Theory Prime Implicates of First Order Formulas

Arindama Singh and Manoj K Raut
Department of Mathematics
Indian Institute of Technology
Chennai-600036, India
email: asingh@iitm.ac.in

Abstract : We provide a knowledge compilation technique which deals with the computational intractability
of first order reasoning problems. The notion of prime implicates is extended to theory prime implicates in
first order case. We provide an algorithm to compute the theory prime implicates of a knowledge base X
with respect to a knowledge base Y where both X and Y are assumed to be in Skolem Conjunctive Normal

Form. Partial correctness of the algorithm is proved.

Keywords: Theory prime implicates, First order logic,

1. Introduction

Propositional entailment is a fundamental issue in ar-
tificial intelligence due to its high complexity. Check-
ing whether a query is logically entailed by the knowl-
edge base is intractable. To overcome the computa-
tional intractability, the computational effort is split
into two phases such as off-line and on-line. In the
off-line phase the knowledge base is compiled into a
tractable form with respect to which queries can be
answered in an on-line phase so that the latter would
be tractable.
the computational overhead is shifted into the off-line

In such type of compilation most of

phase which is amortized over the answers to queries.
The off-line computation is known as knowledge com-
pilation.

Several approaches for knowledge compilation have
been suggested so far. The first kind of such ap-
proaches consists of an equivalence preserving com-
pilation. In one such approach, the propositional
theory ¥ is compiled into a logical equivalent the-
ory II(X), the set of prime implicates [CM92, K192,
JP90, KT90, Ng93, SCL70, Str92, Tis67] with respect
to which queries are answered by a subsumption test.
Another equivalence preserving knowledge compila-
tion consists of transforming the propositional data-
base X into a logical equivalent database FPI(X) (see
[dV94]) from which queries are answered by unit refu-
tation. A generalized approach to equivalence pre-
serving knowledge compilation uses the notion of the
theory prime implicates [Mar95]. In this approach the
theory prime implicates are computed from a knowl-

Knowledge compilation

edge base ¥ with respect to a tractable theory Y, so
that queries can be answered from the set of theory
prime implicates in polynomial time. Another kind of
knowledge compilation deals with an approximation
of the knowledge base [dV96], which is not related to
the work in this paper.

Most of the research work in knowledge compi-
lation have been restricted to propositional knowl-
edge base in spite of the higher expressing capacity
of first order knowledge base. Due to lack of expres-
sive power in propositional theory, first order theory
is required to represent knowledge in many problems.
We exploit the clausal form of first order theory to
store knowledge in a database. The clausal forms are
obtained by skolemization and converting the formula
into one of conjunctive or disjunctive normal forms.
In this paper we assume the first order formulas are in
SCNF (Skolem Conjunctive Normal Form) and com-
putation of theory prime implicates is extended to
first order logic where theory prime implicates of a
knowledge base X with respect to a theory Y is com-
puted. The theory prime implicates are computed
using a resolution based algorithm for prime impli-
cates computation for SCNF [RS02].

The paper is organized as follows. In Section 2, we
introduce the definitions and notions for establishing
the required results. Section 3 describes the proper-
ties of theory prime implicates and builds a relation
with the set of prime implicates. We give an algo-
rithm to compute the theory prime implicates and
prove its partial correctness in Section 4 and Section
5 concludes the paper.

2. Preliminaries

The alphabet of first order language contains the sym-
bols z,y,2,21,y1,-.., as variables, f,g,h, f1,91,---,
as function symbols, P, @, R, P;, @1 ..., as predicates,
-, V, A as connectives, (,) and ¢, as punctuation marks
and, V and 3 as universal and existential quantifiers.
Let FFM contain the set of formulas built upon this
alphabet. We assume the syntax and semantics of
first order logic. Formulas are denoted by upper case
letters. For an interpretation or a first order struc-
ture ¢ and a formula X, we write ¢ = X if 4 is a model
of X. For a set of formulas ¥ (or a formula) and any
formula X we write ¥ = X to denote that for every
interpretation ¢ if i is a model of every formula in
then ¢ is a model of X. We call X a logical conse-
quence of 3. f X =Y and YV |= X then X and YV
are said to be equivalent which is denoted by X =Y.
The quotient set of FFM induced by the equivalence
relation ‘=’ is represented as [F'M]=.

