
AMDiS - Adaptive multidimensional simulations:
object oriented software concepts for scientific computing

SIMON VEY, AXEL VOIGT
Crystal Growth Group
Research Center caesar

Ludwig-Erhard-Allee 2, 53175 Bonn
GERMANY

Abstract:We describe the basic ideas and ingredients of adaptive FEM and their implementation in our software
toolbox AMDiS. This software is primarily developed to solve realistic computations in materials science.
The design of AMDiS is based on a natural hierarchy of locally refined meshes and an abstract concept of
general finite element spaces which is combined with an object oriented data structure. In this way dimension
independent programming is possible and complex applications can be implemented on an abstract level,
keeping the numerical issues away from the user.

Key-Words:Finite element method, adaptivity, scientific software concepts.

1 Introduction
The finite element method is one of the main tools
for numerical simulations of partial differential equa-
tions. Over the past decades, some very efficient tech-
niques for finite elements have been developed which
today provide more and more tools for the efficient
solution of large scale applications. Adaptivity is one
of these techniques and can be used to increase effi-
ciency by local mesh refinement and/or using locally
higher order elements, where applicable. Combining
this with unstructured grids and fast solvers for the
systems of linear equations make it today feasible to
solve multi-scale problems in various fields of mate-
rials science, not only including the classical fields of
elasticity and fluid dynamics but also microstructure
evolution and thin film growth.

An adaptive finite element method adjusts the tri-
angulation and/or the polynomial degree to the solu-
tion of the problem. Thereby adaptivity is based on
information extracted from a posteriori error estima-
tors. These error estimates are computable estimates
for the error between the true solution and the finite
element approximation and they are built up from lo-
cal error indicators. An adaptive method is driven by
such estimators and tries to optimize the mesh and/or
the order of the elements by equidistributing the lo-
cal indicator value over all elements [1], under the
constraint that the estimate is below a given toler-
ance, which results in meshes and/or basis functions,

which are highly refined and/or have high polynomial
degrees only where really needed. The core part of
every finite element program is the problem depen-
dent assembly and solution of the discrete problem.
Because this is also the most time consuming part, a
general finite element software has to handle this part
efficiently but on the other hand must provide enough
flexibility in problems and finite element spaces to
solve a wide class of partial differential equations.
Therefore the combination of different spaces, differ-
ent meshes and even different dimensions might be
necessary but should be kept away from the user and
handled by optimized library functions.

In this paper we describe the design of our adap-
tive finite element software AMDiS. The used data
structures allow an implementation of the problem
dependent part, that does not depend on the actual
chosen local function space and the dimension. The
concepts used are similar to the software in [2] but ex-
tend the ideas by adding an object oriented software
design, an efficient memory management system, a
problem oriented data structure and an abstract defi-
nition of the partial differential equation based on its
variational formulation.

2 Software design
In this section we describe the overall software de-
sign of AMDiS and some of its components in more

data structures algorithmic modules

utilities

operator

DOF vectors

DOF matrices

triangulation

basis functions

elements

memory managment

I/O−modules

visualisation

DOF administration

assembler

estimator

solver

adaption module
problem

mesh traversal

−adaptive strategies
−mesh coarsening
−mesh refinement

Fig.1: Main components of AMDiS

solve estimate

adaptnot
[tolerance

reached]

[tolerance
reached]

approx. solutionlin. system

adapted mesh

build

error estimates

pre−
processing

post−
processing

Fig.2: Adaption loop of a stationary problem

detail. A widely spread and quasi-standard way to
describe object oriented design is the use of theUni-
fied Modeling Language(UML) specified by theOb-
ject Management Group(OMG). For that reason, we
use UML as well to illustrate the design of AMDiS
components. In Figure 3 the used UML concepts are
shown. For a closer look to UML see [3].

AMDiS is written in C++ (see [4]) in an object
oriented manner. The main objectives in the develop-
ment of AMDiS are

• high level of abstractionthat allows a fast and di-
mension independent problem formulation keeping
the numerical issues away from the user,

• generality and extensibilityto enable the software
to solve a large class of problems which might be
coupled even over different dimensions,

• efficient implementation which permits to do the
needed calculations in an minimal effort of time.

These are controversial goals in some aspects so only
an useful tradeoff can be found. We tried to find this

tradeoff by using well proven algorithms from com-
putational science embedded in object oriented de-
sign patterns, which lead to a flexible and reusable
software. A catalog of the most established design
patterns is given in [5].

