
Prediction of Software Development Faults in PL/SQL Files using
Genetic Nets

TONG-SENG QUAH, MIE MIE THET THWIN
School of Electrical & Electronic Engineering

Nanyang Technological University
S2-B2c-84, EEE, NTU, 639798

SINGAPORE

Abstract: - Database applications constitute one of the largest and most important software domains in the
world. Some classes or modules in such applications are responsible for database operations. Structured Query
Language (SQL) is used to communicate with database middleware in these classes or modules. It can be
issued interactively or embedded in a host language. This paper aims to predict the software development
faults in PL/SQL files using SQL metrics. Based on actual project defect data, the SQL metrics are empirically
validated by analyzing their relationship with the probability of fault detection across PL/SQL files. SQL
metrics were extracted from Oracle PL/SQL code of a warehouse management database application system.
The faults were collected from the journal files that contain the documentation of all changes in source files.
The result demonstrates that these measures may be useful in predicting the fault concerning with database
accesses. In our study, genetic net is used to evaluate the capability of this set of SQL metrics in predicting the
number of faults in database applications. This genetic net combines a genetic algorithm with a statistical
estimator to produce a model which also shows the usefulness of respective inputs.

Key-Words: - SQL Metrics, Software Prediction, Genetic Net, Software Metrics

1 Introduction
Software metrics have been used as a quantitative
means of assessing software development process as
well as the quality of software products. Many
researchers have studied the correlation between
software design metrics and the likelihood of
occurrence of software faults. They classified the
software modules (or classes) as fault-prone or non-
fault-prone modules (or classes) and predicted the
number of faults in modules (or classes) using
various software metrics [1..14].
 Although database applications are essential to
every organization, studies on product measures for
static database operation statements are rarely found
in literature. SQL is the standard language for
relational database management systems. The
relationship between the fault occurrence for
database applications and SQL metrics is studied in
this paper. We defined SQL metrics that have strong
relationship with faults and then performed
empirical validation for these metrics.
 In our study, we analyzed the fault reports of
development projects involving database
applications using PL/SQL code and found that
faults are related to the number of SQL statements
and the complexity of SQL statements. SQL
commands are mainly composed in the PL/SQL files

to perform database operations. SQL complexity can
be measured using product metrics such as the
number of sub-queries: the number of group-by
clause.
 A variety of statistical techniques are used in
software quality modeling. Models are often based
on statistical relationships between measures of
quality and measures of software metrics. However,
relationships between static software metrics and
quality factors are often complex and nonlinear,
limiting the accuracy of conventional approaches.
Artificial neural networks and genetic training
strategy are adept at modeling nonlinear functional
relationships that are difficult to model with other
techniques, and thus, are attractive for software
quality modeling. We introduce using neural
network model with genetic training strategy to
improve prediction results for estimating faults in
PL/SQL codes using SQL metrics in this study.

2 SQL Metrics
Database applications constitute one of the largest
and most important software domains in the world.
Some classes or modules in those applications are
responsible for handling database accesses. We
analyzed the fault reports of these classes or

modules and found that faults are related to the
number of SQL statements, which are invoked from
a class or module; and the complexity of SQL
statements. For example, retrieving wrong database
records. In such cases developers need to check and
modify the corresponding SQL statements to correct
the error. To be able to predict the number of such
faults for these classes or modules are very
important in developing database applications.
 The following SQL metrics are defined and used
in this study. Metrics having weak relationships with
fault occurrences, such as Data Definition Language
(DDL) commands and Data Control Language
(DCL) commands are omitted in this study.

Total number of select commands (TNSC)
It measures the total number of select commands
used in a class or a module. Select command is an
executable command that can be issued interactively
or embedded in a host language.

Total number of insert/update operations
(TNIUO)
It measures the total number of invocation of
insert/update operations in a class or module.

Total number of delete operations (TNDO)
It measures the total number of invocation of delete
operations in a class or module.

