
A 10 Gbit/s IPSEC Gateway Implementation

CHEE-WEI TAN, MIRKO BENZ and ALEXANDER SCHILL
Institute for System Architecture, Chair for Computer Networks

Dresden University of Technology
01062 Dresden
GERMANY

Abstract: - Internet Security (IPSEC) protocol is part of a design consideration in Virtual Private Networks
(VPN). In this paper, we design and implement a 10 Gbit/s gateway router for IPSEC processing using the
Intel network processor IXP2850. In particular, using software and hardware partitioning on a complex
multi processor system, i.e., selecting appropriate processors to offload computational intensive tasks, we
are able to accelerate the IPSEC data path. We also highlight the performance issues with IPSEC protocol
implementation using the cryptography engines in IXP2850, and propose efficient data structure for key
management in the buffer when large number of security associations are re-keyed at line speed.

Key-Words:- IPSEC hardware support, virtual private networks, network processor, high-speed networks

1 Introduction
By implementing security at the Internet Protocol
(IP) level, both applications that are aware and igno-
rant of security mechanism in a network can ensure
secure networking. IP-level security consists of the
following three functional areas:

• Authentication and Integrity: Assures that the
packet is sent by the source identified in the
packet header, and the packet has not been al-
tered by a third party.

• Confidentiality: Enables communicating
nodes to share a secret by encrypting and
decrypting messages without any third party
eavesdropping.

• Key management: Secure exchange of keys for
encryption and decryption.

IPSEC is mainly deployed in Virtual Private Net-
works (VPN), for example, most large enterprises
maintain wide-area networks where VPNs are used
to ensure secure data transfer over potentially inse-
cure connections such as the Internet, and corpora-
tions use tunneling technology for remote users to
access the corporate network at maximum security
by providing end-to-end security between two hosts.
In this paper, we design and implement a 10 Gbit/s
gateway for a VPN.

IPSEC uses two functions: Authentication
Header (AH) to provide authentication, and the En-
capsulating Security Payload (ESP) to encrypt the
data portion of the IP packet ([15] pp. 408, 413).

In short, AH provides authentication and integrity,
prevents address spoofing attacks, guards against re-
play attack, and both parties must process a secret
key. ESP provides confidentiality, with or without
authentication. The use of AH and ESP is defined
by a Security Association (SA). A SA is a one way
relationship between the sender and receiver.

Typical approach for hardware support of se-
cure communication protocols involves offload-
ing the encryption and decryption algorithms on
hardware, while the main protocol and I/O han-
dling are done using software, for e.g., the Linux-
based FreeS/WAN [3] and BSD-based KAME [11]
projects which run on software routers. Software
routers are relatively slow in comparison to com-
plete hardware implementation, but it provides full
flexibility. On the other hand, recognizing that only
a small part of the IPSEC protocol implementation,
for eg. IP/IPSEC send and receive data path, and dy-
namic buffer and key management, has high-speed
processing requirement, IPSEC protocol processing
can be accelerated by implementing this crucial por-
tion on network processors. The rest of the IPSEC
protocol can still be implemented using slow soft-
ware solutions. In this way, we can distribute tasks
with different priorities to different processors. Es-
sentially, a resource allocation approach based on a
processor hierarchysimilar to [14] is adopted in this
paper.

There are several key challenges to designing a
complete IPSEC protocol on network processors.
First, the amount of instructions that can be exe-



cuted in the data path is usually small, ranging be-
tween some ten to hundreds of instructions. Hence,
to optimize the IP/IPSEC send and receive paths,
synchronization points between the software and
hardware implementation need to be detected. Sec-
ond, low level processes such as extraction of mis-
aligned data and buffer access need special tun-
ing to avoid introducing performance bottlenecks
in the critical path. Third, protocol related issues
may cause bottlenecks even if every IPSEC packet
is processed correctly. For example, the Internet
Key Exchange (IKE) Protocol ([15] pp. 421–422)
is used for negotiation of IPSEC SAs. It is pro-
posed that IPSEC SA should bere-keyed, i.e., an
automated mechanism by which a new SA should
be established before the SA expires, proactively.
The elapsed time between the establishment of the
new SA and the expiration of the old SA should
be adequate to avoid losing any data being trans-
mitted in the old SA. For a large system of inter-
connected hosts and the gateways, keeping track of
authentication keys quickly becomes a formidable
task. The task of re-keying and accounting for all
possible hosts increases dramatically as we increase
the number of tunnels or secure connections in the
VPN. As a result, since fast memory (e.g. SRAM)
is a limited resource in most network processor ap-
plications, system performance may degrade due to
large memory consumption. Furthermore, a natu-
ral question is, is it possible to guarantee processing
requirement for a workload that consists of both IP
and IPSEC packets?

