
An enhanced web-service for scientific data visualization

ASHRAF S. HUSSEIN, MOHAMMED S. ABDELWAHAB, MOHAMMED F. TOLBA
Scientific Computing Department,

 Faculty of Computers and Information Sciences, Ain Shams University
Abbassia, 11566, Cairo

 EGYPT

Abstract:- This paper summarizes the progress achieved through the build of a scientific data visualization web
service; a client-server system that is designed to acquire visualization requests from users connected to a web
browser, perform the visualization process and provide them with the visualization results. Interacting with the
visualization results is another issue that has to be taken into account. Providing results using VRML gives the
opportunity to navigate the visualization and makes the visualization as an analysis tool rather than just a tool for
the presentation of results. The different trade offs and optimization parameters associated with the VRML output
are discussed through the presentation of an optimized framework aiming to provide interactive, fast, portable and
easy to use services. The framework is tested against different visualization techniques to ensure its adaptability to
each of them. An average reduction factor of 88 % is achieved to the final VRML resultant file and an average
speed up percentage of 10 % is achieved to the execution time of the visualization process.

Key-Words: - Scientific visualization, VRML, internet services and knowledge discovery

1 Introduction
Total Cost of Ownership (TCO), a new variable has
been added recently to the complicated system of
equations governing the design of any commercial
application. Low cost or even no-cost scientific
services will significantly lower the entry barrier of
the use of scientific applications.

Scientific data visualization is considered one of
the earliest scientific fields which takes the
advantage of this philosophy. The WWW
environment offers an excellent opportunity of
providing data visualization techniques to the
general public. The final goal is to have the
visualization technology be available on every desk
in a transparent manner.

Recently, many authors [1] discussed the
applicability of the scientific data visualization
especially over the WWW environment. Pioneering
work on the Web-based visualization was done by
Ang et al. [2] they exploited the MIME*-typing
concept to allow visualization data to be sent over
the Web and be processed by a Web browser. They
linked their medical visualization system (VIS) to

* Multipurpose Internet Mail Extensions

the Mosaic browser via its CGI† interface: when
data of MIME-type was retrieved by the browser, it
was passed to the VIS as helper application.

After this contribution, a lot of trials for the
efficient use of the WWW platform to support
scientific data visualization have been introduced
specially for large volumetric data. All these trials
can be classified into three main approaches; the
first approach [3] makes minimal use of the Web,
relying on it simply as a data communication
medium and exploiting the MIME-typing concept
to divert data to a particular application. Users
continue to use their own software on their own
platform.

The second approach is the Java applet
technique which was designed for the cases where
the data is closely associated with the software, and
indeed located on the same server [4]. The server
hosts an instruction file specifying the data to be
visualized, and the initial pipeline to be created. On
receiving this file, the browser invokes an
application that interprets the file and executes the
commands. Although that this approach allows
scientific visualization applications to be platform
independent [5], however, this is inappropriate as

† Common Gateway Interface

the data is usually associated with the user rather
than the software provider.

The third approach is a very general approach
taken by Wood et al [6], rather than transfer
visualization data or software across the Web, a
proposed system was designed in which the
visualization was executed on a remote server, and
the resulting graphics returned over the Web for
viewing in a browser. Several systems have been
proposed supporting this branch for example; the
authors of the visualization toolkit (VTK) [7]
explain how to build a VTK server-based
visualization service. The form-based interface of
these systems is simple but inflexible.

All these trials [[2], [6], and [7]] were focused
mainly on discussing how the data and the
visualization results should be manipulated and
transferred over the WWW-based environment
without taking into consideration one of the most
important factors which is interactivity as a key
facility to improve the process of getting insight in
large data sets. So, the need to a new emerging
technology like virtual reality for the visual
representations was driven by the increasing
importance of the intuitive real world interaction,
realistic representation [[8], [9]] and the usage of the
web as a rich distributed computing environment
specially after the new integration between the
internet computing and virtual reality through the
VRML‡. VRML is not only promising to support
interactivity which is a missing part in most of
WWW-based scientific visualization applications
but also it provides a missing level of portability for
visualization systems [10].

Technically speaking, VRML is neither a virtual
reality nor a modeling language. At its core, VRML
is simply a three-dimensional interchange format
[11], which can be considered as three-dimensional
analog to HTML. This means that VRML serves as
a simple, multiplatform language that supports the
publishing of three-dimensional worlds over the
WWW platform.

With respect to introducing VRML for scientific
data visualization, current research is categorized
into two main threads. The first thread seeks for the
exploit of primitive VRML ISO standard in order to
support the needed functionalities. The second

‡ Virtual reality modeling language

thread tries to extend the current VRML standard
for specialized usage in the field of scientific data
visualization [[12], [13]].

