
One-Annotated Constrained Sequence Alignment

YUN-SHENG CHUNG, CHUAN YI TANG
Department of Computer Science

National Tsing Hua University
101, Section 2 Kuang Fu Road, Hsinchu, Taiwan 300

 REPUBLIC OF CHINA

Abstract: The constrained multiple sequence alignment (CMSA) problem is to align a set of strings such that
the given patterns (the constraint) appear in the same positions in a specified order in each of the strings in the
resulting alignment. The best previous result for the pair-wise version takes O(mn2) time and space [2, 10],
where m is the number of patterns (defined later) and n is the maximum string lengths. In this paper, we deal
with the pair-wise case when the positions of occurrences of the patterns in one of the strings are given. This
version arises in applications naturally but is not discussed previously [8, 2, 10]. In this paper, we present an
algorithm taking O(n2) time and O(n + r) space for this version, where r is the number of occurrences of all the
patterns. This result in turn improves the 2-approximation algorithm proposed in [2] for CMSA from O(Ck2mn2)
time and O(k2mn2) space to O(Ck2n2) time and O(kn) space for the original problem, where k is the number of
sequences and C is the maximum number of valid “constrained lists” (defined later).

Key-Words: biological sequence comparison, constrained sequence alignment, computational biology

1 Introduction
Sequence alignment is essential in computational
biology. Classical methods consider the alignment of
residues on the sequences. This problem has been
extensively studied (see, for example, [6]). As
biological knowledge, predictions and hypotheses
grow rapidly, it turns out to be important and
desirable to incorporate biological information into
alignment procedures, instead of merely comparing
residues or corresponding quantities (e.g. polarity).

Constrained sequence alignment is proposed by
Tang et al. [8]. They considered RNases for an
example. RNases contain three conserved His12 (H),
Lys41 (K) and His119 (H) active site residues as
their major structural feature [8]. Thus if we are

aligning RNase sequences, it is demanding that each
of these conserved residues appears in the same
columns in the resulting alignment.
 In a follow-up work by Chin et al. [2], a more
efficient algorithm for the pair-wise constrained
alignment is proposed. The algorithm runs in O(mn2)
time and space. For CMSA, they give a
2-approximation algorithm which takes O(Cmk2n2)
time and O(mk2n2) space, where m is the number of
patterns in the constraint, n is the maximum string
length, and k is the number of input strings. C is
defined in Sec. 4.
 Tsai et al. [10] generalized the definition of
patterns, from single characters to substrings. Their
algorithm is equally efficient as that in [2].

In this paper, we focus on the pair-wise version
when the positions of occurrences of the given
patterns on one of the strings are known. Biologists
are generally able to annotate important regions on a
protein sequence known to have some function.
Important regions can have different degrees:
necessary, relevant, irrelevant, etc. This suggests that
an effective tool must be able to consider both
necessary and relevant regions. Previous results
either focuses only on necessary regions [2, 8, 9, 10],
or only on relevant regions [3]. Also, it is important
to allow gaps when recognizing an occurrence of a
motif; this is not considered in previous constrained
alignment results [8, 2, 10].

The remainder of this paper is organized as
follows. Section 2 formally defines the problem and
some other terms. Section 3 gives the main algorithm.
Section 4 shows how the results in Sec. 3 can be
utilized to improve it. Finally, some concluding
remarks are given.

2 Preliminaries
Let ∑ be the alphabet where the residues of
sequences are drawn. For a sequence X, let X(i) be
the ith character on X, and denote string
X(i)X(i+1)…X(j) as X[i..j].
 An alignment of strings S1, …, Sk is a set of

strings S1′, …, Sk′, where Si′ is obtained by inserting
some spaces “−” into Si for all i = 1, …, k, and |Si′| =
|Sj′| for all 1 ≤ i, j ≤ k. Define #spaces(c; Si′) to be the
number of “−”s in Si′ at or before position c.
 Let δ be the cost function. Let S1′, …, Sk′ be an
alignment. The score of this alignment is given by

∑l≤k∑i<j δ(Si′(l), Sj′(l)), which is the commonly used
sum-of-pairs score.
 Now we define some terms used in this paper.

Definition 1. A pattern P is a language

P(1)P(2)…P(|P|), where P(l) ⊂ ∑ for 1 ≤ l ≤ |P|. We
say that P occurs at position i in string X if X[i + l] ∈
P[l] for 0 ≤ l ≤ |P| − 1. If P occurs in X at positions i1

< … < ic, then ix is denoted as startx(X; P) (note the

subscript). Also let endx(X; P) = ix + |P| − 1. We also
say that [startx(X; P), endx(X; P)] is the occurrence
interval for P in X.