In this paper, we investigate the underlying cryp-
tography mechanism, and interaction between soft-
ware and hardware that implement these protocols
on an Intel network processor, IXP2850 [8]. The pa-
per is organized as follows: In Section 2, we present
our system architecture, and discuss our design of
a 10 Gbit/s gateway. In Section 3, we discuss our
implementation in detail. In Section 4, we propose
a bloom filter approach for key management in the
gateway, and we analyze the performance of our im-
plementation in Section 5. We then discuss related
work in section 6. Lastly, we conclude the paper in
Section 7.

2 System Architecture
In this section, we present our system architecture
targeting network processors for IPSEC process-
ing. Our architecture supports IPSEC functionali-
ties such as DES, 3DES, AES, SHA-1 and HMAC,

Figure 1: IP/IPSEC system overview.

but we shall concentrate exclusively on AES and
HMAC-SHA1 in this paper.

2.1 Overall View
Our IPSEC protocol processing stack is partitioned
into a control and data plane as shown in Fig. 1.
Control plane software is implemented on an em-
bedded Linux operating system in the XScale pro-
cessor. Data plane functionalities such as IP for-
warding path and cryptography computation are im-
plemented using microengine assembly code. The
control plane functionality involves mainly key
management, security control of the data plane, and
handling of exceptional packets. Computational in-
tensive tasks such as key expansion function in the
AES algorithm are offloaded onto the control plane.

2.2 Linux Integration
We adapt the Linux 2.6 kernel to run on the XScale
processor. Part of the existing Linux IPSEC proto-
col are re-used. The SA database and the XFRM
policy database are also implemented in the Linux
kernel. Further details on these control plane soft-
ware can be found in [12].

2.3 INTEL IXP Architecture Overview
The Intel IXP2850 is a fully programmable network
processing unit (NPU) that implements a high per-
formance parallel processing architecture. It com-
bines a high performance Intel XScale core proces-
sor, multiple memory channels, a PCI interface, a
multi-purpose network interface, and sixteen 32-bit



independent, multi-threaded microengines on a sin-
gle chip. In addition, the IXP2850 contains two
crypto units [8]. Each crypto unit contains one AES
block and two independent 3DES blocks, which are
used by the AES and 3DES symmetric key ciphers
for bulk encryption and decryption. Each 3DES
block has access to three initialization vectors (IV)
and three keys. The AES block has access to six IVs
and six keys, which are the same physical resources
that supply the IVs and keys for the 3DES block.
The AES block supports 128-bit IVs and keys of
length 128, 192 and 256 bits, while the 3DES block
supports 64-bit IVs and 192-bit keys. Each crypto
unit also contains two independent SHA-1 blocks
for computing 160-bit message digests. A check-
sum accumulator is used to compute checksums
over any data passing through the crypto unit.

The IXP2850 uses hyper task chaining to im-
prove the efficiency of pipeline processing by allow-
ing direct data transfer between microengines using
next-neighbor transfer registers instead of convec-
tional memory such as the SRAM and SDRAM.

3 Prototype Implementation
In this section, we describe our software imple-
mentation on the Intel IXP2850 network proces-
sor which consists of software partitioning for the
microengines and XScale processor. We adapt
the 10 Gbit/s IP forwarding reference application
(10gb_ethernet_ingress) for our IPSEC implemen-
tation where four microengine threads are statically
allocated to each port in a ten 1 Gbit/s ports setting.

3.1 Software partitioning on the Micro-
engines

IPSEC functionality such as AES or HMAC can be
sub-divided into smaller functional blocks, which
after can be assigned to different microengine con-
texts for parallel execution. In our implementa-
tion, five microengines are used for packet forward-
ing that include Ethernet decapsulation and basic IP
header processing. Due to the highly variable pay-
load size of IPSEC packets and demanding secu-
rity computation, one microengine, Security micro-
engine (SecME), is dedicated to process the payload
of IPSEC packets. Hence,SecMEacts as an inter-
face between IP forwarding and access to the secu-
rity cores.