A literal is an atomic formula or negation of an
atomic formula. A disjunctive clause is a finite dis-
junction of literals which is also represented as a set
of literals. A quantifier-free formula is in conjunc-
tive normal form (CNF) if it is a finite conjunction
of disjunctive clauses. For convenience, a formula is
also represented as a set of clauses. Each formula is
skolemized into a quantifier-free formula by Skolem-
ization. In this paper we consider only Skolem Con-
junctive Normal Form Formulas (SCNF).

Two literals r and s are said to be complemen-
tary to each other iff the set {r, -s} is unifiable with
respect to a most general unifier £&. We call £ a com-
plementary substitution of the set {r,—s}. For ex-
ample, Pz f(a) and —Pby are complementary to each
other with respect to the complementary substitution
(most general unifier or mgu, for short) [z/b,y/f(a)].
So a most general unifier bundles upon infinite num-
ber of substitutions to a finite number.

A clause which does not contain a literal and its
negation is said to be fundamental. Thus a non-
fundamental clause is valid. We avoid taking non-
fundamental clauses in SCNF because the universal
quantifiers appearing in the beginning of the formula
can appear before each conjunct of the SCNF since V
distributes over A. So each clause in a formula of the
knowledge base is assumed to be non-fundamental.

A disjunctive clause C'is an implicate of a finite set
of formulas X (assumed to be in SCNF) if Xo = C

for a substitution 0. We write I(X) as the set of all
implicates of X. A clause C is a prime implicate of
X if C is an implicate of X and there is no other im-
plicate C" of X such that C' 7 |= C for a substitution
7 (i.e., if no other implicate C' subsumes C). TI(X)
denotes the set of prime implicates of X. It may be
observed that if C' is not prime then there exists a
prime implicate D of X such that D7 |= C.

A clause C' € II(X) is a minimal element of
TI(X), if for all C € T(X) and for all o, Co = C
implies Co = c'. Equivalently, a clause C e II(X)
is a minimal element of II(X) if there is no C € II(X)
and there is no substitution ¢ such that Co = C" and
Co = c'. Clearly, the prime implicates of a finite set
of formulas X are the minimal elements of I(X) with
respect to |=. So II(X) = min(Iy(X), E).

Let C1, Cs be two clauses in X and r € C1, s €
C> be a pair of complementary literals with respect
to a most general unifier o. The consensus of Cy
and CQ is C = CON(Cl,Cg) = [(01 - {7’}) @] (02 -
{s})]o provided that C is fundamental. C can also
be written as [(Ci1o —{t}) U(Ca20 — {—t})] for a literal
t, provided ro =t and so = —t. If C' is the consensus
of 'y and C, with respect to a most general unifier
o then C is said to be associated with o. By default,
each clause C of a set of formulas X is associated
with the empty substitution €. Let C; and C5 be two
resolvent clauses associated with substitutions o; and
o2, respectively. Then their consensus with respect
to o is defined provided o100 = g20.

Let Y be a finite set of formulas. We define the
extension of = as |y over FM x FM by X; vy
X, iff {X;}UY [X, where X; and X, are two
formulas in FM. Similarly for a substitution o we
define X10' ':Y X2 iff {Xla} UYo IZ XQ, (i.e., (X1 @]
Y)o = X5 if X; is a set of formulas) where both X
and Y are associated with the same substitution o.
If X10 Ey X2 holds then we say that X, is a Y-
logical consequence of X1. We define the equivalence
relation =y over FM by X1 =Y X2 iff X10'1 |:Y X2
for all o7 and Xs09 Ey Xj for all oa; so we say that
X1 and X are Y-equivalent. [FM]=, is the quotient
set of F'M induced by the equivalence relation =y .