Average number of search condition criteria in
where-clause (ANSC)
Most relational database queries retrieve only a
portion of the records contained in a table. The
where-clause qualifies the query command
statement to limit the data retrieved to specific rows
in the table. It is generally used with a select
statement to specify search criteria for retrieving
rows of data from a table or group of tables. The
where-clause can also appear in delete and update
command statements. A predicate states selection
criteria, which is applied to each row of data values
in the table being queried by the select statement.
The number of selection criteria is directly co-
related to the complexity of SQL statement.

Total number of sub-queries (TNSQ)
A sub-query consists of two or more ordinary
queries nested in such a way that the results of each
inner query are used in the comparison test for the
selection clause of the next outer query (or another
command statement). We have found this metric is
very important to measure the complexity of SQL
statements.

Total number of group-by-clause (TNGB)
When a query statement includes a group-by clause,
the select-clause for that query may list one or more
aggregate functions (SUM, COUNT, AVG, etc.)
operating on groups of data values in other columns.
The group-by clause contains a column-list
argument that must include all simple column names
that appear in the select-clause. Simple column
names are called grouping columns, since they
group together records with identical data in that
column. This record grouping allows mathematical
operations to be performed on the other columns
specified as arguments in the aggregate functions.
Records can also be grouped by any valid
expression appearing in the select-clause argument.
In these cases, the expression must also be
referenced in the group-by-clause by a number
representing its relative column position in the
select-clause (or output result). This metric counts
the total number of select statements containing
group-by-clause invoked from a particular
application class.

3 Research Design
We use genetic training strategy of NeuroShell
Predictor in this study. The genetic net combines a
genetic algorithm with a statistical estimator to
produce a model which also shows the usefulness of
respective input variables. Genetic algorithms
(GAs) seek to solve optimization problems using the
methods of evolution, specifically, survival of the
fittest. The functioning of the genetic estimator is
based upon General Regression Neural Net (GRNN)
[17]. Genetic learning stores every set of inputs and
related output in the training data. When the neural
network is presented with a new set of inputs, the
new inputs are compared to every set of stored
inputs. Depending upon how close the match is, the
output for each training row is weighted. Closer
matches receive higher weights, and inputs that are
farther away from the training inputs receive lower
weights. The predicted output for the new set of
inputs is a “weighted” average of all of the outputs
with which the network was trained.

3.1 Data collection
We collected the experiment data from a set of
warehouse management applications (WMA) that
was developed using C, JAM and PL/SQL
languages. This set of applications has more than a
thousand source files of C, JAM and PL/SQL codes
and uses Oracle database. The warehouse system

has been customized and used by many companies.
Faults were collected from the journal files that
contain the documentation of all changes in source
files such as status of module, start date, end date,
developer, nature of changes, etc. Data on software
metrics were extracted from 103 PL/SQL files of the
above mentioned warehouse application using
metric extraction tool that we developed using
VC++ incorporating MKS LEX & YACC utilities as
embedded language.

3.2 Experiment
We used data collected from warehouse application
system for prediction of software development
faults. We extracted six software metrics from 103
pl/SQL files. It contains TNSC, TNDO, TNIUO,
TNGB, TNSQ and ANSC metrics as described in
Section 2. The dependent variable was the number
of faults and the independent variables were the six
software metrics. First, each data pattern was
examined for erroneous entries, outliers, blank
entries and redundancy. We set a threshold value
1000 for maximum number of generations without
improvement. After performing 1621 generations,
we arrived at the optimized coefficient of multiple
determination (R-square) value of 0.737046.
 To measure the goodness of fit of the model, we
use the coefficient of multiple determination (R-
square), the coefficient of correlation(r), mean
square error (MSE) and root mean square error
(RMSE). These statistical measures are shown in
Table 1. The correlation of the predicted change and
the observed change is represented by the coefficient
of correlation (r). An r value of 0.860836 represents
high correlations for cross-validation. The number
of observations is 103. The significance level of a
cross-validation is indicated by a p value. A
commonly accepted p value is 0.05. In our
experiment, a two tailed probability p value is less
than 0.0001. This shows a high degree of confidence
for the successful validations. The results clearly
indicate close relationship between SQL metrics
(independent variables) and the predicted number of
faults (dependent variable). A graphical
representation comparing the actual versus predicted
number of faults in the warehouse application
system is shown in Appendix A.
 Table 2 shows the relative importance of input
variables, i.e. the selected SQL metrics. It displays a
list of input metrics and a corresponding number
which indicates the importance of the variable in
predicting the output. The Relative Importance of
Inputs values signify the importance of the
variables. The weight value ranges from 0 to 1.