In SecME, four threads are statically assigned
to IPSEC input processing and the other four to
IPSEC output processing. Communication between

the forwarding engines andSecMEis done through
inter-microengine signaling and the memory inter-
faces. When an IPSEC packet is received, the for-
warding engines first inspect if the policy for the
packet is allowed. If the policy is allowed, and if
the packet has reached the destination of the tun-
nel, the security function is processed and removed
by SecME. For an outgoing packet, the forwarding
engine determines the corresponding security func-
tion (algorithm and mode) from the policy, that is
subsequently applied bySecME. Finally, the for-
warding engines encapsulate an outer header with
the new source and destination address to be the ad-
dress of the tunnel entry and the tunnel exit nodes
respectively. Forwarding is based only on the desti-
nation address of the outer packet. Our implemen-
tation of the AES algorithm supports only a fixed
non-linear16× 16 substitution table (S-box) which
can be found in [6], and runs using 128-bit, 192-bit
and 256-bit keys. To accelerate extraction and stor-
age of different sized keys at the data plane level, we
use an efficient Bloom filter data structure described
in section 4.

A software partition of the AES algorithm, in
particular the key expansion algorithm that expands
the decryption key runs on the XScale processor as
a Linux daemon module. The expanded decryption
key is subsequently used by the AES core that runs
on the data path. For HMAC functionality, a dou-
ble inner and outer SHA-1 hashing plus state prepa-
ration is used rather than the HMAC assembly in-
struction provided by INTEL as we could not get
it to work. HMAC is run to authenticate the IPSEC
packet before decryption inSecME. Also, the policy
management and some other computation intensive
portions of the IPSEC algorithm initialization run
on the XScale core.

4 Use of a Bloom Filter for efficient
key storage

In a VPN network, it can be expected that there will
be huge numbers of secure connections that will tra-
verse and be processed at the edge router which is
located at both endpoints of VPN tunnels. In or-
der to support the large numbers of different secured
connections, both fast processing and large memory
requirements are needed at the edge routers. Given
the limited number of microengine threads and on-
board memory, we use a well-known data struc-
ture known as aBloom Filter. A Bloom filter is a
method for probabilistically representing a setA =



Figure 2: Three hash functions computed to index
into a2n bit vector. If the query succeeds,H3(P ) is
masked for indexing into a hash list.

{a1, a2, ..., an} of n elements (also called keys) to
support membership queries. This compact repre-
sentation is the payoff for allowing a small rate of
false positives in membership queries, i.e., queries
might incorrectly recognize an element as member
of the set. It was invented by Burton Bloom in 1970
[2] and was proposed for use in free text searching
[13]. Basically, the set of words that appear in a text
is succinctly represented using a Bloom filter.

Rather than extracting the IV, encryption and de-
cryption keys from the packets needed for cryptog-
raphy computation, we use a Bloom Filter to store
these information in a compact fashion on the local
memories of IXP2850. In summary, a Bloom Fil-
ter executes a series of hash functions to determine
a query as shown in Fig. 2. A bit vector is stored
in the scratchpad memory to verify if the packet re-
ceived by the IXP2850 belongs to a new secure con-
nection. A bloom filter is associated with each input
port. The input of the bloom filter,P , is a concate-
nated string of the encryption key and the IV. For
every first packet of a new secure session, a new
session will, of course, fail the query, and will thus
be inserted into the Bloom filter. The relevant states
are then extracted from the encrypted IP packet. Us-
ing the states, the decryption key is computed using
the key expansion algorithm on the XScale proces-
sor. This information is stored in a hash list, and ac-
cessed at a later stage by the cryptography functions
in the microengines and the XScale processor. Sub-
sequent packets that belong to this particular session

will make a query in the Bloom filter, and retrieve
them from the hash list. For our purpose, we use
a Bloom filter configuration of five secured connec-
tions per bit in the Bloom filter, and three indepen-
dent hash operations (one on-board hash hardware
and two universal hash software), thus correspond-
ing to a false positive rate of 0.092. A false posi-
tive collision is treated as a "cache miss", and there-
fore the decryption key must be re-computed for that
particular collision. However, it is rather rare for
a false positive collision to persist for a substantial
long time because the connections are expected to
be continuously re-keyed at high rates for enhanced
security. We mask 12-bit of the last hash function as
an index to a hash list whose entries contain the ad-
dress of the SDRAM memory that stores the IV vec-
tor, encryption and decryption keys that are stored
upon the arrival of the first packet in the session.