This definition is beneficial for dealing with
degenerate forms. For a pattern Pl, define cost(Pl) to
be the cost of matching two occurrences of Pl. We
refer to this kind of pattern as type-1 pattern.

We now give a counterpart to the above
definition for patterns.

Definition 2. A pattern P is a string

P(1)P(2)…P(|P|), where P(l) ∈ ∑ for 1 ≤ l ≤ |P|. We
say that P occurs at interval [i, j] in string X if

dE(X[i..j], P) ≤ t, where t is a threshold value and dE
is the weighted edit distance. Suppose that P occurs

at intervals [i1, j1], [i2, j2], …, [ic, jc], where i1 ≤ i2
≤ … ≤ ic. Then we denote ix as startx(X; P) and jx as
endx(X; P).

We will refer to this kind of pattern as type-2
pattern. The definition for patterns in [10] uses
Hamming distance and does not allow gaps in
occurrences.

Definition 3. A constraint is a sequence (rather

than merely a set) of patterns 〈P1, …, Pm〉.
Definition 4. An alignment S1′, …, Sk′ satisfies

constraint P1, …, Pm if there exists intervals [c1,

c1′], …, [cm, cm′] where c1 < … < cm such that for all
1 ≤ i ≤ k and all 1 ≤ l ≤ m, Pl occurs at interval [cl, cl′]
in Si′ and all [cl, cl′]’s are disjoint (referred to as the
non-overlapping condition). The interval [cl −
#spaces(cl; Si′), cl′ − #spaces(cl; Si′)] is said to be a
“correct” interval of occurrence of Pl in Si.

We can now give the definition of the problem.

Definition 5. (Constrained Sequence Alignment
Problem) Given a set of sequences and a constraint,

find an alignment satisfying the constraint with the
minimum score.

Since the multiple sequence alignment problem
is NP-hard [1], it is clear that CMSA is also NP-hard.
Tang et al. [8] and Tsai et al. [10] solved this
problem by a progressive method, and Chin et al.
adopted an approximation algorithm [2]. The method
proposed in this paper improves Chin et al.’s
2-approximaiton algorithm.

The (pair-wise) case considered in this paper is
stated as follows (referred to as “one-annotated
case”):

Given two strings S1 and S2 and a constraint

〈P1, …, Pm〉, along with m “correct” intervals [c1,
c1′], ..., [cl, cl′] of occurrences (one for each pattern)
in S1 for each Pl such that the non-overlapping
condition (see Def. 4) is satisfied. Find an alignment
of S1 and S2 satisfying the constraint such that the
score is minimized.

Note that this version can be solved by the
O(mn2) time and space algorithm in [2] (with some
modifications). However, it is natural to ask whether
the additional information given in this version (i.e.,
the positions of occurrences in one of the strings) can
be utilized to improve the time and space bounds.
The answer turns out to be positive, and is explored
in the next section.

We now formalize a useful property used later. It
is mentioned in [7] using the notion of grid graphs.
Define score(X, Y) to be the score of the optimal
alignment of strings X and Y.

Lemma 6. If min1≤j′≤j score(X, Y[j′..j]) = score(X,
Y[j*..j]), then for all y > j, min1≤y′≤y score(X, Y[y′..y])
= minj*≤y′≤y score(X, Y[y′..y]), and for all y < j,
min1≤y′≤y score(X, Y[y′..y]) = min1≤y′≤ j* score(X,
Y[y′..y]).

3 Algorithm for One-Annotated Case
Suppose that we are given two strings S1 and S2, a

constraint 〈P1, …, Pm〉, and m “correct” occurring
intervals [start(S1; Pl), end(S1; Pl)] in S1, 1 ≤ l ≤ m,
one for each pattern Pl. Let n = max{|S1|, |S2|}.

To deal with this problem, we first find the
positions of occurrences in S2 for each of the patterns.
First consider type-1 patterns. For each pattern Pl in

the constraint, we use |∑| bits to represent Pl(i), e.g.,
if ∑ = {A, T, C, G} and Pl(i) = {A, C}, then Pl(i) is
represented as (1, 0, 1, 0). All the patterns can be

converted in O(L|∑|) time and space, where L =
∑1≤i≤m |Pi|. It is then easy to determine all positions of
occurrences for all patterns in O(Ln) time. The

overall space needed is O(L|∑| + r), where r is the
total number of occurrences of all patterns in S2. We

keep the list occur(S2; Pl) = 〈[start1(S2; Pl), end1(S2;
Pl)], …, [startc(S2; Pl)(S2; Pl), endc(S2; Pl)(S2; Pl)]〉, where
c(S2; Pl) is the number of occurrences of Pl in S2.