Figure 1 shows the main components of AMDiS
divided in data structures holding needed and calcu-
lated probem data, algorithmic modules responsible
for all computations, and utilities like memory man-
agement or pre- and postprocessing. To be solved the
problem takes the center stage of the software, so to
say it contains all needed information to solve itself.

In Figure 2 the main steps of solving a station-
ary problem are shown. In the preprocessing step
the problem formulation and the initial triangulation
are created and the problem parameters are choosen.
Depending on these informations the system matrix
and system vectors are assembled by assemblers opti-
mized for this problem. The created system is solved
by a specified solver and than local error indicators
on each element are calculated, using a-posteriori er-
ror estimators based on residual techniques. If the
sum of all local error indicators exceeds a given er-

class: activity diagram:generalization: SuperType

SubType1 SubType2

templates:

member = val

role B
role A

dependency:

association:

Class A Class B

aggregation: Class A Class B

Class A Class B

*

m..n

many (zero or more)

multiplicities:

n
exactly n

between m and n

ClassName

ClassName

Class A

Class A

Class A Class B

Class B

Class B

start

activity

activity activity

end

[condition] [else]

instance diagram:

instanceName : className

T

Fig.3: Used UML concepts

child

21

*

0..1

macroElements

leafData−
Prototype

leafData

elementPrototype 1
1

*

triangulation module
0..n

LeafData−
Coarsenable

LeafData

Mesh

Boundary

MacroElement

TetrahedronTriangleLine

Element

Fig.4: Class diagram of the triangulation module

ror tolerance the mesh is refined and/or local function
spaces are adapted on those elements with the largest
local error estimates. This build-solve-estimate-adapt
loop is repeated until the error tolerance is reached.
In the postprocessing step the calculated solution can
be visualized.

2.1 Problem classes
As mentioned above the problem classes are the cen-
tral buildings blocks of the AMDiS library and the
main interface to the user. AMDiS contains two dif-
ferent problem base classes. One for stationary and
one for instationary problems. To illustrate the de-
sign principles of the software, we focus on the de-
scription of the stationary problem in this paper. To
reach a high level of abstraction as well as a high de-
gree of generality the stationary problem is initially
described by an interface at the highest abstraction
level used for the simulation: the adaption loop. This
means that it has the ability to assemble its system
matrices and vectors, to solve the resulting equation
system, to estimate the local errors, and to adapt the
used discretisation. On this level nothing is known
about the data structures or the algorithms used for
the single steps. This design leads to a high flexibility
and minimizes dependencies between different parts
of the software which in turn leads to a high reusabil-
ity and extensability. To create a concrete problem
one has to derive a sub class fromProblemStatBase
and override its pure virtual methods. To fill them
with functionality, many tools are provided by the li-
brary. Some of this tools are described in the next
subsections.

2.2 Operator classes
TheOperator class is used for the problem formula-
tion in AMDiS. You can give one or several operators

to a DOFVector or a DOFMatrix (which describe
the equation system) and give them the information
how to assemble itself. To do this assemblage, for
every operator a specificAssemblerwill be created,
which is optimized for the specialneedsandproper-
ties of this operator. One operator can contain sev-
eral OperatorTerms, which can be of second, first,
or zero order. An example for the use of operators
can be seen in section 3.

2.3 Triangulation
The domain, the problem is defined on, is discretized
by simplices. So a one dimensional mesh consists
of lines, a two dimensional mesh consists of trian-
gles, and a three dimensional mesh consists of tetra-
hedrons.

Even if it is in principle possible to approxi-
mate complex domains with simplicial meshes, it is
the most time consuming part in many applications.
Therefore the concept of composite finite elements
described in [6] is implemented in AMDiS. This al-
lows the approximation of complex domains with-
out explicitly discretizing it. In AMDiS the mesh is
stored in a hierarchical way. Starting from a coarse
macro triangulation, the mesh can be refined locally
by element bisection. The two new created elements
are stored aschildren of the bisected element. So a
binary tree arises. To store this hierarchical structure,
instead of storing just a linked list of elements, allows
to store many element information only on the macro
elements. Furthermore it can be utilized by the neigh-
bourhood search and the coarsening algorithm, and it
is the natural structure for multigrid solvers.