There is no doubt that the new special adding to
the VRML standard to support scientific data
visualization applications will result in better
performance, higher flexibility and ease of use [12].
On the other hand, using such new standard
requires special purpose VRML browsers, which
mean lower level of portability. The approach
followed in this work is to optimize the usage of the
current VRML ISO-standard to provide the user
with the highest quality of service and the fastest
service-time.

2 The New Framework
Dealing with the customer requirements for
scientific services is quite different from dealing
with the other regular customers. The huge amount
of data, the required accuracy level, the limited
computational resources, in addition to the low
communication speed make providing such services
a very difficult goal. Providing a scientific data
visualization service adds another obstacle which is
interactivity. So, it is clear that a scientific data
visualization web application should provide their
customers with an accurate, interactive, portable
service with an acceptable service-time taking into
consideration the environment constrains [14].

2.1 Interactivity
From the discussed review of the previous work, it
can be concluded that the use of VRML as a three-
dimensional graphical file-format to represent the
output of the visualization process enables the
framework to be portable and the user to easily
interact with the resultant world especially after the
huge addition of the action scripts to the VRML 2.0
standard.

Although this ability had facilitated the
interaction of the user with the visualization results,
there are still a lot of limitations on the user
interaction especially in some visualization
techniques which need an interaction between the
user and the underlying data used to generate the
VRML resultant world [15].

As shown in Fig. 1 the implemented framework
will adopt the third branch discussed before [6], by
adding some changes to it which enables the server
to store the user data file for a certain period of
time.

Fig 1. Schematic drawing for the interaction between clients
and server

Although this addition may increase the needed

storage required by the server, it will enable the
user to interact with the underlying data without the
need to upload it each time a visualization service is
requested or visualization parameters are changed
on the current data. This addition in the architecture
will decrease the service time, the communication
overhead and the bandwidth required from the
server. In addition, the output VRML world will
contain action scripts which enable the user to
change the light source properties such as color and
position and interact with the whole world using a
keyboard based simulation to a trackball. This
enables the framework to decrease the interactivity
limitations and provide the user with customized

interactive controls independent on the VRML
viewer capabilities.

2.2 Service Time
The service time is the most important factor
affecting the performance of a web application
providing a scientific data visualization services. As
shown in Fig. 2 the service time consists of three
components. The first component is the upload time
of the data file (to be visualized) to the server, and
this component is not controllable because it highly
depends on the data file size and the network speed.
The second and the third components are the
processing time and the download time of the
resultant VRML file to the client. The third
component is a direct function of the file size and
consequently in the second component. The more
reduction in the file size the more processing time
required to generate the VRML file.

Fig 2. The parameters affecting the final service time

In order to achieve best performance, the
implemented framework presents optimized
solutions for the reduction of the service time by
reducing the processing time needed by the
visualization process and by the efficient reduction
of the resultant VRML file size without affecting
the overall processing time.

2.3 VRML File Size
The resultant VRML file size is considered one of
the most important leading factors in implementing
any VRML based scientific data visualization
service especially over low communication speed
networks such as internet. VRML is a UTF-8 file
format that has a lot of tricks which enable the
designer to decrease the required file size to

represent the resultant world. These features are
used to develop a sophisticated model for file size
optimization. In order to decrease the resultant
VRML file size, the application will use a lot of
methods some of them are usually used and the
others considered one of the main contributions of
the present work.

The new developed model to reduce the file size
depends mainly on one of the most important
features of VRML which is the ability to combine
more than one polygon in the same VRML node.
This feature will enable the framework not only to
remove unneeded nodes headers but also enable it
by using some additional computation to remove
the duplicated point position and substitute it with
its index. Due to the sharing of vertices between
different polygons, this reduces the file size with an
average percentage of 87.63323%, where the
reduction factor of file size is calculated according
to equation (1).

onoptimizati before size
onoptimizatiafter size file -on optimizati before size

file
file

(1)

After many investigations, it is found that the
percentage reduction in the file size is affected by
the number of duplicated vertices indices and the
number of polygons per node which reflect directly
on the number of digits needed to uniquely identify
the polygons within the current node. This means
that the reduction in the file size is dependent only
on the characteristics of the data file and cannot be
predicted in advance, generally the most optimum
file size is close to the case of which all polygons
are written in the same node.