For type-2 patterns, we use dynamic
programming to compute weighted edit distance. By
Lemma 6, along with some tie-breaking rule, it can

be assured that if endx > endy, then startx ≥ starty.
Also keep occur(S2; Pl). This processing takes O(Ln)

time and O(n + r) space, where r = ∑l c(S2; Pl).
Recall that the “correct” intervals [start(S1; Pl),

end(S1; Pl)] for S1 is taken as input for 1 ≤ l ≤ m. To
find the optimal constrained alignment of S1 and S2,
we compute table T using the following recurrences:

(1) T[0, 0] = 0. T[0, j] = T[0, j−1] + δ(−, S1[j])
if 0 < j < start(S1, 1).

T[i, 0] = T[i−1, 0] + δ(S2[i], −) if i > 0.
(2) If j ∉ [start(S1; Pl), end(S1; Pl)] for all l,

T[i, j] = min{T[i – 1, j] + δ(S2[i], −), T[i – 1, j – 1]
+ δ(S2[i], S1[j]), T[i, j – 1] + δ(–, S1[j])}.

(3) If j = start(S1; Pl) for some l,
T[i, j] = T[i – 1, j – 1], if i = startx(S2; Pl) for

some 1 ≤ x ≤ c(S2; Pl);

T[i, j] can be left undefined otherwise.
(4) If j = end(S1; Pl) for some l,

T[0, j] = ∞.
T[i, j] = min{T[startx(S2; Pl), start(S1; Pl)] +

cost(Pl), T[i – 1, j] + δ(S2[i], –)}, if i = endx(S2; l)
for some 1 ≤ x ≤ c(S2; Pl);
T[i, j] = T[i – 1, j] + δ(S2[i], –), otherwise.

(5) If j ∈ (start(S1; Pl), end(S1; Pl)) for some l, then
T[i, j] can be left undefined.

Observe that T has a property that if j ∈ [end(S1;
Pl), end(S1; Pl+1)) for some l < m, or if j ≥ end(S1; Pl)
for l = m, then T[i, j] is the minimum score of
aligning S2[1..i] and S1[1..j] satisfying the

(sub-)constraint 〈P1, P2, …, Pk〉. It follows that T[|S2|,
|S1|] is the optimal score of constrained alignment of

S1 and S2 satisfying the constraint 〈P1, …, Pm〉.
By the sorted-property of the list occur(S2; Pl),

each determination of what interval j belongs takes
only O(1) time.

With the above recurrences, we can now easily
compute the optimal constrained alignment of S1 and
S2. It is clear that O(n2) time suffices. If some care is
taken, Hirschberg’s well-known divide-and-conquer
technique [5] can be modified to apply here (divide
the columns). This reduces the required space to
O(n).

 In total, it takes O(n2 + Ln) time and O(n + L|∑|)
space for type-1 constraints, and the same time and
O(n + r) space for type-2 constraints. Let’s take a
closer look at these bounds. First, L = O(n) by the

non-overlapping condition. Also, assume that |∑| is a
constant. In addition, it is clear that r is bounded
above by O(mn). Hence the time and space needed
are O(n2) and O(n + r), respectively. Note that if
constraints are defined as in [2], r = O(n) and the
space complexity is O(n).

To incorporate the analysis for important regions
that are considered not necessary, a weighting

scheme can be used, as in [3]. Specifically, for x, y ∈
Σ ∪ {−}, δ(x, y) can be substituted by δ(x, y) × w1(x)
× w2(y), where w1 and w2 are weights associated with
the importance of characters in the first and second
string, respectively.

4 A More Efficient Approximation
Algorithm for CMSA
Chin et al. [2] extended Gusfield’s well-known
center-star approximation algorithm for the multiple

sequence alignment problem [4], giving a (2−2/k)
approximation ratio for CMSA. It turns out that the
algorithm developed in the previous section
improves the performance of the 2-approximation
algorithm in [2]. We now explore this.

