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Abstract : - An intelligent control method is proposed for control of rigid robot manipulators which achieves expo-
nential tracking of repetitive robot trajectory under uncertain operating conditions such as parameter uncertainty
and unknown deterministic disturbance. In the learning controller, exponentially stable learning algorithms are
combined with stabilizing computed error feedforward and feedback inputs. It is shown that all the error signals
in the learning system are bounded and the repetitive robot motion converges to the desired one exponentially
fast with guaranteed convergence rate. An engineering workstation based control system is built to verify the
effectiveness of the proposed control method.
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1 Introduction

In recent years adaptive control schemes which
accommodate the complete nonlinear dynamics
of manipulator have been developed [4], [8], [10],
[13], [14], [15], [17]–[19]. Among the recent works
on adaptive control of robot manipulators, the so
called computed torque based control techniques
take into account for the nonlinearity of robot dy-
namic equations as well as the parametric uncer-
tainties caused by imperfect modeling of robot dy-
namic system [4], [10], [13], [14], [15], [17], [19].
Three crucial features regarding the structure of
manipulator dynamics which make the global sta-
bility proofs of these controllers possible are the
positive definiteness of inertia matrix, the linear
parameterization property and the passivity prop-
erty of robot systems. On the other hand, a set
of learning schemes based on the repetition prop-
erty of robot motion trajectory has appeared in
recent robotics literatures [1], [2], [3], [5], [6], [9],
[11], [15]. Among the numerous learning con-
trol approaches, the computed torque based learn-
ing control schemes use some additional computed
torque inputs for stabilization of robot dynamics
at the beginning stage of learning. However, these
learning control schemes differ from the computed
torque based adaptive control schemes [4], [10],
[13], [14], [15], [17], [19] in that they improve
the performance of robot motion in the transient
phase as well as in the steady state. The learning
control can be also considered as an asymptotic
optimal control method in the sense that it learns
the optimal control input along the desired robot
trajectory along with the lapse of trials. Since
each of the two control methods, adaptive con-
trol and learning control, has its own usefulness
and merits in adaptability, optimality, robustness,

etc., it is expected that a more practical and ef-
ficient control in terms of robot intelligence can
be obtained when they are merged into a unified
controller.

This paper extends the computed torque error
based learning control technique in [6] to the syn-
thesis and analysis of optimal learning controller
for robot manipulators. Inspired by the tuning al-
gorithm of convergence rate for the learning con-
troller [7], we develop an optimal learning con-
troller whose rate of convergence can be set arbi-
trarily fast. The proposed optimal learning con-
troller not only can estimate system parameters
but learn the optimal control inputs which is the
inverse dynamics solution along the desired tra-
jectory of robot system. With the aid of the stan-
dard Lyapunov stability theory for adaptive con-
trol techniques, it is shown that all the signals in
the learning control system are bounded and the
robot motion converges globally exponentially to
the desired one. One of remarkable features of the
proposed optimal learning controller is that expo-
nential convergence of the learning system with
predefined convergence rate is guaranteed which
is independent of the parameter uncertainty and
unknown deterministic disturbances.

2 Problem Formulation
Consider an n-dof rigid robot system:

D(q)q̈ + B(q, q̇)q̇ + g(q, q̇) + d = τ, (1)

where q ∈ Rn is the generalized joint coordinate
vector, D(q) ∈ Rn×n the positive definite inertia
matrix, and B(q, q̇)q̇ is the centripetal and Cori-
olis force vector. g(q, q̇), d, and τ are the gravity



and friction, the deterministic disturbances, and
the input vector, respectively. The unknown de-
terministic disturbance vector d(t) = d1(t)+d2(t)
where d1 is periodic disturbance with periodicity
δ and d2 satisfies ||d2|| ≤ d0 for positive constant
d0. Then, the purpose of our control design is to
find an optimal learning controller which drives
the trajectory of robot system to the desired one
qd ∈ C2 with given convergence rate, where C2 is
the set of twice continuously differentiable func-
tions. We assume that the set of desired trajecto-
ries and optimal control input are δ-periodic:

qd(t) = qd(t + δ), q̇d(t) = q̇d(t + δ),
q̈d(t) = q̈d(t + δ), τd(t) = τd(t + δ),

where the desired control input τd is defined as:

