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Abstract: - The new general methodology for the electronic system design was elaborated by means of the 
optimum control theory formulation in order to improve the characteristics of the system design process. This 
approach generalizes the design process and generates a set of the different design strategies that serves as the 
structural basis to the optimal strategy construction. The principal difference between this new methodology 
and before elaborated theory is the more general approach on the system parameters definition. The main 
equations for the system design process were elaborated. These equations include the special control 
functions that are introduced into consideration artificially to generalize the total design process. Numerical 
results demonstrate the efficiency and perspective of the proposed approach. 
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1 Introduction 
One of the main problems of the total quality 
design improvement is the problem of the computer 
time reduction for a large system design. This 
problem has a special significance for the VLSI 
electronic circuit design. The traditional system 
design methodology includes two main parts: the 
model of the system that can be described as 
algebraic equations or differential-integral 
equations and a parametric optimization procedure 
that achieves the cost function optimal point. By 
this conception it is possible to change optimization 
strategy and use different models and different 
analysis methods. However, the time of the large-
scale circuit analysis and the time of optimization 
procedure increase when the network scale 
increases.  
 There are some powerful methods that reduce 
the necessary time for the circuit analysis. Because 
a matrix of the large-scale circuit is a very sparse, 
the special sparse matrix techniques are used 
successfully for this purpose [1]-[2]. Other 
approach to reduce the amount of computational 
required for the linear and nonlinear equations is 
based on the decomposition techniques. The 
partitioning of a circuit matrix into bordered-block 
diagonal form can be done by branches tearing as 
in [3], or by nodes tearing as in [4] and jointly with 
direct solution algorithms gives the solution of the 
problem. The extension of the direct solution 
methods can be obtained by hierarchical 
decomposition and macromodel representation [5]. 
Other approach for achieving decomposition at the 
nonlinear level consists on a special iteration 

techniques and has been realized in [6] for the 
iterated timing analysis and circuit simulation. 
Optimization technique that is used for the circuit 
optimization and design, exert a very strong 
influence on the total necessary computer time too. 
The numerical methods are developed both for the 
unconstrained and for the constrained optimization 
[7] and will be improved later on. The practical 
aspects of these methods were developed for the 
electronic circuits design with the different 
optimization criterions [8]-[9]. The fundamental 
problems of the development, structure elaboration, 
and adaptation of the automation design systems 
have been examine in some papers [10]-[13]. 
 The above described system design ideas can be 
named as the traditional approach or the traditional 
strategy because the analysis method is based on 
the Kirchhoff laws. 
 The other formulation of the circuit 
optimization problem was developed in heuristic 
level some decades ago [14]. This idea was based 
on the Kirchhoff laws ignoring for all the circuit or 
for the circuit part. The special cost function is 
minimized instead of the circuit equation solving. 
This idea was developed in practical aspect for the 
microwave circuit optimization [15] and for the 
synthesis of high-performance analog circuits [16] 
in extremely case, when the total system model was 
eliminated. The last papers authors affirm that the 
design time was reduced significantly. This last 
idea can be named as the modified traditional 
design strategy. 
 Nevertheless all these ideas can be generalized 
to reduce the total computer design time for the 



  

system design. This generalization can be done on 
the basis of the control theory approach and 
includes the special control function to control the 
design process. This approach consists of the 
reformulation of the total design problem and 
generalization of it to obtain a set of different 
design strategies inside the same optimization 
procedure [17]. The number of the different design 
strategies, which appear in the generalized theory, 

is equal to M2  for the constant value of all the 
control functions, where M is the number of 
dependent parameters. These strategies serve as the 
structural basis for more strategies construction 
with the variable control functions. The main 
problem of this new formulation is the unknown 
optimal dependency of the control function vector 
that satisfies to the time-optimal design algorithm. 
 However, the developed theory [17] is not the 
most general. In the limits of this approach only 
initially dependent system parameters can be 
transformed to the independent but the inverse 
transformation is not supposed. The next more 
general approach for the system design supposes 
that initially independent and dependent system 
parameters are completely equal in rights, i.e. any 
system parameter can be defined as independent or 
dependent one. In this case we have more vast set 
of the design strategies that compose the structural 
basis and more possibility to the optimal design 
strategy construct. 

