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Abstract: - Database applications constitute one of the largest and most important software domains in the 
world. Some classes or modules in such applications are responsible for database operations. Structured Query 
Language (SQL) is used to communicate with database middleware in these classes or modules. It can be 
issued interactively or embedded in a host language. This paper aims to predict the software development 
faults in PL/SQL files using SQL metrics. Based on actual project defect data, the SQL metrics are empirically 
validated by analyzing their relationship with the probability of fault detection across PL/SQL files. SQL 
metrics were extracted from Oracle PL/SQL code of a warehouse management database application system. 
The faults were collected from the journal files that contain the documentation of all changes in source files. 
The result demonstrates that these measures may be useful in predicting the fault concerning with database 
accesses. In our study, genetic net is used to evaluate the capability of this set of SQL metrics in predicting the 
number of faults in database applications. This genetic net combines a genetic algorithm with a statistical 
estimator to produce a model which also shows the usefulness of respective inputs. 
 
Key-Words: - SQL Metrics, Software Prediction, Genetic Net, Software Metrics 
 
1   Introduction 
Software metrics have been used as a quantitative 
means of assessing software development process as 
well as the quality of software products. Many 
researchers have studied the correlation between 
software design metrics and the likelihood of 
occurrence of software faults. They classified the 
software modules (or classes) as fault-prone or non-
fault-prone modules (or classes) and predicted the 
number of faults in modules (or classes) using 
various software metrics [1..14].  
     Although database applications are essential to 
every organization, studies on product measures for 
static database operation statements are rarely found 
in literature. SQL is the standard language for 
relational database management systems. The 
relationship between the fault occurrence for 
database applications and SQL metrics is studied in 
this paper. We defined SQL metrics that have strong 
relationship with faults and then performed 
empirical validation for these metrics. 
     In our study, we analyzed the fault reports of 
development projects involving database 
applications using PL/SQL code and found that 
faults are related to the number of SQL statements 
and the complexity of SQL statements. SQL 
commands are mainly composed in the PL/SQL files 

to perform database operations. SQL complexity can 
be measured using product metrics such as the 
number of sub-queries: the number of group-by 
clause.  
     A variety of statistical techniques are used in 
software quality modeling. Models are often based 
on statistical relationships between measures of 
quality and measures of software metrics. However, 
relationships between static software metrics and 
quality factors are often complex and nonlinear, 
limiting the accuracy of conventional approaches.  
Artificial neural networks and genetic training 
strategy are adept at modeling nonlinear functional 
relationships that are difficult to model with other 
techniques, and thus, are attractive for software 
quality modeling. We introduce using neural 
network model with genetic training strategy to 
improve prediction results for estimating faults in 
PL/SQL codes using SQL metrics in this study. 
 
 
2   SQL Metrics 
Database applications constitute one of the largest 
and most important software domains in the world. 
Some classes or modules in those applications are 
responsible for handling database accesses. We 
analyzed the fault reports of these classes or 



modules and found that faults are related to the 
number of SQL statements, which are invoked from 
a class or module; and the complexity of SQL 
statements. For example, retrieving wrong database 
records. In such cases developers need to check and 
modify the corresponding SQL statements to correct 
the error. To be able to predict the number of such 
faults for these classes or modules are very 
important in developing database applications. 
     The following SQL metrics are defined and used 
in this study. Metrics having weak relationships with 
fault occurrences, such as Data Definition Language 
(DDL) commands and Data Control Language 
(DCL) commands are omitted in this study. 
 
Total number of select commands (TNSC) 
It measures the total number of select commands 
used in a class or a module. Select command is an 
executable command that can be issued interactively 
or embedded in a host language.  
 
Total number of insert/update operations 
(TNIUO) 
It measures the total number of invocation of 
insert/update operations in a class or module.  
 
Total number of delete operations (TNDO) 
It measures the total number of invocation of delete 
operations in a class or module.  
 