τd = D(qd)q̈d + B(qd, q̇d)q̇d + g(qd, q̇d) + d1,

With this setting, the proposed optimal learning
controller is constructed as follows:

τ(t) = τfb(t) + τce(t) + τ+
o (t), (2)

where τfb, τce and τo denote the feedback error
input, the computed-torque-error input and the
asymptotic optimal control input, respectively.
The projection (·)+ is defined as

x+
i = Pr(xi) =





x̄i, xi > x̄i

xi, xi ≤ xi, x
∗
i ≤ x̄i

xi, otherwise,

where xi represents the i-th element of x and x∗i
the desired or true value of xi. The stabilizing
error inputs are given by

τfb = Γz + d̂+
0 sgn(z) + γ(e, ė), (3)

τce = Yeθ̂
+,

where e = qd − q , z = ė + ae(a > 0), and
the feedback gain Γ and nonlinear function γ are
defined in the next section. d̂0 is an estimate
of d0 and sgn(z) is defined as sgn(z) = z

|z| for

|z| 6= 0 and sgn(z) = 0 for z = 0. (̂·) repre-
sents an estimated system with estimated param-
eters and Yeθ̂ = D̂e(q)q̈d + B̂e(q, q̇)q̇d + ĝe(q, q̇) +
a

(
D̂(q)ė + B̂(q, q̇)e

)
, where

D̂e(q) = D̂(q)− D̂(qd),

B̂e(q, q̇) = B̂(q, q̇)− B̂(qd, q̇d),
ĝe(q, q̇) = ĝ(q, q̇)− ĝ(qd, q̇d).

Applying control input (2) to uncertain system
(1), we obtain an error system as follows:

D(q)ż + B(q, q̇)z + Γz

= d2 − d̂+
0 sgn(z) + Yeθ̃

+ + τ̃+
o − γ(e, ė),(4)

where the parameter error vector and asymp-
totic optimal input error vector are defined as
θ̃+ = θ− θ̂+ ∈ Rl and τ̃+

o = τd− τ+
o , respectively.

Here, the regression matrix Ye ∈ Rn×l is derived
from the equation Yeθ̃

+ = τ∗ce − τce, where τ∗ce is
the computed error input τce with replacement of
the estimated parameter θ̂+ with the system pa-
rameter vector θ. Now, the posed problem of op-
timal learning control design will be converted to
a problem of finding a set of learning rules which
makes the error dynamic system (4) converge with
predefined convergence rate. In what follows, we
show that the converted problem is easily solv-
able by using a performance index which reflects
the desired rate of convergence.

3 Nonadaptive and Adaptive Optimal
Learning
To begin with, we consider the case where the
parameters of robot system are known, i.e., θ̂ =
θ. Define a functional of exponentially weighted
functions as a performance index V (t).

V (t) =
1
2β

∫ t

t−δ
Wdη +

1
2
wT (t− δ)Dw(t− δ). (5)

where w(t) = eλtz(t)(λ ≥ 0) and the constant β >

0 and W (t) = τ̃T
owL−1τ̃ow + d̃2

0w with positive gain
L = LT > 0. Here, the exponentially weighted
error terms are defined as τ̃ow = τd − eλtτo and
d̃0w = d0 − eλtd̂0 , respectively. Multiplying both
sides of equation (4) by eλt yields an exponentially
weighted error system.

D(q)ẇ + B(q, q̇)w + Γ0w

= eλt
(
d2 − d̂+

0 sgn(z) + τ̃+
o − γ(e, ė)

)
, (6)

where Γ0 = Γ−λD. Then, the converted problem
of optimal learning control design is simply writ-
ten as: for the given control system (2) and (3),
find a set of learning rules for the optimal con-
trol input τo and estimate of disturbance bound
d̂0 so that it minimizes the index V (t) asymptot-
ically subject to the constraint of error dynamics
equation (6). We now show by minimizing the
quadratic index V (t) in the sense of Lyapunov
stability that the converted problem has a solu-
tion. Indeed, differentiate the index V (t) along
the error system (6) to obtain

V̇ (t) = wT
(

Dẇ +
1
2
Ḋw

)
+ ∆W (t)

= −wT (t− δ)Γ0w(t− δ)

+wT (t− δ)eλ(t−δ)(τ̃+
o − γ)

+wT (t− δ)eλ(t−δ)
(
d2 − d̂+

0 sgn(z(t− δ))
)

+∆W (t),



where ∆W (t) = 1
2β (W (t)−W (t− δ)).