 
2 Problem Formulation 
In accordance with the new design methodology 
[17] the design process is defined as the problem of 
the cost function ( )C X  minimization for X R N∈   
by the optimization procedure, which can be 
determined in continuous form as: 
 

 ( )dx

dt
f X Ui

i= , ,     Ni ,...,2,1=    (1)  

 
and by the analysis of the electronic system model 
in the next form: 
 

    ( ) ( )1 0− =u g Xj j ,   j M= 1 2, , ... ,    (2) 

        
where N=K+M, K is the number of independent 
system parameters, M is the number of dependent 
system parameters, X is the vector of all variables 

( )X x x x x x xK K K N= + +1 2 1 2, , ... , , , , ... , ; U is the 

vector of control variables ( )U u u uM= 1 2, ,... , ;  

uj ∈ Ω ;  { }Ω = 0 1; .  

 The functions of the right part of the system (1) 
are depended from the concrete optimization 
algorithm and, for instance, for the gradient 
method are determined as: 
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'   is equal to  ( )x t dti − ;   ( )η i X   is the implicit 

function  ( ( )x Xi i= η  )  that is determined by the 
system (2), C(X) is the cost function of the design 
process.  
 The problem of the optimal design algorithm 
searching is determined now as the typical 
problem of the functional minimization of the 
control theory. The total computer design time 
serves as the necessary functional in this case. The 
optimal or quasi-optimal problem solution can be 
obtained on the basis of analytical [18] or 
numerical [19]-[22] methods. By this formulation 
the initially dependent parameters for 
i K K N= + +1 2, ,...,  can be transformed to the 
independent ones when u j =1 and it is independent 

when u j =0. On the other hand the initially 

independent parameters for i K= 1 2, ,... , , are 
independent ones always. 
 We have been developed in the present paper 
the new approach that permits to generalize more 
the above described design methodology. We 
suppose now that all of the system parameters can 
be independent or dependent ones. In this case we 
need to change the equation (2) for the system 
model definition and the equation (3) for the right 
parts description.  
 The equation (2) defines the system model  and 



  

is transformed now to the next one: 
 

( ) ( ) 01 =− Xgu ji     (4) 

 
Ni ,...,2,1=  and j ∈ J 

 
where J is the index set for all those functions 

( )Xg j  for which  ui = 0, J = {j1, j2, . . .,jz},  js ∈ Π   

with s = 1, 2, . . ., Z,  Π is the set of the indexes 
from 1 to M, Π = {1, 2, . . ., M}, Z  is the number 
of the equations that will be left in the system (4),  
Z ∈{0, 1. . ., M}. 

The right hand side of the system (1) is defined 
now as: 
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for    Ni ,...,2,1= , 

 
where F(X,U) is the generalized objective function 
and it is defined as: 
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This new definition of the design process is more 
general than in [17]. It generalizes the methodology 
for the system design and produces more 
representative structural basis of different design 
strategies. The total number of the different 
strategies, which compose the structural basis, is 

equal to ∑
=

+

M

i

i
MKC

0

. We expect the new possibilities 

to accelerate the design process in this case. 
 
3 Numerical Results 
Some non-linear passive electronic circuits have 
been analyzed to demonstrate the new, more 
general system design approach. The circuits have 
various nodal numbers from 1 to 4, ])4,1[( ∈M . 
The numerical results correspond to the variable 
optimized step for the system (1) integration.  
 
3.1 Example 1 
The simplest nonlinear circuit in Fig. 1 is analyzed. 
The nonlinear element has the following 
dependency: 10 bVrRn += . Using the Laws of 

Kirchhoff we can obtain the following equation  for  

 
 

Fig. 1. Simplest one node circuit  
 
 

the function g(X) definition:  

 
( ) ( ) 02

1220
2
1 =−++≡ xxbxrxXg   (7) 

 
where the coordinates of the vector X are defined 

by means of 1
2
1 Rx = , 12 Vx = . This definition 

overcomes the problem of the positive restriction 
for the resistance.  Only one control function is 
defined in the limits of the previously defined 
methodology [17] and only two different design 
strategies compose the structural basis, for u=0 and 
for u =1. However, we need to introduce two 
control functions and three different design 
strategies for the new generalized formulation. We 
have the vector of the control functions ( )21 ,uuU  
and three different design strategies: (1,0), (1,1), 
(0,1). The last strategy is the new.  

