

each determination of what interval j belongs takes 
only O(1) time.  

With the above recurrences, we can now easily 
compute the optimal constrained alignment of S1 and 
S2. It is clear that O(n2) time suffices. If some care is 
taken, Hirschberg’s well-known divide-and-conquer 
technique [5] can be modified to apply here (divide 
the columns). This reduces the required space to 
O(n). 

 In total, it takes O(n2 + Ln) time and O(n + L|∑|) 
space for type-1 constraints, and the same time and 
O(n + r) space for type-2 constraints. Let’s take a 
closer look at these bounds. First, L = O(n) by the 

non-overlapping condition. Also, assume that |∑| is a 
constant. In addition, it is clear that r is bounded 
above by O(mn). Hence the time and space needed 
are O(n2) and O(n + r), respectively. Note that if 
constraints are defined as in [2], r = O(n) and the 
space complexity is O(n). 

To incorporate the analysis for important regions 
that are considered not necessary, a weighting 

scheme can be used, as in [3]. Specifically, for x, y ∈ 
Σ ∪ {−}, δ(x, y) can be substituted by δ(x, y) × w1(x) 
× w2(y), where w1 and w2 are weights associated with 
the importance of characters in the first and second 
string, respectively.  
 
 

4  A More Efficient Approximation 
Algorithm for CMSA 
Chin et al. [2] extended Gusfield’s well-known 
center-star approximation algorithm for the multiple 

sequence alignment problem [4], giving a (2−2/k) 
approximation ratio for CMSA. It turns out that the 
algorithm developed in the previous section 
improves the performance of the 2-approximation 
algorithm in [2]. We now explore this. 

Suppose we are given k strings S1, …, Sk, along 

with a constraint 〈P1, …, Pm〉. Let n = maxi |Si|. The 
algorithm is outlined below. 
{Occurrence-finding Phase}  

Find all intervals of occurrences of patterns 
P1, …, Pm on all strings. 
{Best Center Sequence Selection Phase}  

Looping over all k sequences, consider each the 
center sequence once. Suppose that Si is now the 
center sequence. Then for each list of occurrence 
intervals [startc1(Si; P1), endc1(Si; P1)], …, [startcm(Si; 
Pm), endcm(Si; Pm)] ((c1, …, cm) is referred to as 

“constrained list” later) of patterns P1, …, Pm on Si, 1 

≤ cl ≤ c(Si; Pl), Si is pair-wise aligned with all strings 
in {S1, …, Sk} − {Si} with respect to this constrained 
list. The sum of these k−1 scores is kept for later 
comparison. Note that once the constrained list is 
fixed, the alignment can be done by the algorithm in 
the previous section.  

We then determine for what choices of Si and 
constrained list, the sum of pair-wise scores is 
minimized. This Si is referred to as the best center 



sequence and (c1, …, cm) as the best constrained list. 
{Merging Phase} 

 The k−1 pair-wise alignments of the best center 
sequence to all other sequences are merged, under 
the best constrained list, in the same way as in [2].  
 
 The total time and space taken are O(Ck2n2) and 
O(kn + R), respectively, where R is the total number 
of occurrences of all patterns in all strings. Details 
are omitted due to page limit. If the definition for 
patterns in [2] is adopted, our algorithm takes 
O(Ck2n2) time and O(kn) space, as opposed to 
O(Cmk2n2) time and O(mk2n2) space for the 
algorithm in [2].  
 
 

5  Conclusion 
In this paper, we study pair-wise constrained 
sequence alignment where occurrences of patterns in 
one of the strings are known. This is useful when 
determining whether a sequence has some properties. 
We propose an algorithm taking O(n2) time and O(n 
+ r) space. The analysis admitted here is more 
general than previous constrained sequence 
alignment results [2, 8, 10]. Also, the algorithm 
improves previous approximation algorithm for 
CMSA [2] both in generality and efficiency. The next 
step is to combine other kind of annotations or 
constraints into the analysis, yielding a yet more 
realistic tool.  
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