Let W+(t) = τ̃+T

ow L−1τ̃+
ow + d̃+2

0w , where τ̃+
ow = τd−

eλtτ+
o and d̃+

0w = d0−eλtd̂+
0 . Then, since W+(t) ≤

W (t), ∆W (t) is computed as

∆W (t) ≤ 1
2β

(
W (t)−W+(t− δ)

)

=
1
2β

(
e2λt|τo(t)|2L−1 − e2λ(t−δ)|τ+

o (t− δ)|2L−1

)

− 1
β

τT
d L−1

(
eλtτo(t)− eλ(t−δ)τ+

o (t− δ)
)

+
1
2β

(
e2λt|d̂0(t)|2 − e2λ(t−δ)|d̂+

0 (t− δ)|2
)

− 1
β

dT
0

(
eλtd̂0(t)− eλ(t−δ)d̂+

0 (t− δ)
)

,

where |(·)|2M = (·)T M(·).
Hence, we obtain

V̇ (t) ≤ − |w(t− δ)|2Γ0
+

β

2
|w(t− δ)|2L0

+
(
1− e−λ(t−δ)

)
eλ(t−δ)

· (wT (t− δ)τd + |w(t− δ)|d0)

−eλ(t−δ)wT (t− δ)γ + E(t),

where

L0 = I + L,

E(t) =
1
2β

(
|eλtτo(t)|2L−1

−
∣∣∣eλ(t−δ)τ+

o (t− δ) + βLw(t− δ)
∣∣∣
2

L−1

)

+
1
2β

(
|eλtd̂0(t)|2

−
∣∣∣eλ(t−δ)d̂+

0 (t− δ) + β|w(t− δ)|
∣∣∣
2
)

− 1
β

τT
d L−1

(
eλtτo(t)

−eλ(t−δ)τ+
o (t− δ)− βLw(t− δ)

)

− 1
β

dT
0

(
eλtd̂0(t)

−eλ(t−δ)d̂+
0 (t− δ)− β|w(t− δ)|

)
.

If we introduce the following learning rules

eλtτo(t) = eλ(t−δ)τ+
o (t− δ) + βLw(t− δ),

eλtd̂0(t) = eλ(t−δ)d̂+
0 (t− δ) + β|w(t− δ)|

then it is obvious that E(t) = 0. Further, let
Γ = βL0 and γ be a saturation-type control input
such that γ =

(
1− e−λ(t−δ)

)
σ0sgn(z), where σ0

satisfies ||τd||+d0 ≤ σ0. Substituting the feedback
gain Γ and nonlinear function γ chosen, we obtain

V̇ (t) ≤ −β

2
wT (t− δ)L̄w(t− δ)

≤ 0, (7)

where the matrix L = LT > 0 is chosen to satisfy
L̄ = I + L− 2λ

β D > 0.
In the above construction, the chosen learning
rules and feedback inputs minimize asymptoti-
cally the index V (t) in the sense of Lyapunov sta-
bility solving the optimal learning control problem
along with the lapse of time. Now, let β̄ = αβ and
α = e−λδ. Then, the learning rules turn out to be

τo(t) = ατ+
o (t− δ) + β̄Lz(t− δ), (8)

d̂0(t) = αd̂+
0 (t− δ) + β̄|z(t− δ)| (9)

where α (0 < α ≤ 1) can be considered as the
forgetting factor. Here, the initial conditions at
t ∈ [0, δ] are set to τo(t) = τd(t)−d1 and d̂0(t) = d̄,
where d̄ is the nominal disturbance bound. Then,
using the learning rules (9) and (10), convergence
property of the proposed optimal learning con-
troller is obtained as follows:

Proposition 1 Non-Adaptive Optimal Learn-
ing: Suppose that the nonadaptive optimal learn-
ing system consists of the equations of system (1),
the control inputs (2) and (3) and the learning
rules (8) and (9). Assume that β and L satisfy
L̄ =

(
I + L− 2λ

β D
)

> 0. Then, the nonadaptive
optimal learning control system converges as fol-
lows:

i) lim
t→∞ z(t) = 0 globally asymptotically if λ =
0,

ii) lim
t→∞ z(t) = 0 globally exponentially with en-

velope e−λt, if λ > 0.