 
3.1.1 Strategy (1,0) 
This is the traditional design strategy. In this case 
the parameter 1x  is an independent one and 2x  is a 
dependent one. The control vector has the next 
form: (1,0). The optimization procedure is done by 
the following equation: 
 

1

1
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with the cost function ( ) ( ) ( )2
2 kxXCXF −=≡   

and 2x  can be calculated by the analytic formula: 
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3.1.2 Strategy (1,1)  
This is the modified traditional design strategy. 
Both parameters 1x  and 2x  are independent and 
two equations for  the  optimization  procedure  can  



  

be defined now in the next now: 
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with the objective function ( ) ( ) ( )XgXCXF 2+≡ . 

 
3.1.3 Strategy (0,1) 
This is the new strategy, which did not appear in 
previously developed theory. In this case 1x  is a 

dependent parameter and 2x  is independent one. 
The optimization procedure is defined by the 
following equation:  
 

2

2

dx

dF

dt

dx
−=  

 

with the objective function 

( ) ( ) ( )2
2 kxXCXF −=≡ . The dependent parameter 

1x  is calculated now from 

the equation (7) as ( ) ( )22201 1/ xxbxrx −+= . 

We have an analytical solution due to the very 
simple example. We need to solve the system (4) 
by means of the Newton-Raphson method for all 
others examples. 

 
3.1.4 Results 
The numerical results for three above mentioned 
strategies are shown in Table 1. 

 
Table 1. The total set of design strategy structural 

basis. 

 

 
It is very interesting that the new design strategy 
(01), which appears in generalized theory, has the 
iteration number and the total design time lesser 
than others. This new design strategy gives the 
time gain 1.75 times with respect to the traditional 
strategy (10).  

 
3.2 Example 2 
The two-node circuit (Fig. 2) is analyzed by means 
of the new generalized methodology. 

 
 

Fig. 2. Two-node circuit topology. 

 
 
The nonlinear element has the following 

dependency: ( )2
2101 VVbyyn −+= . The vector X 

includes 5 components: 1
2
1 yx = , 2

2
2 yx = , 3

2
3 yx = , 

14 Vx = , 25 Vx = . The model of this circuit (4) 

includes two equations (M=2) and the optimization 
procedure (5) includes five equations. The total 

structural basis contains 16
2

0
5 =∑

=i

iC  different 

strategies. The system (4) is solved by the Newton-
Raphson method. The cost function C(X) is defined 

by the following form: ( ) ( ) ( )2
25

2
14 kxkxXC −+−= . 

 The design results for some of these strategies are 
presented in Table 2. 

 
Table 2. Some strategies of the structural basis for 

two-node circuit. 
 

 
Four last strategies of the table are the same that 
had been defined inside the previously formulated 
methodology. We can name these strategies as the 
“old” ones. It is very interesting that some new 
strategies have the computer time significantly 
lesser than all the “old” strategies. The strategy 
number 1 has the minimal computer time and the 

N Control functions  Calculation results
vector Iterations Total design

 U (u1, u2) number time (sec)
1      ( 1 0 ) 9 0.000131
2      ( 1 1 ) 26 0.002353
3      ( 0 1 ) 5 0.000075

N Control functions  Calculation results
vector Iterations Total design

 U (u1, u2, u3, u4, u5 ) number time (sec)
1          ( 0 1 0 1 1 ) 5 0.000851
2          ( 0 1 1 1 1 ) 178 0.016671
3          ( 1 0 0 1 1 ) 201 0.026235
4          ( 1 0 1 1 1 ) 3162 0.300012
5          ( 1 1 0 0 1 ) 23 0.002205
6          ( 1 1 0 1 0 ) 49 0.100011
7          ( 1 1 0 1 1 ) 49 0.002405
8          ( 1 1 1 0 0 ) 107 0.010365
9          ( 1 1 1 0 1 ) 1063 0.170011

10          ( 1 1 1 1 0 ) 143 0.013115
11          ( 1 1 1 1 1 ) 243 0.006215



  

maximum time gain 12.2 with respect to the 
traditional design strategy 8. At the same time the 
best “old” strategy 11 has the time gain 1.67 only. 
 
3.3 Example 3 
In Fig. 3 there is a circuit that has seven 
parameters, i.e. four admittances 4321 ,,, yyyy  and 

three nodal voltages 321 ,, VVV . 

 

 
 

Fig. 3. Three-node circuit topology. 

 
The nonlinear elements were defined by the 

following dependencies: ( )2
21111 VVbay nnn −⋅+= , 

( )2
32222 VVbay nnn −⋅+= . The vector X includes 7 

components: 1
2
1 yx = , 2

2
2 yx = , 3

2
3 yx = , 4

2
4 yx = , 

15 Vx = , 26 Vx = , 37 Vx =   The mathematical model 

of this circuit (4) includes now three equations 
(M=3) and the optimization procedure (1), (5) 
includes seven equations. The cost function C(X) is 
defined by the following expression: 

( ) ( ) ( ) ( )2
33

2
232

2
121 kVkVVkVVXC −+−−+−−= . 