In the next section, we investigate the overhead
saved in using a Bloom Filter as compared to state
extraction, and report its feasibility for high input
streams with many connections per port. In ad-
dition, the XScale will periodically map the data
stored in the SDRAM onto slower memory that may
be accessed at a later time for management and au-
thentication purpose. For example, the Internet Key
Exchange can use this information for transmitting
pairs of keys for AH and ESP. Lastly, a nice feature
of the Bloom filter is that two independent sets can
be combined together by performing a bit-wise OR
operation over the two corresponding filters. Hence,
to achieve greater savings in space, this property
can be exploited for a multi-port setting. For the
ten 1 Gbit/s ports setting in our implementation, we
merge the bloom filters for every two ports.

5 Performance Analysis
In this section, we analyze the performance of
IPSEC protocol processing in terms of computa-
tional requirements and scalability using test vec-
tors available from public domain [5], [6] and [7].
The purpose is to empirically determine the com-
bined capacity of the forwarding threads and a se-
curity thread using a typical IPSEC workload. We
conduct all our experiments using the cycle accurate
Intel IXP2850 Developer Workbench 3.5. Micro-
engines and the XScale core run at 1400 MHz and
700 MHz respectively. SRAM and SDRAM mem-
ories are configured at 256MB and 192MB respec-
tively.



Table 1: Processing requirement for (a) a single microengine thread inSecMEof IPSEC header extraction,
insertion, states (16 Byte IV and 128 Bit key) extraction and checksum computation, and (b) the execution
time of various cryptography functions in microengine cycles of the crypto engines for a 108 Byte secure
payload.

State processing Cycles

Header extraction 538
Header insertion 494

Key and IV extraction 345
Checksum computation 68

Cryptography function Cycles

AES-CBC 1008
3DES 829

SHA-1 hash 450
HMAC using SHA-1 hash 1162

Table 2: Processing requirement for (a) decryption of [7] Case 5 packets and (b) authentication of [5] packets
with 100Byte HMAC keys

ESP Decryption Cycles

IPSEC header extraction 533
Key extraction and load 181
IV extraction and load 169
Bloom filter lookup 156

AES-CBC decryption 1278
Checksum computation 72
IP Packet re-alignment 378

HMAC authentication Cycles

IPSEC header extraction 533
Key hashing (to 20 Bytes) 752

XOR with Ipad 43
XOR with Opad 43

HMAC authentication 1548
Checksum computation 72
IP Packet re-alignment 349

5.1 Computational Requirements
We measure the performance of our implementation
for a transport mode ESP decryption using test vec-
tors found in Request for Comments (RFC) 3602
([7] Case 5 test vector), and, for AH authentication
using HMAC SHA-1, we use the sample data found
in ([5] Sample 3). Since our design is based on as-
sembling functional blocks, the number of cycles
allocated to each functional block depends on the
following factors:

• Minimum packet size and the worst-case
packet arrival rate for a given line rate, e.g.,
OC-192 min packets arrive 40 ns apart

• The frequency of the microengine

thus the number of cycles corresponding to the size
of the IPSEC payload is used as a performance met-
ric. Table 2(a) shows the breakdown of processing
cycles at each stage in decrypting a packet that is
protected by a 16 Byte key and IV with a total en-
crypted payload of 80 Bytes. The overhead of key
expansion is not shown in the table as it is performed
in the XScale processor. However, the processing
budget for the key expansion algorithm in the XS-
cale translates into the order of thousands of cycles,
including memory references. As shown in the ta-
ble, performing a query using a bloom filter and
hashing into a list has significantly lower overhead

than the combined state preparation (key and IV ex-
traction plus key expansion).