In Figure 4 you see the class diagram of the tri-
angulation module. AMesh contains prototypes of
ElementandLeafData objects, which can be cloned
while refinement, to create new elements and leaf
data when needed. Furthermore it contains a list of

leaf
Data

−

leaf
Data

−

leaf
Data

−

leaf
Data

−

leaf
Data

−

2

3

52

3 4

5

6

7

0 1

: Boundary : Boundary

: Boundary: Boundary

: LeafData

: LeafData

: LeafData

: LeafData

: LeafData

: Triangle

: Triangle

: Triangle

: Triangle

: Triangle

: Triangle

: Triangle

: Triangle
: LeafData

myMesh : Mesh

element

element index = 1

index = 2

index = 3

index = 4

index = 5

index = 6

index = 7

child[1]

child[0]

child[0]

child[0]

: MacroElement

: MacroElement
macroElements[1]

macroElements[0]

boundary[1]boundary[0]

boundary[1]boundary[0]

index = 0

2 20 1

0

1 0

1

: Triangle

elementPrototype

leafDataPrototype

child[1]

child[1]

Fig.5: Instance diagram of a refined two dimensional mesh

MacroElementswhich represents the macro triangu-
lation, and each macro element stores the needed el-
ement information, including a pointer to the core-
sponding element and aBoundary object for each
side of the macro element that lies at a boundary.

To illustrate these concepts, Figure 5 shows an
instance diagram of a simple two dimensional mesh
with some local refinement.

2.4 Adaption module
Adaptivity optimizes the discretisation of the prob-
lem by heuristic arguments. The discretization can
be adapted in different ways. One possibility is to
refine elements on which a high error is estimated (h-
method), another method is to increase the dimension
of local function spaces used for the approximation
(p-method), or a combination of both methods (h-p-
method). In AMDiS adaption is realized only by ele-
ment refinement at the moment, but implementations
of p- andh-p-methods are likely to be included in fu-
ture versions.

In AMDiS the refinement and coarsening algo-
rithms are realized by thevisitor pattern. This pat-
tern encapsulates an operation that has to be applied
to many objects of an data structure in an own object:
the visitor. This enables a clean seperation between
data and operations and leads to a clearer and more
flexibile software design. In our case the data struc-
ture is the mesh containing the elements as its objects

and the visitors are theRefinementManagerand the
CoarseningManager.

To solve a stationary problem, usually it is not
enough to adapt the mesh once to reach the error toler-
ance. The classAdaptStationary contains the whole
adaption loop for stationary problems, including the
assemblage of the linear system, solving this system,
estimating the local errors, and finally marking and
refining the elements.

Refinement algorithm: In AMDiS the mesh re-
finement is done by bisection of its simplicial ele-
ments, by cutting the element at the midpoint of a
given refinement edge in two child elements. Every
simplex can only be refined at its specified refinement
edge, to avoid irregular elements. A local vertex num-
bering enables the determination of the refinement
edge: its always the edge that connects the local ver-
tices 0 and 1. In three dimensions there exist three
element types which differ by the vertex numbering
of their children. The element type of a child element
can be determined by the formula (parent’s type + 1)
modulo 3.

In order to avoid hanging nodes, neighbour ele-
ments that share the refinement edge with the bisected
element have to be refined, too. So, an edge can only
be refined, if it is the refinement edge for all neigh-
bours sharing this edge. If elements in the refinement
patch don’t satisfy this condition, they are refined re-
cursively, until the original refinement can be done.

at refinement edge
collect all elements

refine all elements
at refinement edge

[else]

elem2 =

divisible element

recursiveRefine(elem)

recursiveRefine(elem2)

first not compatibly

[all elements compatibly divisible]

Fig.6: Recursive refinement algorithm and an example in
2d

remove all involved
child pairs

marked for coarsening]
[all involved elements

collect all involved
child pairs

[else]

coarsen(elem)

Fig.7: The coarsening algorithm and an
example in 2d

In Figure 6 the recursive refinement algorithm and
an example in 2d is given. In this example we as-
sume, that all triangles have the longest edge as their
refinement edge. Concerning the termination of this
algorithm we refer to [7]. The refinement algorithms
for the different dimensions are implemented in the
dimension specific sub classes ofRefinementMan-
ager.

Coarsening algorithm: An element marked for
coarsening, only is coarsened, if all other involved el-
ements are marked for coarsening, too, because oth-
erwise coarsening could lead to hanging nodes in the
triangulation. So again all elements laying at the
coarsening edge must be collected to the coarsen-
ing patch, and only if all these elements are marked
for coarsening, the coarsening operation will be per-
formed.