Suppose we are given k strings S1, …, Sk, along

with a constraint 〈P1, …, Pm〉. Let n = maxi |Si|. The
algorithm is outlined below.
{Occurrence-finding Phase}

Find all intervals of occurrences of patterns
P1, …, Pm on all strings.
{Best Center Sequence Selection Phase}

Looping over all k sequences, consider each the
center sequence once. Suppose that Si is now the
center sequence. Then for each list of occurrence
intervals [startc1(Si; P1), endc1(Si; P1)], …, [startcm(Si;
Pm), endcm(Si; Pm)] ((c1, …, cm) is referred to as

“constrained list” later) of patterns P1, …, Pm on Si, 1

≤ cl ≤ c(Si; Pl), Si is pair-wise aligned with all strings
in {S1, …, Sk} − {Si} with respect to this constrained
list. The sum of these k−1 scores is kept for later
comparison. Note that once the constrained list is
fixed, the alignment can be done by the algorithm in
the previous section.

We then determine for what choices of Si and
constrained list, the sum of pair-wise scores is
minimized. This Si is referred to as the best center

sequence and (c1, …, cm) as the best constrained list.
{Merging Phase}

 The k−1 pair-wise alignments of the best center
sequence to all other sequences are merged, under
the best constrained list, in the same way as in [2].

 The total time and space taken are O(Ck2n2) and
O(kn + R), respectively, where R is the total number
of occurrences of all patterns in all strings. Details
are omitted due to page limit. If the definition for
patterns in [2] is adopted, our algorithm takes
O(Ck2n2) time and O(kn) space, as opposed to
O(Cmk2n2) time and O(mk2n2) space for the
algorithm in [2].

5 Conclusion
In this paper, we study pair-wise constrained
sequence alignment where occurrences of patterns in
one of the strings are known. This is useful when
determining whether a sequence has some properties.
We propose an algorithm taking O(n2) time and O(n
+ r) space. The analysis admitted here is more
general than previous constrained sequence
alignment results [2, 8, 10]. Also, the algorithm
improves previous approximation algorithm for
CMSA [2] both in generality and efficiency. The next
step is to combine other kind of annotations or
constraints into the analysis, yielding a yet more
realistic tool.

References:
[1] P. Bonizzoni and G. D. Vedova, The Complexity

of Multiple Sequence Alignment with SP-score
that is a metric, Theoretical Computer Science,
Vol. 259, No. 1-2, 2001, pp. 63-79.

[2] F. Y. L. Chin, N. L. Ho, T. W. Lam, P. W. H.
Wong and M. Y. Chan, Efficient Constrained

Sequence Alignment with Performance
Guarantee, Proceedings of the Computational
Systems Bioinformatics (CSB’03), IEEE, 2003,
pp. 337-346.

[3] P. A. Evans, Algorithms and Complexity for
Annotated Sequence Analysis, Ph. D Thesis,
Department of Computer Science, University of
Victoria, Canada, 1999.

[4] D. Gusfield, Efficient Methods for Multiple
Sequence Alignment with Guaranteed Error
Bounds, Bulletin of Mathematical Biology, Vol.
30, 1993, pp. 141-154.

[5] D. S. Hirschberg, A Linear Space Algorithm for
Computing Maximal Common Subsequences,
Communications of the ACM, Vol. 18, No. 6,
1975, pp. 341-343.

[6] T. Jiang, Y. Xu and M. Q. Zhang, editors, Current
Topics in Computational Molecular Biology, The
MIT Press, 2002.

[7] J. P. Schmidt, All Highest Scoring Paths in
Weighted Grid Graphs and Their Application to
Finding All Approximate Repeats in Strings,
SIAM Journal on Computing, Vol. 27, No. 4,
1998, pp. 972-992.

[8] C. Y. Tang, C. L. Lu, M. D. T. Chang, Y. J. Sun, Y.
T. Tsai, J. M. Chang, Y. H. Chiou, C. M Wu, H. T.
Chang, W. I. Chou and S. C. Chiang, Constrained
Sequence Alignment Tool Development and its
Application to RNase Family Alignment, Journal
of Bioinformatics and Computational Biology,
Vol. 1, 2003, pp. 267-287.

[9] W. R. Taylor, Motif-biased Protein Sequence
Alignment, Journal of Computational Biology,
Vol. 1, 1994, pp. 297-310.

[10] Y. T. Tsai, C. L. Lu, C. T. Yu and Y. P. Huang,
MuSiC: A Tool for Multiple Sequence Alignment
with Constraints, Bioinformatics, to appear.