The definition of prime implicate is extended to
the theory prime implicates as follows. Let X and
Y be finite sets of formulas. A clause C is a theory
implicate of X with respect to Y iff Xo =y C. A
clause C'is called a theory prime implicate of X with

respect to Y iff C is a theory implicate of X with
respect to Y and there is no other theory implicate
C' such that C' 1 =y C for some substitution 7. We
denote ©(X,Y’) as the set of theory prime implicates
of X with respect to Y. Thus, ©(X,Y’) contains the
minimal elements of the set of theory implicates of X
with respect to Y. The minimal clauses are considered
up to Y-logical equivalence, i.e., ©(X,Y’) contains a
clause from each equivalence class.

3. Properties

We describe some of the properties of theory prime
implicates of X with respect to Y. These results
lead us to the computation of the set of theory prime
implicates ©(X,Y) from the set of prime implicates
I(X) of X.

Theorem 3.1 Let X andY be finite sets of formulas.
Then O(X,Y) CII(X UY).

Proof Let C € O(X,Y). So Xo Ey C holds and
there is no theory implicate C' of X with respect
to Y such that C'7 =y C holds for some 7. This
implies XoUYo = C, ie., (XUY)o E C. So
C is an implicate of X UY. If C is not a prime
implicate of X UY then there exists a prime implicate
C" of X UY such that C'7 = C, ie., C'7 Ey C.
As C' is a prime implicate of X UY, (X UY)r =
C, ie, Xt Ey C'. This implies C' is a theory
implicate of X with respect to Y. So we get a theory
implicate C' such that C'7 Ey C, ie., Cis not a
theory prime implicate of X with respect to Y, which
is a contradiction. O

Theorem 3.2 If C,C' € I(X UY) and C1 =y C'
but Ct #y C for some 7 then C' ¢ O(X,Y).

Proof Let C' € O(X,Y). Xo =y C and there
is no theory implicate C* such that C*r |y C’ for
some 7. In other words, (X UY)o = C' and there
is no theory implicate C* (i.e., (X UY)7 = C*) such
that C*r =y C'. Thus, (X UY)o = C' and for
every C* if (X UY)7 |= C* then C*7 £y C'. As C
is a prime implicate of X UY, C is also an implicate
of XUY. With C* = C, (XUY)o |= C and if
(X UY)7 [= C then Cr £y C', which contradicts
the hypothesis of the Lemma. This implies that c’ ¢
O(X,Y), completing the proof. O

Theorem 3.3 If C,C’ € O(X,Y) then either Coy =y
C' for all oy and C' oy ey C for all oa, or C'oy Ey

C for all o3 and Coy Wy ol for all oy.

Proof As Coy =y C for all oy, C' is a Y-logical
consequence of C. If C' oy Ey C for all 1 then C
is a Y-logical consequence of C'. So C' =y C'. Thus
either C or C" belongs to ©(X,Y’) but not both which
is a contradiction to the hypothesis. Similarly we can
prove the other part. This completes the proof. O

The following result is obtained by using the Theo-
rems 3.1-3.3.

Theorem 3.4 O(X,Y) = min(II(X UY), =y).

Theorem 3.5 Let X and Y be finite sets of formulas
and C be any clause. Xo =y C holds iff there exists

a theory prime implicate c’ of X with respect to Y
such that C'1 =y C holds.

Proof Suppose Xo y C holds, ie., (XUY)o = C.
So C isan implicate of X UY. If C is not prime
then there is an implicate C*(# C) of X UY and a
substitution 7 such that C*7 |= C. Let A*={C* : C*
is an implicate of X UY and C*r |=y C for some
7}. We can obtain a finite subset A = {C1,...,Cp}
of A* such that for each C* € A* thereis a C; € A
and a substitution 5 such that C* = C;n since there
are only a finite number of variables in C* and C' is
finite. Now A, being a finite set, has a strict partial
order as logical consequence with respect to Y. Each
element of A4 is an implicate of X UY. Any minimal
element C' of A is a prime implicate of X UY, i.e., a
theory prime implicate of X with respect to Y.
Conversely, there exists a prime implicate C' of
X UY such that C'7 |y C, ie, C7UYT = C
holds. As (XUY)s E C and C' E C'r, (X U
Y)o | Y7TUC 7, since C'r and Y7 are disjunctive.
Thus, (X UY)o = C, showing that Xo =y C. This
completes the proof. a

Theorem 3.6 If X = X' then II(X) = II(X).