In contrast to the refinement algorithm, here no
recursive propagation can appear, because the neigh-
boured parent elements must have the same refine-
ment edge. In Figure 7 the coarsening algorithm and
an example in two dimensions are illustrated. As you
see in the example, the coarsened mesh doesn’t con-
form to the original mesh before the refinement oper-
ation in Figure 6. Because coarsening is done by re-
moving child elements, a macro element never can be

coarsened. The coarsening algorithm is implemented
in the CoarseningManagerand its dimension spe-
cific sub classes.

3 Application
For real applications in materials science imple-
mented in AMDiS we refer to [8]. Here to illustrate
the functionality of AMDiS we solve a simple Pois-
son equation with a singularity:

−∆u = f in Ω
u = g on∂Ω

with

Ω = [0, 1]× [0, 1],
f = −(400|x|2 − 20d) exp(−10|x|2),
g = exp(−10|x|2)

and dimensiond = 1, 2 or 3. For this problem an
analytical solution existsu(x) = exp(−10|x|2). The
implementation of this problem looks as:

Problem<double> ellipt("ellipt");
ellipt.initialize();
ellipt.setRHSFunction(NEW F);
ellipt.setBoundaryFunction(NEW G);
ellipt.setEstimator(NEW ElliptEst);

adaptive degree 1 degree 2 degree 3
2d 3,074 dofs 557 dofs 397 dofs
3d 3,855 dofs 3,326 dofs 1,915 dofs

global degree 1 degree 2 degree 3
2d 8,321 dofs 2,113 dofs 313 dofs
3d 274,625 dofs 35,937 dofs 15,625 dofs

Table 1: Number of needed degrees of freedom for the different dimensions and Lagrange degrees (adaptive and
global refinement)

Fig.8: Solutions and resulting grids for Lagrange basis functions of degree 1-3 (from left to right).

Operator matrixOperator(
Operator::MATRIX_OPERATOR, ellipt.getFESpace()

);
matrixOperator.addSecondOrderTerm(new Laplace);
ellipt.addMatrixOperator(&matrixOperator);
Operator rhsOperator(

Operator::VECTOR_OPERATOR, ellipt.getFESpace()
);
rhsOperator.addZeroOrderTerm(

new CoordsAtQP(ellipt.getRHSFunction(), degree)
);
ellipt.addVectorOperator(&rhsOperator);
ellipt.adaptMethodStat();

For a specified tolerance on the error between the
true and the finite element solution‖u − uh‖H1 La-
grange elements of degree 1, 2 and 3 are used for the
simulation. This as well as the dimension is speci-
fied in a parameter file. We compare the degrees of
freedom needed by global and adaptive refinement of
the grid starting from a common macro triangulation.
The solution and the corresponding grids are shown in
Figure 8 for 2 and 3 dimensions, whereas the number
of degrees of freedom are compared in Table 1. The
tolerance in the 3 dimensional simulations is reduced
by a factor of10 in order to be able to solve the prob-
lem on a standard workstation if global refinement is
used.

References:
[1] I. Babǔska and W. Rheinboldt, Error estimates

for adaptive finite element computations,SIAM
J. Numer. Anal., Vol.15, 1978, pp. 736–754.

[2] A. Schmidt and K. G. Siebert, ALBERT - Soft-
ware for Scientific Computations and Applica-
tions, Acta Math. Univ. Comenianae, Vol.70,
2001, pp. 105–122.

[3] M. Fowler and K. Scott,UML distilled - A brief
guide to the standard object modeling language,
Addison-Wesley, 1999, second edn.

[4] B. Stroustrup,The C++ programming language,
Addison-Wesley, 1991, second edn.

[5] E. Gamma, R. Helm, R. Johnson and J. Vlissides,
Design patterns, Addison-Wesley, 1995

[6] W. Hackbusch and S. Sauter, Adaptive Compo-
site Finite Elements for the Solution of PDEs
Containing non-uniformly distributed Micro-
Scales,Mat. Model., Vol.8(9), 1996, pp. 31–43.

[7] I. Kossaczḱy, A recursive approach to local mesh
refinement in two and three dimensions,J. Com-
put. Appl. Math., Vol.55, 1994, pp. 275–288.

[8] http://www.caesar.de/cg/AMDiS