In the developed solution, eliminating the
duplicated points using sequential search for a
vertex represented by a regular XYZ coordinate-
representation will consume a lot of time even if the
array of points is sorted. So, there was a need for an
algorithm that avoids both searching in the three-
dimensional space and the radix sort overhead
specially in case of the huge amount of data points.
To solve this problem, the framework uses a very
simple technique which is based on finding whether
a particular point was previously used or not. The
application uses the point XYZ coordinate to
generate a string key used to index a hash table. By

this way, the points in the hash table do not need to
be sorted and the search time will be significantly
reduced.

2.4 Processing Time
In order to decrease the overall processing time, the
server side of the framework is implemented as a
highly optimized multithreaded producer-consumer
like dynamic link library. The process of generating
VRML file contains mainly two separate processes;
the first process is the preparation of the nodes data
which will be written to the VRML file and the
second process is writing the VRML file to the
storage device. The two processes can be separated
and implemented as producer-consumer
architecture [16], where the first process represents
the producer and the second represents the
consumer.

Fig 3. Schematic drawing illustrate the produced-consumer
architecture usage

Using this architecture enables the environment

to begin the file writing process without waiting for
the whole preparation process to complete. Due to
that both processes use different computational
resources (the processor for the first process and the

storage device for the second), the process of
eliminating the duplicated points which previously
illustrated will not delay the process of file
generation as it is known that the dealing with the
storage device is much slower and takes more time.

3. Implementation of Visualization
Techniques
The present framework enables the implementation
of data visualization techniques. Each technique is
based on the same concept of multithreading
producer consumer architecture with some slight
modifications.

For all the implemented visualization techniques,
two producer threads are running concurrently. The
first one is the process of generating the
visualization output implemented on the input data.
The second process is the generation of the wire
frame model of the object. The two threads are
sharing the processor resource while only one
consumer is running for writing the result data to
the storage device. This is done in order to maintain
an organized representation to the VRML file
structure.

The modification implemented in the algorithms
of the visualization techniques concerns the way of
constructing the hash key used to index the hash
table in the process of removing the duplicated
points. In the implementation of both line contour
and isosurface techniques -as a sample of the scalar
visualization techniques- Fig. 4 and 5, the string
key representing the new calculated contour point
on each polygon edge is constructed using the two
end vertices of this edge. Since no edge can contain
more than one point in the same contour level,
using the two end vertices of that edge can uniquely
define the resulting contour point.

 Fig 4. PSEUDO-CODE for line contour producer

Fig 5. PSEUDO-CODE for isosurface producer

The algorithm of flooded contour depends in the
generation of each colored filled region on the idea
of constructing a continuous closed intervals
located between each two consecutive contour
levels and then filling these regions with the
appropriate color [17]. In this situation, the
generated contour points on each edge is uniquely
defined by using the two end vertices of this edge
and the current contour level, since it is possible for
more than one level to pass across the same
polygon edge.

For each polygon in the data set do
If the used shape number of vertices equal 8 then
Calculate the binary code associated with this polygon
vertices
For each polygon edge do
 Construct the hash key string for this edge using
 the two edge end points
 If the hash key exists in the hash table then
 Place its associated index in the current VRML node
 Else
 Construct the hash key string by reversing the
 two edge end points
 If the hash key exists in the hash table then
 Place its associated index in the current VRML node
 Else
 Calculate the line contour point of the current
 contour value,
 Add the point coordinate to an array of points,
 Add point index to the hash table using the
 constructed key string,

For each polygon in the data set do
If the used shape number of vertices is higher than 3 then
Triangulate the used shape
For each triangle edge do
 Construct the hash key string for this edge using the
 two edge end points
 If the hash key exists in the hash table then
 Place its associated index in the current VRML node
 Else
 Construct the hash key string by reversing the two
 edge end points
 If the hash key exists in the hash table then
 Place its associated index in the current VRML node

 Else
 Calculate the line contour point of the current
 contour value,
 Add the point coordinate to an array of points,
 Add point index to the hash table using the
 constructed key string,
 Add point index to the current VRML node.

 Fig 6. PSEUDO-CODE for flooded contour procedure

4. Analysis and Discussion
In this section, the two major parameters affecting
the service time which are the execution time and
the VRML file size are evaluated using sample test
cases presented in Table 1.

Table 1. The test cases used to validate the new framework

Title

Number

of
Polygons

No of

Polygon
Vertices

Computati
onal Grid

Type

Sample Output

OUTSURF
DATA

(FEBRICK
DATA)

1000

8

Unstructu

red

CYLINDER

1760

4

Structured

FE-
VOLUME

KURBEL3F
BRICK
DATA,
SFB393

3424

4

Unstructu

red

3D FE
DATASET

7366

4

Unstructu

red

4.1 Analysis of VRML File Size
Fig. 7 shows, for each test case, the relation
between the VRML file size and the number of
polygons written per VRML node according to the
two main variables affecting the final file size; the
number of duplicated vertices indices and the
maximum number of digits used to identify the
polygons.