Weights near 0 signify the least important variables,
while weights near 1 signify the most important. The
genetic method gives more precise “importance”
factors than what a pure neural network method
does. The Genetic Training Strategy uses a “genetic
algorithm” or survival of the fittest technique to
determine a weighting scheme for the inputs. The
genetic algorithm tests many weighting schemes
until it finds the one that gives the best predictions
for the training data.

Table 1. Experimental result for
WMA system

R-square 0.737046
r (correlation coefficient) 0.860836
Avg error 0.266629
MSE 0.190009
RMSE 0.4359
t values 17.00059
p values <0.0001

Table 2. Relative importance of

Data Access Tier metrics for WMA
system

Metrics the relative
importance

TNSQ 0.369
ANSC 0.185
TNGB 0.159
TNIUO 0.155
TNSC 0.129
TNDO 0.004

 Table 2 clearly indicates that the total number of
sub-queries is the most important factor in
increasing the complexity of SQL statements.

4. Conclusions
We studied the relationship between fault
occurrence for database applications and SQL
metrics. First we proposed SQL metrics that have
strong relationship with faults and then performed
empirical validation for these metrics. We analyzed
the fault reports kept by project teams of database
applications using PL/SQL code and found that
faults are related to the number of SQL statements
and the complexity of SQL statements. The
relationship between fault occurrences for database
applications and SQL metrics has been empirically
validated in this study. From the results presented
above, our proposed SQL metrics in this study

appear to be useful in predicting faults in PL/SQL
files.
 This empirical study has presented the prediction
of the number of faults in PL/SQL files using
genetic training strategy. The Genetic Training
Strategy uses a “genetic algorithm” or survival of
the fittest technique to determine a weighting
scheme for the inputs. The genetic algorithm tests
many weighting schemes until it finds the one that
gives the best predictions for the training data. We
collected 103 data patterns from the warehouse
management system. For that number of patterns,
the genetic training method is much better because
the genetic method uses a "one hold out" strategy
both during training and afterwards when evaluating
new data [19]. Moreover, the genetic method
generally gives more reliable importance factors
than the neural method does [18].
 These findings paved the way for future research
into using genetic network for predicting software
maintainability. In addition, our research results also
provide a new avenue for software project manger to
determine the readiness of software under
development.

5. Future Plan
We intend to extend this investigation with wide
range of applications and various types of data
access techniques. Our future research direction
aims to estimate software readiness by using metrics
for defect tracking. To estimate readiness, three
factors will be considered in our future study: (1)
how many faults are remaining in the programs (2)
how many changes are required to correct the errors
and (3) how much time is required in changing the
programs. Software metrics concerning with
polymorphism, inheritance, complexity, cohesion,
coupling, dynamic memory allocation, SQL and size
will be used.

6. Acknowledgement
We gratefully acknowledged CAIB GmbH,
Murrhardt, Germany for providing us with the
software development data used in our research.

References:
[1] A. Mounir Boukadoum, Houari A. Sahraoui and

Hakim Lounis, Machine Learning Approach to
Predict Software Evolvabilit using fuzzy binary
trees, International Conference on Artificial
Intelligence, 2001

[2] L.C. Briand, W.L Melo, J. Wust, Assessing the
applicability of fault-proneness models across
object-oriented software projects, IEEE
Transactions on Software Engineering, Vol. 28,
2002, pp. 706 –720.