Proof Let C € II(X), i.e., Xo = C and there exists
no implicateC’ of X such that C'o = C. Since X =
X', X'0 |= C and there exists no implicate C' such
that C'o |= C. This implies C € II(X'). Thus,
II(X) C I(X"). Similarly, II(X") C II(X). m
Theorem 3.7 If X =y X andY =Y then upto
Y-equivalence, (X', Y') = O(X,Y).

Proof Let C € O(X',Y"), i.e, for all ¢’ € (X' U
Y'), if C'o =y C then C'o =y C. By hypothesis,
X' UY = XUY; by Theorem 3.5, II(X UY") =

II(XUY). So,forall C' € TI(XUY)if C'o =y C then
Co=y C. AsC €0O(X,Y), 0(X,Y') COX,Y).
Similarly, the other inclusion ©(X,Y) C ©(X',Y")
follows. O

Let X and Y be finite sets of formulas and Z; =
X UY. Define L'(Z;,) = Z; U {C' : C! is the con-
sensus of a pair of clauses from Z;}. Construct Z,
by deleting those clauses from L'(Z;) which are Y-
logical consequences of C'. L?(Z1) = Z, U {C?: C?
is the consensus of a pair of clauses from Z»}. Con-
struct Z3 like Zs, but from L?(Z;). Similarly, write
L"(Z,) = Z, U {C™ C™ is the consensus of two
clauses from Z,}. At one stage for some m > n,
L™(Zy) = L™(Z1) = Zn+1, happens in the proposi-
tional case. Unfortunately this need not be so in a
first order knowledge base. This is because, the pro-
cess may not terminate for some inputs. This goes
along well with the undecidability of first order logic
and the best we may hope is a partial correctness of
the algorithm. See the following example of transi-
tivity axioms.

Example 3.1 Let Z; = {~PxyV—-PyzVPzxz, =PstV
—PtuV-PuwV Psw}. The consensus closure of both
the clauses is infinite. L(Z;) = {-Pzy V -Pyz V
Pxz, =PstV —PtuV —Puw V Psw, —=PsyV —~Pyt V
- PtuV-PuwV Psw}. We can see there isnom > n
such that L™(Z;) = L™(Z1), i.e., none of the clauses
subsumes any of the others. Hence the process does
not terminate for transitivity axioms as input.

Each clause in every set L™(X UY) is a Y-logical
consequence of X, as the following result shows.

Theorem 3.8 X =y L"(X UY).

Proof First, we show that X UY = L} (X UY). Let
i be amodelof XUY. i ECforallCe XUY. If
XUY =LY (X UY) then it is through. If not, there
exists a clause D € LY(X UY) such that D is the
consensus of two clauses C; and Cj of X UY. As
iECjACrsoilED. il=LY(XUY). This implies
XUY E LY(XUY),ie, X Fy LY(XUY). Similarly
we can show that LY(X UY) Ey L2 (X UY) Ey
... Ey L™(X UY). By induction, it follows that
X Ey L"(X UY). O

This implication can be strengthened to equiva-
lence as in the following.

Theorem 3.9 X =y L"(X UY).
Proof Due to Lemma 3.5, we only show that L™(X U

Y) |y X. For this, let i be a model of L} (X UY)UY,
ie,iECforal C e LN(XUY)UY. If LY (XUY)U
Y = X then it is through. If not, then there exists a
clause C* in X such that C* ¢ LY (X UY)UY. This
implies that there exists a clause D* € L} (XUY)UY
such that C* is a Y-logical consequence of D*, i.e.,
D*oc =y C*. AsiECforall C € LY(XUY)UY,
i = D*. Thus,i = D*¢. Asi Y, i C*, giving
i E X. Hence, L"(X UY) Ey X. Similarly we
can show that L?(X UY) Fy LY (X UY),...,LM(X U
Y) By L™ Y(X UY). It follows by induction that
L(XUY) By X. 0

Theorem 3.10 (X UY)=L"(X UY).