CYLINDER

0
100
200
300
400
500
600
700
800
900

1 5 10
100

500
1000

1500 all

Polygons/Node

V
R

M
L

fi
le

 s
iz

e
(K

B
)

No Duplication-
Variable
No Duplication-
Constant
Duplication -
Variable
Duplication-
Contsant

For each polygon in the data set do
If the used shape number of vertices is higher than 3 then
Triangulate the used shape
For each triangle edge do
 Initialize array of indices,
 Construct the hash key string for this edge using
 the two edge end points and the current contour
 value
 If the hash key exists in the hash table then
 If contour point index does not exist in the
 array of indices then
 Add contour point index to array of indices
 Else
 Construct the hash key string by reversing the
 two edge end points and the current contour
 value
 If the hash key exists in the hash table then
 If contour point index does not exist in the
 array of indices then
 Add contour point index to array of
 Indices
 Else
 Calculate the line contour point of the
 current contour value
 If contour point index does not exist in the
 array of indices then
 Add contour point index to array of
 indices,
 Add point coordinates to array of points,
 Add point index to the hash table using the
 constructed key string
For each vertex in the triangle do
 If the current contour value <= vertex value <=
 next contour value then
 Add the point to the array
If the number of polygon vertices added to the array =3 then
Color the whole polygon with the current contour color
Else
 Calculate the next contour color points using the
 same procedure above,
 Add the result indices to the array,
 Arrange the array of indices according to their
 associated points in the array of points,
 Write the arranged indices to the current VRML
 node.

FEBRICK DATA

0
100
200
300
400
500
600

1 10
500 all

Polygons/Node

V
R

M
L

Fi
le

si

ze
 (K

B
)

No Duplication-
Variable
No Duplication-
Constant
Duplication -
Variable
Duplication-
Contsant

3D FE DATASET

200
500
800

1100
1400
1700
2000
2300
2600
2900
3200

1
100

1500
3000

4500
6000 all

Polygons/Node

V
R

M
L

fi
le

 s
iz

e
(K

B
)

No Duplication
Variable
No Duplication
Constant
Duplication -
Variable
Duplication-
Contsant

FE-VO LUME KURBEL3F
 BRICK DATA

0
200
400
600
800

1000
1200
1400
1600

1 10
500

1500
2500 all

Polygons/Node

V
R

M
L

fi
le

Si

ze
 (K

B
)

No Duplication
Variable
No Duplication
Constant
Duplication -
Variable
Duplication-
Contsant

Fig 7. The relation between the main factors affects the VRML
file size

The figure shows the four combinations of two

states: first with using the duplicated point
coordinates replaced by their indices and without
the removal of duplicated points, second with the
usage of a constant number of digits (the maximum
needed) to represent the points indices and with
using a variable number of digits to represent them.

As it can easily discovered from the figure the
main effecting factor is the removal of duplicated
point coordinates. This factor only affects the
behavior by a slight shift in the Y-direction which
differs upon the input file characteristics only. It is

meant here by the input file characteristics the
number of duplicated points, the number of vertices
per polygon, and the total number of polygons in
the file. Due to these parameters, which cannot be
governed or calculated in advance it is very
difficult to find a relation that can represent a rule
to govern the VRML file behavior with respect to
the number of polygons per node.

4.2 Analysis of Execution Time
Fig. 8 represents the execution time performance
for the different cases on a dual processor Pentium
III 1000 MHz PC computing platform with 128 MB
memory on Windows 2000 advanced server as an
operating system.

Fig 8. Execution time performance over dual processor

As shown in the figure, the main factor affecting

the execution time is the process of writing the
VRML nodes to the storage device (the consumer
thread). The execution time reaches its highest
value in case of writing each polygon in a separate
VRML node and this value decreases rapidly with
the increase of number of polygons written per
node until this decreasing trend becomes
approximately flat at a certain point. This point
appears when change in number of written nodes is
small; the value of the execution time is
approximately the same -oscillating within small
interval around a threshold value- and this small
difference depends on the effect of eliminating the
duplicated points in the process of generating the
VRML nodes (the producer thread).

Table 2 illustrates the speed up percentage of the
execution time, resulting from running both the
multithreaded and the conventional sequential
algorithms over a dual processor environment.