Average number of search condition criteria in 
where-clause (ANSC) 
Most relational database queries retrieve only a 
portion of the records contained in a table. The 
where-clause qualifies the query command 
statement to limit the data retrieved to specific rows 
in the table. It is generally used with a select 
statement to specify search criteria for retrieving 
rows of data from a table or group of tables. The 
where-clause can also appear in delete and update 
command statements. A predicate states selection 
criteria, which is applied to each row of data values 
in the table being queried by the select statement. 
The number of selection criteria is directly co-
related to the complexity of SQL statement.  

 
Total number of sub-queries (TNSQ) 
A sub-query consists of two or more ordinary 
queries nested in such a way that the results of each 
inner query are used in the comparison test for the 
selection clause of the next outer query (or another 
command statement). We have found this metric is 
very important to measure the complexity of SQL 
statements.  

 

Total number of group-by-clause (TNGB) 
When a query statement includes a group-by clause, 
the select-clause for that query may list one or more 
aggregate functions (SUM, COUNT, AVG, etc.) 
operating on groups of data values in other columns. 
The group-by clause contains a column-list 
argument that must include all simple column names 
that appear in the select-clause. Simple column 
names are called grouping columns, since they 
group together records with identical data in that 
column. This record grouping allows mathematical 
operations to be performed on the other columns 
specified as arguments in the aggregate functions. 
Records can also be grouped by any valid 
expression appearing in the select-clause argument. 
In these cases, the expression must also be 
referenced in the group-by-clause by a number 
representing its relative column position in the 
select-clause (or output result). This metric counts 
the total number of select statements containing 
group-by-clause invoked from a particular 
application class. 
 
 
3   Research Design 
We use genetic training strategy of NeuroShell 
Predictor in this study. The genetic net combines a 
genetic algorithm with a statistical estimator to 
produce a model which also shows the usefulness of 
respective input variables.  Genetic algorithms 
(GAs) seek to solve optimization problems using the 
methods of evolution, specifically, survival of the 
fittest.  The functioning of the genetic estimator is 
based upon General Regression Neural Net (GRNN) 
[17].  Genetic learning stores every set of inputs and 
related output in the training data.  When the neural 
network is presented with a new set of inputs, the 
new inputs are compared to every set of stored 
inputs.  Depending upon how close the match is, the 
output for each training row is weighted.  Closer 
matches receive higher weights, and inputs that are 
farther away from the training inputs receive lower 
weights.  The predicted output for the new set of 
inputs is a “weighted” average of all of the outputs 
with which the network was trained. 
 
 
3.1 Data collection 
We collected the experiment data from a set of 
warehouse management applications (WMA) that 
was developed using C, JAM and PL/SQL 
languages. This set of applications has more than a 
thousand source files of C, JAM and PL/SQL codes 
and uses Oracle database. The warehouse system 



has been customized and used by many companies. 
Faults were collected from the journal files that 
contain the documentation of all changes in source 
files such as status of module, start date, end date, 
developer, nature of changes, etc. Data on software 
metrics were extracted from 103 PL/SQL files of the 
above mentioned warehouse application using 
metric extraction tool that we developed using 
VC++ incorporating MKS LEX & YACC utilities as 
embedded language.  
 