Proof From Theorem 3.7, we see that all the clauses
of L™(XUY) are implicates of XUY', i.e., L™ (XUY") C
I(XUY). So, (X UY) E L"(XUY).

Conversely, let i be a model of L"(X UY). If
all the clauses of I(X UY) are in L"(X UY) then
the result is obvious; otherwise, there exists a clause
C € I(XUY) such that C ¢ L™"(X UY). Then
there exists a clause D € L™(X UY) such that C is
a Y-logical consequence of D, i.e., Do |y C. Since
iEL"(XUY),iEDforall De L"(XUY). Thus,
ilEDo. Asil=Y, i C givingi | I(XUY). So
LMXUY) EI(XUY). O

It may be noted that L™(X UY") contains implicates
up to the relation of Y-equivalence, i.e., it contains
one representative per equivalence class.

Theorem 3.11 L"(X UY) C O(X,Y) for some n.
Moreover, if L™tY (X UY) = L™(X UY) for some
m, then L™(X UY) = 0(X,Y).

Proof Let C € L™(X UY). Then, C is an impli-
cate of X UY. Since there does not exist any clause
C' € I"(X UY) such that C'o =y C (otherwise C
wouldn’t have been in L*(X UY)), C € (X UY),
by Theorem 3.9. Moreover, C' is a minimal element
of II(X UY') with respect to Fy. By Theorem 3.4,
CeB(X,Y). So L"(XUY) C O(X,Y), for every n.

If L™ (X UY) = L™(X UY), then let C €
O(X,Y). Since C € (X UY), C € I(XUY).
Let C ¢ L™(X UY). Then there exists a clause
C' € L™(X UY) such that C is a Y-logical con-
sequence of C'. Thus C is not prime, ie., C ¢
O(X,Y). This shows that C € L™(X UY); con-
sequently, ©(X,Y) C L™(X UY). Equality follows
from the previous paragraph. O

It may be observed that in case L™t{(X UY) =
L™(X UY) holds for some m, ©(X,Y) is finite as
L™(X UY) is finite, for each n.

Definition 3.1 Let X and Y be finite sets of for-
mulas such that X = Y. The theory prime impli-

cate compilation of X with respect to'Y is defined by
Qy(X)=60(X,Y)UY.

Theorem 3.11 Qy (X) = X, i.e.,, O(X,Y)UY = X,
provided ©(X,Y) is finite.

Proof By Theorems 3.8 and 3.11, ©(X,Y)UY | X.
Conversely, let i be a model of X. Since X =Y (as
implicitly assumed in Definition 3.1), X entails each
clause obtained by taking consensus of any pair of
clauses from X UY, ie, X E L*(X UY). Thus,
X E ©(X,Y), again by Theorem 3.10, showing that
i EO(X,Y)UY. This implies X F ©(X,Y)UY. O

4. Computing Theory Prime Implicates

We compute the theory prime implicates © of a set
of formulas X with respect to Y by computing the
implicates of X UY. The latter computation uses
a resolution based prime implicate algorithm [KT90,
K192, RS02] and only the representatives of Y-logical
equivalent clauses are kept in the set ©.

Algorithm TPI

Input: X UY, set of clauses in X and YV
Output: O(X,Y), theory prime implicates of X with
respect to Y
begin
0:=XUY;
ifXUY : =0
0 =0;
else
Zo = ;
Z1 = (");
1:=1;
while Zz # Zi—l
do
compute L (Zy);
compute Z;y1;
1:=1+1;
od
0 :=Ziy;
endif
return O(X,Y);
end

In the above algorithm we compute the set of the-
ory prime implicates of X with respect to Y by com-
puting the prime implicates of XUY and keeping only
the Y-logical equivalent clauses in the set. We know
apart from the set of clauses Z;, that L‘(Z;) con-
tains the consensus CON of a pair of clauses from Z;.
Z;+1 contains the clauses remaining after discarding
the Y-logical consequence of CON. The algorithm
runs till L"(Z;) = Zp41 = L™1(Z;) holds. The set
L™(Z,) contains the set of theory prime implicates.
Note there is no guarantee that the algorithm really
terminates.