Table 2(b) shows the processing cycles required
for a packet that is protected by a 100 Byte key and
a 20 Byte digest. The number of cycles required
for authenticating a 100-Byte packet is comparable
to that of decrypting an 80-Byte payload in AES.
For the above experiments, a single thread inSecME
is sufficient to compute the two functionalities. In
summary, cycle budget allocated for these two sep-
arate functionalities in AH and ESP is a function of
the payload size. However, it is seldom that keys
greater than 100 bytes are used for authentication
since they would be hashed to 20-Byte keys in SHA-
1. Hence, the main design consideration is that, for
larger payloads, multiple threads inSecMEneed to
be utilized in parallel to decrypt the same packet.

5.2 Scalability
We configure different input streams to test the scal-
ability of our implementation. First, we simulate
one secure connection (80-Byte payload AES en-
crypted with a 100 Byte MAC digest) that is mixed
with normal 64-Byte IP packets for each stream per
port. A single thread inSecMEis configured to han-
dle the secure connection. We configure the above
stream on two separate 1 Gbit/s input ports and mea-
sure the achievable output rate. Table 3(a) shows the



achievable average output rate as compared to the
number of secured packets for every 16 packets (a
mixture of secured IPSEC and normal IP packets)
received. The IPSEC packet is distributed randomly
among every 16 packets received. As shown, the
combined processing of AES decryption and MAC
authentication on a single thread can sustain a mixed
traffic with approximately half IP and IPSEC pack-
ets for every 16 received packets. However, as the
ratio of secured packets increase beyond half, the
processing power of a single thread is not sufficient
and in turn affects the throughput.

In the second experiment, we configure two dif-
ferent secure connections with the same payload
and digest size but with different keys and IV per
connection. The purpose is to simulate a re-key ses-
sion. The interim between the re-keying of the ses-
sion, i.e., the time between the departure of the last
packet of the pre-re-keyed session and the arrival of
the first packet of the re-keyed session, is simulated
by a variable number of 64-Byte normal IP pack-
ets. Table 3(b) shows the achievable average output
rate for the period between the time when the first
packet of the re-keyed session is received and when
the processing of the third packet of the re-keyed
session has finished. The achievable rates in Table
3(b) are lower as the interim decreases because the
forwarding threads are blocked at the mutex lock
before the new state processing is completed when
a session is re-keyed. The above experiments only
illustrate the AES-CBC and HMAC authentication
execution capacity of a single microengine thread.
However, we have utilized only eleven out of the
total sixteen microengines, hence it is possible to
scale up to 10 Gbit/s IPSEC decryption and authen-
tication from ten 1Gbit/s ports by statically extend-
ing SecME’s functionalities to the remaining micro-
engines.

6 Related Work
While significant amount of work on IPSEC proto-
col implementation has focused on implementing a
fully working protocol stack in the context of soft-
ware routers such as the Linux-based FreeS/WAN
[3] and the BSD-based KAME project [11], this
work is most closely related to [14], [12] and [1]
where the idea is to design a framework that ex-
ploits the underlying hardware capabilities of net-
work processors. First, designing a framework that
supports data plane partitioning based on a charac-
terization of the protocol workload is not new. Early

work in [4] has shown that a simultaneous multi-
threaded processor model is best suited for accel-
erating protocol based on workload that represents
IP forwarding, encryption and authentication. Sec-
ond, it factors in the interoperability between hard-
ware and software. Other related work on accelerat-
ing data paths for cryptography processing include
[10] where high performance AES 128-bit encryp-
tion engine is implemented on field programmable
bit array.

Another research topic related to this paper is
that of efficiently encrypting and decrypting large
numbers of secure connections. Accelerating the
data path of IPSEC processing means more than
processing every IPSEC packet correctly. Our work
has implications on the kind of workload that VPNs
might generate which is related to resource alloca-
tion at the gateway. Hence, there is a need to an-
alyze how to adapt IPSEC protocol stack without
creating performance bottlenecks. We have high-
lighted a situation where key management is con-
strained by the number of sessions. Though it can be
argued that this problem can be solved using faster
memory, for example, Content Addressable Mem-
ory (CAM) has been conventionally used in the in-
dustry for caching packet headers or to store an op-
timized database in IP co-processors such as ASICs
and FPGAs [9], we note that CAM cannot scale to
a large size due to technological constraints, and is
costly to implement. On the other hand, we present
a novel approach to solving this problem of storage
capacity using a Bloom filter.