Table 2. Speed Up percentage of execution time

Average Min Speed Up 1.63536 %

Average Max speed Up 26.0157 %

Average Speed Up 9.2793 %

The speed up factor is calculated using equation (2),

 timeprocessing Sequential
 timeprocessing dedmultithrea - timeprocessing Sequential (2)

5. Conclusion
Using VRML in scientific data visualization
especially over the WWW-platform enables it to be
more interactive and portable. Different factors
affecting the implementation of such commercial
scientific web-services can be optimized to increase
the quality of scientific service produced. The main
leading factor in such environment is the
communication bandwidth and speed, which
represent a great obstacle. Reducing the final
resultant VRML file size without highly affect the
final execution time will affect highly on the final
service time and the needed communication
bandwidth and speed. Different factors affecting the
final VRML file size such as the number of
polygons written per VRML node are optimized, in
order to best adopt the VRML file architecture
which leads to a great decrease in the VRML file
size.

References:
[1] K. Brodlie, S. Lovegrove and J. Wood, UK team

surveys web-based visualization, in ACM
SIGGRAPH Computer Graphics, ACM
Press New York, NY, USA , February 2000, pp.
10-12, (See also Webvis website:
http://www.scs.leeds.ac.uk/vis/webvis.html).

[2] C. S. Ang, D. C. Martin and M. D. Doyle,
Integrated control of distributed volume
visualization through the World Wide Web, in
Proceedings of IEEE Visualization94, R. D.
Bergeron and A. E. Kaufman, ed., 1994, pp. 13-
20.

[3] Vis5D website. See:
http://www.ssec.wisc.edul~billhT/vis5d.html,
1999.

[4] NPAC. The NPAC Visible Human Viewer
website,
http://www.npac.syr.edu/projects/vishuman/Visi
bleHuman.html, 1999.

[5] C. Michaels and M. Bailey, VizWiz: a Java
applet for interactive 3D scientific visualization
on the web, in Proceedings of the 8th conference
on IEEE Visualization97, IEEE Computer
Society Press Los Alamitos, CA, USA, 1997,
pp. 261-ff.

[6] J. Wood, K. W. Brodlie and H. Wright,
Visualization over the WWW and its application
to environmental data, in Proceedings of the 7th
conference on IEEE Visualization96, R. Yagel,
G. M. Nielson, ed., IEEE Computer Society
Press Los Alamitos, CA, USA, 1996, pp. 81-ff.

[7] W. Shroeder, K. Martin and W. E. Lorensen,
The Visualization Toolkit: An Object-Oriented
Approach to 3D Graphics, Prentice-Hall, 1996.
(See also vtk website:
http://www.kitware.com/vtk.html).

[8] S. Bryson, Virtual reality in scientific
visualization, in Communications of the ACM,
ACM Press New York, NY, USA, May 1996,
pp. 62-71.

[9] H. Haase, M. Gobel, P. Astheimer, K. Karlsson,
F. Schroder, Th. Fruhauf and R. Ziegler, How
Scientific Visualization can benefit from Virtual
Environments, CWI Quarterly, The Netherlands,
1994, pp. 159-174.

[10] J. L. Wesson and P. R. Warren, Interactive
visualization of large multivariate datasets on
the world-wide web, in ACM International
Conference Proceeding Series, Australian
Computer Society, Inc. Darlinghurst, Australia,
2001, pp. 151-157.

[11] ISO/IEC 14772-1, the virtual reality modeling
language, 1997.
http://www.vrml.org/Specifications/VRML97

[12] R. Ginis and D. Nadeau, Creating VRML
extension to support scientific visualization, in
Proceedings of the first symposium on Virtual
reality modeling language, ACM Press New
York, NY, USA, 1995, pp. 13-20.

[13] J. Behr, M. Alexa, Volume Visualization in
VRML, in Proceedings of the sixth international
conference on 3D Web technology, ACM
Press New York, NY, USA, 2001, pp. 23-27.

[14] W. Lefer and J. M. Pierson, Visualization
Components on the Internet, in proceedings of
the 3rd International Conference on Visual
Computing (ICVC), Mexico City, Mexico,
September 18-22, 2000, pp. 104-112.

[15] M. Jern, Information drill-down using Web
Tools, In Proceedings of IEEE Visualization97,
IEEE Computer Society Press Los Alamitos,
CA, USA, 1997.

[16] W. Stallings, Operating systems, Internals and
design principles, Upper Saddle River, NJ:
Prentice Hall, 1998.

[17] M. F. Tolba., A. S. Hussien, A. H. Aziz and H.
E. Ibrahim, A fast Algorithm for colored filled-
regions contouring representation, in Proceeding
of first International Conference on Intelligent
Computing and Information Systems (ICICIS),
Cairo, Egypt, June 24-26, 2002, pp. 404-409.