[3] El Emam, A primer on object-oriented
measurement, Proceedings of the Seventh
International Software Metrics Symposium,
2001, pp. 185 –187.

[4] El Emam, W. Melo, C.M. Javam, The Prediction
of Faulty Classes Using Object-Oriented Design
Metrics, Journal of Systems and Software, Vol.
56, issue 1, 2001, pp. 63-75.

[5] N.E. Fenton and N. Ohlsson, Quantitative
analysis of faults and failures in a complex
software system, IEEE Transactions on Software
Engineering, Vol. 26, 2000, pp. 797-814.

[6] F. Fioravanti, P. Nesi, A study on fault-
proneness detection of object-oriented systems,
Fifth European Conference on Software
Maintenance and Reengineering, 2001, pp. 121
–130, 2001

[7] John E. Frenund, Frank J. Williams., Benjamin
M. Perles, The Elementary Business Statistics-
The Modern Approach, Prentice-Hill, 1993

[8] Todd L. Graves, Alan F. Karr, J.S. Marron, and
Harvey Siy, Predicting Fault Incidence Using
Software Change History, IEEE Transactions on
Software Engineering, Vol. 26, No. 7, 2000, pp.
653-661.

[9] T. M. Khoshgoftaar, E.B. Allen, Z. Xu,
Predicting testability of program modules using a
neural network, Proceedings of the 3rd IEEE
Symposium on Application-Specific Systems and
Software Engineering Technology, 2000, pp. 57-
62.

[10] Thet Thwin Mie Mie, Jon T.S. Quah,
Application of Neural Network for Predicting
Software Development Faults Using Object-
Oriented Design Metrics, Proceedings of the 9th
International Conference on Neural Information
Processing, 2002, Singapore

[11] Thet Thwin Mie Mie, Tong-Seng Quah,
Application of Neural Networks for Estimating
Software Maintainability Using Object-Oriented
Metrics, Proceedings of the 15th International
Conference on Software Engineering and
Knowledge Engineering, 2003, pp. 69-73, San
Francisco, U.S.A

 [12] Jon T.S. Quah, Mie Mie Thet Thwin,
Prediction of Software Readiness Using Neural
Network, Proceedings of the IEEE International
Conference on Information Technology and
Applications, 2002, Sydney, Australia

 [13] Tong-Seng Quah, Mie Mie Thet Thwin,
Application of Neural Networks for Software
Quality Prediction Using Object-Oriented
Metrics, Proceedings of the International
Conference on Software Maintenance, 2003,
Amsterdam, The Netherlands

 [14] Tong-Seng Quah, Mie Mie Thet Thwin,
Prediction of Software Development Faults in
PL/SQL Files Using Neural Network Models,
Information and Software Technology, Vol. 46
No. 8, 2004, pp 519-523.

[15] Ramarkrishnan, Gehrke, Database
Management Systems, McGRAW-Hill, 3rd
Edition, 2003.

[16] Frenund, John E., Williams, Frank J., Perles
Benjamin M., The Elementary Business
Statistics- The Modern Approach, Prince-Hill,
1993

[17] D.F, Specht, A general regression neural
network, IEEE Transactions on Neural
Networks, Vol. 2, Issue: 6, 1991, pp. 568-576.

[18] C.H. Chen, Fuzzy Logic and Neural Network
Handbook, New York, N.Y.: McGraw-Hill, Inc.,
1996

[19] NeuroShell Predictor Help, Ward Systms
Group, Inc. http://www.wardsystems.com

Appendix A

Prediction of software development faults for the WMS system

0

1

2

3

4

5

6

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100 103

Pattern No.

N
o.

 o
f f

au
lts

Actual Predicted