Theorem 4.1 The algorithm TPI correctly computes
the set of theory prime implicates of an SCNF for-
mula, provided it terminates.

Proof Let X UY be the given set of clauses. If
the set X UY is empty, then obviously there are no
theory prime implicates. If XUY is non-empty, assign
X UY to Z;. Then, L'(Z;) is computed. Those
clauses D of L'(Z;) will be discarded from the set
which are Y-logical consequences of the newly added
clauses CON to get Z» because anything derivable
from D can be derived from CON. By Theorems
34 and 3.11, L(Z,) C I(X UY). Similarly, L"(Z,)
is computed and for some m > n, L"™(Z,) = L™(Z1)
due to the assumption that TPI terminates. Hence all
the minimal elements of II(X UY") has been computed
in L™(Z1). So by Theorem 3.4, ©(X,Y) has been
computed. O

We remark that partial correctness of TPI is the best
possible. In fact any such algorithm can not be totally
correct due to the undecidability of first order logic.

5. Conclusion

In this paper, the notion of prime implicates is gen-
eralized to the theory prime implicates and an algo-
rithm for computing the theory prime implicates has
been discussed. The algorithm computes the set of
theory prime implicates ©(X,Y") of a knowledge base
X with respect another knowledge base Y. It is only
partially correct as its termination can not be guar-
anteed, in general.

Since the compilation takes a long time to obtain
0, it is desirable to ask queries at any time while
the compilation goes on. Though all the queries can
not be answered before the off-line computation is
completed, the possibility of answering the number

of queries increases. The off-line computation could
be avoided partially but how it can be done efficiently
is not yet known.

The size of the compilation is exponential in the
size of the original knowledge base. If we consider

Y = (), then the theory prime implicate compilation

coincides with the prime implicates compilation.

References

[CM92]

[K192]

[dV94]

[dV96]

[JP90]

[KT90]

[Mar95]

[Ng93]

Coudert, O. and Madre, J., Implicit and In-
cremental Computation of Primes and Es-
sential Primes of Boolean Functions, In Pro-
ceedings of the 29th ACM/IEEFE Design Au-
tomation Conferation, 36-39.

de Kleer, J., An Improved Incremental Al-
gorithm for Computing Prime Implicants. In
Proceedings of AAAI-92, San Jose, CA, 780—
785.

del Val, A., Tractable Databases: How to
Make Propositional Unit Resolution Com-
plete Through Compilation, In Proceedings
of the Fourth International Conference on
Principles of Knowledge Representation and
Reasoning, Bonn, 551-561.

del Val, A., Approximate Knowledge Com-
pilation: The First Order Case, AAAT’96, In
Proceedings of AAAI-96, Portland, Oregon,
498-503.

Jackson, P. and Pais, J., Computing Prime
Implicants, In Proceedings of the 10th In-
ternational Conference on Automated De-
duction, Kaiserslautern, Germany, July.
In Lecture Notes in Artificial Intelligence,
Springer-Verlag, Vol. 449, 543-557.

Kean, A., Tsiknis, G., An Incremental
Method for Generating Prime Implicants /
Implicates, J. of Symbolic Computation. 9,
185-206.

Marquis, P., Knowledge Compilation Using
Theory Prime Implicates. In Proceedings of
IJCAI 837-843.

Ngair, T., A New Algorithm for Incremental
Prime Implicate Generation. In Proceedings
of IJCAI-93, Chambery, France.

[RS02]

[SCL70]

[Str92]

[Tis67]

Raut, M. K. and Singh, A., Prime Impli-
cates of First Order Clauses, (communi-
cated).

Slagle, J. R., Chang C. L., Lee, R. C. T,
A New algorithm for Generating Prime Im-
plicants, IEEE trans. on Comp., C-19 (4),
304-310.

Strzemecki, T., Polynomial-time Algorithm
for Generation of Prime Implicants. Journal
of Complezity 8 , 37-63.

Tison, P., Generalized Consensus Theory
and Application to the Minimisation of
Boolean Functions, IEEE Trans. on FElec.
Comp, EC-16 (4), 446-456.