The total structural basis contains 64
3

0
7 =∑

=i

iC  

different strategies. For instance, the structural 
basis of the previous developed methodology 

includes only 823 =  different strategies. The 
design results for the “old” strategies and for some 
of the new strategies are presented in Table 3. 
Among the “old” strategies (14-21) there are three 
strategies (17, 18, and 21) that have the design time 
lesser than the traditional strategy 14. However, the 
time gain is not very large. The best strategy 18 
among all the “old” strategies has the time gain 
1.86 only. At the same time, among the new 
strategies there are many (2, 6, 10, 11, 12, 13) that 
have the design time significantly lesser than the 
traditional one and have the time gain more than 
14. The optimal strategy among all the presented is 
the number 11. It has the computer time gain 23.1 
times with respect to the traditional design strategy. 
Further analysis may be focused on the problem  of 

Table 3. Some strategies of the structural basis for 
three-node circuit. 

 

 
 
the optimal design strategy searching by means of 
the control vector manipulation. It is clear 
intuitively that we can obtain the time gain much 
more by means of the new structural basis.  

 
3.4 Example 4 
The four-node circuit is analyzed below (Fig. 4). 
The problem includes five parameters on the basis 
of the admittances ( )54321 ,,,, xxxxx , where 

1
2
1 yx = , 2

2
2 yx = , 3

2
3 yx = , 4

2
4 yx = , 5

2
5 yx = , and 

four parameters on the basis of  the  nodal  voltages  
 
 

 
 

Fig. 4. Four-node circuit topology. 

N Control functions  Calculation results
vector Iterations Total design

 U (u1,u2,u3,u4,u5,u6,u7) number time (sec)
1          ( 0 1 0 1 1 1 1 ) 1127 0.8414
2          ( 0 1 1 0 1 1 1 ) 63 0.0122
3          ( 0 1 1 1 0 1 0 ) 2502 1.8411
4          ( 0 1 1 1 1 0 1 ) 1390 0.9731
5          ( 0 1 1 1 1 1 0 ) 224 0.3571
6          ( 0 1 1 1 1 1 1 ) 43 0.0125
7          ( 1 0 1 1 1 1 0 ) 354 0.5205
8          ( 1 0 1 1 1 1 1 ) 2190 1.1601
9          ( 1 1 0 0 1 1 1 ) 326 0.5042

10          ( 1 1 1 0 0 1 1 ) 23 0.0161
11          ( 1 1 1 0 1 0 1 ) 14 0.0099
12          ( 1 1 1 0 1 1 0 ) 27 0.0103
13          ( 1 1 1 0 1 1 1 ) 51 0.0102
14          ( 1 1 1 1 0 0 0 ) 59 0.2291
15          ( 1 1 1 1 0 0 1 ) 167 0.2732
16          ( 1 1 1 1 0 1 0 ) 174 0.2911
17          ( 1 1 1 1 0 1 1 ) 185 0.1543
18          ( 1 1 1 1 1 0 0 ) 63 0.1228
19          ( 1 1 1 1 1 0 1 ) 198 0.2451
20          ( 1 1 1 1 1 1 0 ) 228 0.2582
21          ( 1 1 1 1 1 1 1 ) 293 0.1765



  

( )9876 ,,, xxxx , where 16 Vx = , 27 Vx = , 38 Vx = , 

49 Vx = . The control vector U includes nine 

components ( )921 ,...,, uuu . The nonlinear 

elements were defined by the same dependencies 
like in the previous example. The circuit model 
includes five equations of the system (4) and the 
optimization procedure includes nine equations (1), 
(5). The system (9) is solved by the Newton-
Raphson method. The cost function C(X) of the 
design process is defined by the following form: 

( ) ( ) ( ) ( )2
287

2
176

2
09 kxxkxxkxXC −−+−−+−= . 

The total number of the different design strategies 
that compose the structural basis of the generalized 

theory is equal to 256
4

0
9 =∑

=i

iC . At the same time 

the structural basis of the previous developed 
theory includes 16 strategies only. The results of 
the structural basis strategies that include all the 
“old” strategies (the last 16 strategies) and some 
new strategies are shown in Table 4.  