Remarks:
1) Proposition 1 implies that the rate of conver-
gence can be tuned via assignment of λ.
2) The magnitude of additive input γ which takes
into account for the effect of nonzero λ reduces to
zero if λ = 0.
3) Since

(
1− e−λt

)
≤ 1, the magnitude of nonlin-

ear input γ can be made independent of the size
of λ. This implies that exponential rate of conver-
gence λ can be assigned arbitrarily large, as long
as the feedback gain L and learning gain β satisfy
the inequality condition L̄ > 0, where the size of
βL is proportional to λD.
4) In practice, the forgetting factor α is chosen
less than unity in that 0.95 ≤ α ≤ 1 implying the
exponential rate constant λ is also bounded, since



λ = −1
δ lnα, where δ is the period of robot motion

trajectory.
5) The interpretation of a in the composite er-
ror z = ė + ae is twofold : one is the propor-
tional gain of PD error and the other is the in-
verse time-constant of a 1st-order filter, e(t) =
e−ate(0) +

∫ t
0 e−a(t−η)z(η)dη. In the second inter-

pretation, once z converges to zero, so does the
position error term e. The larger a means the
faster convergence, but the larger control effort
and sensitivity to sensor noise. These interpreta-
tion has been not included in the paper for brevity
of presentation.

When the parameters are not known, the fol-
lowing learning rule is used for parameter estima-
tion.

θ̂(t) = αθ̂+(t− δ) + β̄S−1Y T
e (t− δ)z(t− δ), (10)

where S is symmetric positive definite matrix and
α and β̄ are defined as in (8) and (9).

Now, let the robust control in-
put γ(t) is replaced by γ(t) = (1 −
e−λ(t−δ)) (σ0 + σ(e, ė)) sgn(z), where σ0 is
defined as in Proposition 1 and σ(e, ė) is bound-
ing function of Yeθ as ||Yeθ|| ≤ σ(e, ė)(See e.g.,
[14]). Then, with the learning rules (8), (9), and
(10) and the control input (2), we obtain the
following results.

Proposition 2 Adaptive Optimal Learning:
Assume that the feedback gain L is chosen as

L̄ = I + L− YeS
−1Y T

e − 2λ

β
D > 0.

Then, the adaptive optimal learning control sys-
tem which consists of the learning rules (8), (9),
and (10) and the control input (2) converges as
follows:

i) lim
t→∞ z(t) = 0 globally asymptotically if λ =
0,

ii) lim
t→∞ z(t) = 0 globally exponentially with rate

e−λt, if λ > 0.

Proof Proposition 1 and Proposition 2:
In Proposition 1, define V0(t) as

V0(t) =
1
2β

∫ t

0
W (η)dη

+
1
2

n∑

k=1

wT (t− kδ)Dw(t− kδ),

for (n− 1)δ ≤ t ≤ nδ (n = 1, 2, 3, · · ·).
Then, V0(t) can be written as

V0(t) ≤ Vn(t)

=
1
2β

n∑

k=1

( ∫ t−(k−1)δ

t−kδ
W (η)dη

+wT (t− kδ)Dw(t− kδ)
)

.

Following the same procedure as in the above con-
struction of (8) for all the n-integrals on their own
time-intervals, we obtain

V̇n(t) ≤ −β

2

n∑

k=1

wT (t− kδ)L̄w(t− kδ) ≤ 0,

where L̄ is defined as in (7). The inequality im-
plies that V0(t) is bounded and w(t) ∈ L2 ∩ L∞.
When λ = 0, since the learning signals τ+

o and d̂+
0

are bounded in the error equation (4), we have
ż ∈ L∞. This confirms the uniform bounded-
ness of z, implying lim

t→∞ z(t) = 0 globally asymp-

totically from Barbalat’s lemma [16]. Further, if
λ > 0, since w(t) ∈ L∞, we obtain ii). This com-
pletes the proof of Proposition 1. Proposition 2
can be proven similarly by replacing W (t) by