 
3.2 Experiment 
We used data collected from warehouse application 
system for prediction of software development 
faults. We extracted six software metrics from 103 
pl/SQL files. It contains TNSC, TNDO, TNIUO, 
TNGB, TNSQ and ANSC metrics as described in 
Section 2. The dependent variable was the number 
of faults and the independent variables were the six 
software metrics. First, each data pattern was 
examined for erroneous entries, outliers, blank 
entries and redundancy. We set a threshold value 
1000 for maximum number of generations without 
improvement. After performing 1621 generations, 
we arrived at the optimized coefficient of multiple 
determination (R-square) value of 0.737046.  
     To measure the goodness of fit of the model, we 
use the coefficient of multiple determination (R-
square), the coefficient of correlation(r), mean 
square error (MSE) and root mean square error 
(RMSE). These statistical measures are shown in 
Table 1. The correlation of the predicted change and 
the observed change is represented by the coefficient 
of correlation (r). An r value of 0.860836 represents 
high correlations for cross-validation. The number 
of observations is 103. The significance level of a 
cross-validation is indicated by a p value. A 
commonly accepted p value is 0.05. In our 
experiment, a two tailed probability p value is less 
than 0.0001. This shows a high degree of confidence 
for the successful validations. The results clearly 
indicate close relationship between SQL metrics 
(independent variables) and the predicted number of 
faults (dependent variable).  A graphical 
representation comparing the actual versus predicted 
number of faults in the warehouse application 
system is shown in Appendix A. 
     Table 2 shows the relative importance of input 
variables, i.e. the selected SQL metrics. It displays a 
list of input metrics and a corresponding number 
which indicates the importance of the variable in 
predicting the output.  The Relative Importance of 
Inputs values signify the importance of the 
variables.  The weight value ranges from 0 to 1.  

Weights near 0 signify the least important variables, 
while weights near 1 signify the most important. The 
genetic method gives more precise “importance” 
factors than what a pure neural network method 
does. The Genetic Training Strategy uses a “genetic 
algorithm” or survival of the fittest technique to 
determine a weighting scheme for the inputs.  The 
genetic algorithm tests many weighting schemes 
until it finds the one that gives the best predictions 
for the training data. 
 

Table 1. Experimental result for 
WMA system 

R-square 0.737046 
r (correlation coefficient) 0.860836 
Avg error 0.266629 
MSE 0.190009 
RMSE 0.4359 
t values 17.00059 
p values <0.0001 

 
Table 2. Relative importance of 

Data Access Tier metrics for WMA 
system 

Metrics the relative 
importance 

TNSQ 0.369    
ANSC 0.185 
TNGB 0.159 
TNIUO 0.155 
TNSC 0.129 
TNDO 0.004 

 
     Table 2 clearly indicates that the total number of 
sub-queries is the most important factor in 
increasing the complexity of SQL statements. 
 
 
4. Conclusions 
We studied the relationship between fault 
occurrence for database applications and SQL 
metrics. First we proposed SQL metrics that have 
strong relationship with faults and then performed 
empirical validation for these metrics. We analyzed 
the fault reports kept by project teams of database 
applications using PL/SQL code and found that 
faults are related to the number of SQL statements 
and the complexity of SQL statements. The 
relationship between fault occurrences for database 
applications and SQL metrics has been empirically 
validated in this study. From the results presented 
above, our proposed SQL metrics in this study 



appear to be useful in predicting faults in PL/SQL 
files. 
     This empirical study has presented the prediction 
of the number of faults in PL/SQL files using 
genetic training strategy. The Genetic Training 
Strategy uses a “genetic algorithm” or survival of 
the fittest technique to determine a weighting 
scheme for the inputs. The genetic algorithm tests 
many weighting schemes until it finds the one that 
gives the best predictions for the training data. We 
collected 103 data patterns from the warehouse 
management system. For that number of patterns, 
the genetic training method is much better because 
the genetic method uses a "one hold out" strategy 
both during training and afterwards when evaluating 
new data [19]. Moreover, the genetic method 
generally gives more reliable importance factors 
than the neural method does [18]. 
     These findings paved the way for future research 
into using genetic network for predicting software 
maintainability. In addition, our research results also 
provide a new avenue for software project manger to 
determine the readiness of software under 
development. 
 
 
5. Future Plan 
We intend to extend this investigation with wide 
range of applications and various types of data 
access techniques. Our future research direction 
aims to estimate software readiness by using metrics 
for defect tracking. To estimate readiness, three 
factors will be considered in our future study: (1) 
how many faults are remaining in the programs (2) 
how many changes are required to correct the errors 
and (3) how much time is required in changing the 
programs. Software metrics concerning with 
polymorphism, inheritance, complexity, cohesion, 
coupling, dynamic memory allocation, SQL and size 
will be used. 
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