7 Conclusion
We have designed and implemented the data path
for an IPSEC gateway using the Intel IXP 2850
network processor that is capable of processing 10
Gbit/s of data. We use a Bloom filter to reduce
the overhead of key management that might arise
from the key exchange protocol when packets are
processed at high speed. We present a performance
analysis of our implementation and show that a sin-
gle thread per IXP2850 microengine can process
IPSEC packet AES-CBC decryption and HMAC-
SHA-1 authentication at a rate of 2 Gbit/s if the
workload consists of about half IPSEC and IP pack-
ets per 16 packets received.

Our future work focuses on optimizing the
IPSEC implementation to fully exploit the network
processor’s potential. Furthermore, we plan to inte-
grate it with the 2.6 Linux IPSEC framework.



Table 3: Achievable output rate in Mbit/s as (a) the number of secured packets per 16 packets differ for two
single secure connections, and (b) a secured session being re-keyed

No. of secured packet output rate

1 1999.8
2 1993.3
4 1981.2
8 1973.3
10 1928.2
12 1907.0
16 1823.9

No. of packets in interim output rate

20 1999.8
16 1985.2
14 1951.2
8 1920.7
4 1914.2
2 1871.0
0 1783.9

References:
[1] M. Benz and R. Lehmann, “TCP accel-

eration on network processors", IASTED
International Conference on Communica-
tions, Internet and Information Technol-
ogy (CIIT), St. Thomas, Virgin Islands,
November 2002

[2] B. Bloom, “Space/time tradeoffs in hash
coding with allowable errors", CACM,
13(7), pp. 422–426, July 1970

[3] Colubris Networks, “FreeS/WAN
hardware acceleration patch",
http://sources.colubris.com/en/projects/FreeSWAN/

[4] P. Crowley and J-L. Baer, “A mod-
eling framework for network processor
systems", Network Processor Workshop
in conjunction with Eighth International
Symposium on High Performance Com-
puter Architecture (HPCA-8), Cambridge,
MA, February 2002

[5] Information Technology Lab, National
Institute of Standards and Technology,
“The Keyed-Hash Message Authentica-
tion Code (HMAC)", Federal Information
Processing Standards Publication, March
2002

[6] Information Technology Lab, National In-
stitute of Standards and Technology, “An-
nouncing the Advanced Encryption Stan-
dard (AES)", Federal Information Pro-
cessing Standards Publication, November
2001

[7] S. Frankel, R. Glenn, and S. Kelly, “The
AES-CBC cipher algorithm and its use
with IPsec", RFC 3602, September 2003

[8] Intel Corporation, “Intel IXP2850 net-
work processor hardware reference man-

ual", First release, Order number: 278738-
001, February, 2003

[9] IDT Corporation, “Taking packet-
processing to the next level—Achieving
next-generation classification performance
using multiple databases and IP co-
processors", White paper, August 2002

[10] K. Jaervinen, M. Tommiska, and J. Skyt-
tae, “A fully pipelined memoryless 17.8
Gbps AES-128 encryptor", ACM/SIGDA
International Symposium on Field Pro-
grammable Gate Arrays, pp. 207–215,
Monterey, February 2003

[11] Kame Project, available at
http://www.kame.net

[12] R. Lehmann, M. Benz, S. Gross and M.
Hampel, “IPSEC protocol acceleration us-
ing network processor", IASTED Interna-
tional Conference on Communications, In-
ternet and Information Technology (CIIT),
Scottsdale, November 2003

[13] M.V. Ramakrishna, “Practical perfor-
mance of Bloom filters and parallel free-
text searching", Communications of the
ACM, 32 (10). 1237-1239, October 1989

[14] T. Spalink, S. Karlin, L. Peterson and Y.
Gottlieb, “Building a robust software-
based router using network processors",
18th ACM Symposium on Operating Sys-
tems Principles (SOSP’01), pp. 216–229,
Chateau Lake Louise, Banff, Alberta,
Canada, October 2001

[15] W. Stallings, “Cryptography and network
security—Principles and practice", Pren-
tice Hall, 2nd edition, 1999