 
Table 4. Some strategies of the structural basis for 

four-node circuit. 
 

The strategy 13 is the traditional one. There are 
seven different strategies in the “old” group that 
have the design time less that the traditional 
strategy. These are the strategies 16, 18, 20, 24, 26, 
27 and 28. The strategy 18 is the optimal one 
among all the “old” strategies and it has the time 
gain 5.06 with respect to the traditional design 
strategy. On the other hand the best strategy among 
all the strategies (number 7) of the Table 4 has the 
time gain 29.2. So, we have the additional 
acceleration 5.77 times. This effect was obtained 
on the basis of the more extensive structural basis 
and servers as the principal result of the new 
generalized methodology. The posterior analysis 
and the optimization of the control vector U can 
increase this time gain as shown in [23].  
 
4 Conclusion 
The traditional method for the analog circuit 
design is not time-optimal. The problem of the 
optimum algorithm construction can be solved 
more adequately on the basis of the optimal 
control theory application. The time-optimal 
design algorithm is formulated as the problem of 
the functional optimization of the optimal control 
theory. In this case it is necessary to select one 
optimal trajectory from the quasi-infinite number 
of the different design strategies, which are 
produced. The new and more complete approach 
to the electronic system design methodology has 
been developed now. We have checked that this 
approach generates more broadened structural 
basis of the different design strategies. The total 
number of the different design strategies, which 
compose the structural basis by this approach, is 

equal to ∑
=

+

M

i

i
MKC

0

. This new structural basis 

serves as the necessary set for the optimal design 
strategy search. This basis includes very 
perspective strategies that can be used for the time-
optimal design algorithm construction. Some new 
strategies have better convergence and lesser 
computer time than the strategies that appeared in 
before developed methodology. This approach can 
reduce considerably the total computer time for the 
system design. Analysis of the different electronic 
systems gives the possibility to conclude that the 
potential computer time gain that can be obtain on 
the basis of the broadening of the structural basis 
is significantly more than for the previous 
developed methodology. 
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N Control functions  Calculation results
vector Iterations Total design

 U (u1,u2,u3,u4,u5,u6,u7,u8,u9) number time (sec)
1          ( 1 1 1 0 1 0 0 0 1 ) 5 0.0031
2          ( 1 1 1 1 1 0 0 0 1 ) 397 0.4312
3          ( 1 1 1 0 1 1 0 0 1 ) 5 0.0029
4          ( 1 1 0 1 1 1 1 1 0 ) 119 0.0209
5          ( 1 1 1 1 0 0 1 0 1 ) 101 0.0232
6          ( 1 1 1 0 1 0 0 1 1 ) 15 0.0134
7          ( 1 1 1 0 1 1 1 0 1 ) 5 0.0009
8          ( 1 1 1 0 1 1 1 1 1 ) 101 0.0243
9          ( 1 1 1 1 0 0 1 1 1 ) 185 0.0324

10          ( 1 1 1 1 0 1 0 0 1 ) 74 0.0102
11          ( 1 1 1 1 0 1 0 1 1 ) 121 0.0254
12          ( 1 1 1 1 0 1 1 1 1 ) 159 0.0127
13          ( 1 1 1 1 1 0 0 0 0 ) 33 0.0263
14          ( 1 1 1 1 1 0 0 0 1 ) 397 0.4317
15          ( 1 1 1 1 1 0 0 1 0 ) 6548 7.1392
16          ( 1 1 1 1 1 0 0 1 1 ) 76 0.0122
17          ( 1 1 1 1 1 0 1 0 0 ) 456 0.5113
18          ( 1 1 1 1 1 0 1 0 1 ) 24 0.0052
19          ( 1 1 1 1 1 0 1 1 0 ) 3750 4.3661
20          ( 1 1 1 1 1 0 1 1 1 ) 90 0.0095
21          ( 1 1 1 1 1 1 0 0 0 ) 68 0.0354
22          ( 1 1 1 1 1 1 0 0 1 ) 596 0.6213
23          ( 1 1 1 1 1 1 0 1 0 ) 5408 6.2191
24          ( 1 1 1 1 1 1 0 1 1 ) 78 0.0255
25          ( 1 1 1 1 1 1 1 0 0 ) 238 0.2104
26          ( 1 1 1 1 1 1 1 0 1 ) 77 0.0227
27          ( 1 1 1 1 1 1 1 1 0 ) 139 0.0131
28          ( 1 1 1 1 1 1 1 1 1 ) 131 0.0103
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