W (t) = τ̃T
owL−1τ̃ow + θ̃T

wSθ̃w + d̃2
0w,

where θ̃w = θ − eλtθ̂.
It is observed that due to parametric uncer-

tainty represented by matrix YeS
−1Y T

e the feed-
back gain L of Proposition 2 is larger than Propo-
sition 1. However, it can be shown that if z(t) is
used in the learning rules (8), (9), and (10) instead
of z(t− δ), the same feedback gain L can be used
as in Proposition 1. (See e.g., [12])

4 Experimental Results
For demonstration of the proposed learning con-
trol method, experiments are carried out using the
SCARA-type robot manipulator shown Fig.1. It
has four degrees of freedom, however, only the first
two links have beeb utilized in the experiments,
since the third and forth links, which are devoted
to move and orient the end-effector, respectively,
are completely decoupled from the others with re-
spect to the dynamics of the SCARA manipulator.
Therefore, in the experiments, we use the dynamic
model of the first two joints.

The dynamic motion of the manipulator is de-
scribed by the differential equations with the fol-
lowing entries [20]:

D =
[

d11 d12

d21 d22

]
, B =

[
b11 b12

b21 b22

]

g = [g1 g2]
T

d11 = m1l
2
c1 + m2l

2
1 + m2l

2
c2 + 2m2l1lc2C2 + I1 + I2
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Fig. 1. SCARA-type Robot Manipulator used in the
experiment
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Fig. 2. The experimental setup
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Fig. 3. Schematic diagram of the proposed learning
controller

d12 = d21 = m2l
2
c2 + m2l1lc2C2 + I2

d22 = m2l
2
c2 + I2

b11 = −m2l1lc2S2q̇2

b12 = m2l1lc2S2(q̇1 + q̇2)
b21 = m2l1lc2S2q̇1

b22 = 0
g1 = k1q̇1 + p1sgn(q̇1)
g2 = k2q̇2 + p2sgn(q̇2)

where Ci = cos(qi) and Si = sin(qi). ki

and pi stand for viscous and Coulomb friction
coefficients, respectively. Defining parameters
θ1, · · · , θ10 as

θ1 = m1l
2
c1 , θ2 = m2l

2
1, θ3 = m2l

2
c2 ,

θ4 = m2l1lc2 , θ5 = I1, θ6 = I2,

θ7 = k1, θ8 = k2, θ9 = p1,

θ10 = p2,

we can obtain the regression matrix Ye in the pa-
rameterized error equations as in [6].

The system is controlled by means of an en-
gineering workstation based controller which con-
sists of a SUN SPARC Classic, VME Bus system,
and power driver. The control program operates
under a UNIX with RTOS(Real-Time OS) operat-
ing system, which assures real-time control. The
schematic diagrams of the experimental apparatus
and the proposed learning controller are shown in
Fig.2 and Fig.3, respectively.

For the desired joint trajectories, we choose

qd1(t) =
π

6
sin(2πt) qd2(t) = −π

6
sin(2πt)

for t ∈ [0, 1]. The feedback gains are set to a=3.0
and L = diag[40 20] and the sampling period to
2.5 ms. As a physical constraint, the actuator in-
put torques are limited to the maximum value of
400Nm for joint 1 and 200Nm for joint 2, respec-
tively.

Fig.4 shows the tracking performance of PD
controller, while Fig.5 is the response of learn-
ing system with the training factor β = 0.6 and
the parameter λ = 0.0, i.e. α = 1, at the
first trial. Fig.6 shows asymptotic convergence of
the learning system after the 25th trial. Finally,
Fig.7 demonstrates the exponential convergence
of learning system with three different λ’s.

5 Conclusion
We present in this paper an adaptive optimal
learning controller for exponential tracking of
repetitive robot motion within the framework
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Fig. 4. Response of PD controller
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Fig. 5. Response of the proposed learning controller
at the 1st trial
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Fig. 6. Response of the proposed learning controller
at the 25th trial
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Fig. 7. Exponential convergence of the proposed learn-
ing controller with three different λ’s

of computed torque based control system. In
the proposed controller, the learning algorithm
includes the parameter learning rules to estimate
the uncertain parameters of robot system, the
unknown disturbance bound and the input learn-
ing rule for the desired optimal control input. It
is shown that all the error signals in the optimal
learning control system are bounded and the
robot motion converges to the desired one with
predefined convergence rate. The experiments
are also shown the convergence property and
effectiveness of the proposed controller.
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