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Abstract:  Robust control problems in linear systems are considered on the base of analysis of related  linear 
quadratic differential game. New explicit formulae for the "best" robust optimal control input and the "worst" 
exogenous disturbance derived with the use of pseudo-inverse matrices )(tD+  were originally suggested in 
this author's previously published paper "Reduction of Dimensionality in Choosing Robust Optimal Control in 
Linear Systems", WSEAS Transactions on Mathematics, Issue 4, Volume 2, October 2003, pp. 318 - 323. The 
meaning of the use of the pseudo-inverse matrices is that some uncontrollable or almost uncontrollable 
components are automatically eliminated in choosing optimal control. In this paper the proof of the main 
theorem as well as meaningful and detailed analysis are presented. We shall demonstrate that the extremal that 
corresponds to the saddle point of the game may be extended beyond  conjugates points (under  assumption that 

remains non-negative definite). We reveal that computational difficulties, which may arise in obtaining 
the solution of the game and the optimal control law, are related to the fact that the trajectories  (where the 
state ) of the system may be exactly or approximately localized in the subspace of 
dimensionality less than  on some time interval. We shall demonstrate how to overcome these difficulties by 
using "inverse" matrix differential equations of Riccati type and pseudo-inverse matrices. 
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1   Introduction 
Let the considered controlled system be described 
by the linear differential equation 
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where the vector function  represents the state 
of the system, );  is a control 
input and  is an external disturbance.  
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     A solution to the problem of the optimal robust 
system design is closely related to a linear quadratic 
differential game (e.g., see books [1-4] and 
references therein). 
     Here we shall consider this problem on the finite 
time interval, t  (the finite-horizon case). 
The solution of the robust optimal control problem  
in the finite-horizon case is equivalent to solving the 
following differential game: Find the "best" optimal 
input   and the "worst" exogenous input 

, which provide a saddle point 
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where ∆  is an arbitrary non-negative definite 
symmetric matrix, and  satisfies ODE (1). )(tx
     The solution of the differential game (2), (3) for 
the system (1) was investigated in [1-4]. It was 
based on the solution  to the following matrix 
differential Riccati equation: 
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with the boundary condition ∆=)(TP , 
Ttt ≤≤0 . The solution of the linear quadratic 

optimal control problem, which is obtained from 
(1), (2), (3) by imposing , was also 
investigated. 
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     As was shown in author's previous publications 
[5 -7], the computational difficulties, which might 
arise in solving the Riccati equations for the matrix 
function   for time-varying systems, are related 
to the fact that trajectories  may exactly or 
approximately be localized in the subspace of 
dimensionality less than  on some time interval. 
The matrix , defined as a solution to the 
"inverse" matrix Riccati differential equation 

)(tP

D

)(tx

n
)(t

       

CDDCBBBB

DAAD
dt

tdD

TTT

T

+−

−+=

− )(

)(

11
2

22 γ
            (5) 

on the time interval , with boundary 

condition  or   if  

Ttt ≤≤0

=)(TD1)( −∆=TD +∆ ∆  is a 
singular matrix, and the pseudo-inverse matrix 

 were introduced in [5 -7]. Here )(tD+ +∆ and 

 denote the Moore-Penrose pseudo-inverse 
matrices.  It was shown in [5 -7] that the matrix 

 becomes close-to-singular or  stays 
singular (i.e. rank deficient, degenerated) all the 
time on a considered time interval in the cases 
where the trajectories  approximately or 
exactly belong to a subspace of dimensionality less 
than  (on this time interval). The matrix  in 
such cases may be increasing significantly on this 
time interval, while the matrix  remains 
uniformly bounded so that the solution of the 
"inverse" matrix equation (5) does exists. The work 
[7] represents the generalization of the results 
obtained in [5, 6] in the case of linear quadratic 
optimal control problems (which corresponds to the 
case ), to the general case of robust linear 
optimal control problems. 
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     For the finite-horizon case, we shall only assume 
that the matrices , , ,  are 
piecewise continuous functions with respect to .       
In this work we shall prove the main Theorem that   
provides the  sufficient conditions for  existence of 
the saddle point  in the differential game (2), (3), 
(1). We shall demonstrate that the "best" control 
input and the "worst" exogenous input are 
determined by the following formulae: 
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With the initial condition , the control law 
(6)  provides the robust control. 
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     We want to emphasize that in this work the new 
solutions to the optimal control problems are found 
and the new methods are developed with the use of 
pseudo-inverse matrices .  )(tD+

     In the case , the meaning of 
the expression (6) is that some uncontrollable or 
almost-uncontrollable components  of the 

vector 
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 are automatically 
eliminated in choosing optimal control with help of 
the pseudo-inverse matrix . Here  is a 
matrix of a linear orthogonal transformation 

)(tM

)(tx ′=  [5 -7]. This paper contains the 
proof of the main theorem and provides new 
methods. 
 

2 Main Theorem  
At first we shall demonstrate in more details that the 
matrix function )(tD+  does not always coincide 
with , and the obtained formulae (6), (7) 
provide indeed the new solutions to the robust 
optimal control problems in non-completely 
controllable systems which overcome computational 
difficulties. 
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Let  represents the solution to the "inverse" 
matrix equation (5)  on the time interval t
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with the boundary condition +∆=)(1 TD , and 
 satisfies the equation (4)  with )(tP ∆=)(TP . Let 

the boundary matrix ∆  and the matrices , 
 are singular, and the matrices ,  

enjoy  linearly independent rows, with 
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ntCrank ≡))(( . In [7, Section 3] the orthogonal 

transformations x′tMx = )( ,  of the 
coordinate system  were considered. In the new 
coordinate system 

xt)(M 1−=x′
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would be transformed to . In 
the case of not-completely controllable system, 
which corresponds to rank deficient matrix   
[5-7], there exists the orthogonal transformation 
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identically on the time interval t . Here we 
suggest that  ( i ) enjoy that property. 
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Consider the solutions of the equations (5) 
and (4). We assume that the matrix functions  
and  exist, i.e. remain bounded at all 

. Consider the solutions backward in time 
and introduce 
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can rewrite the equation (5) in the form 
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with the boundary condition D .  
         Similarly to [5-6] we obtain that the solution 

)(1 τD  can be written in the form        
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         If Ttt <≤0 , there exist the inverse matrix 

)(1 tP− , which satisfies the "inverse" equation (5). 

Denote that solution . As )()( 1
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 becomes unbounded. Yet 
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we  discover that the solution of the equation 
(5) (on the time interval ) that satisfies 

the boundary condition    as 
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not unique: we obtain the solution  as well as 
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linear system 
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        We shall consider below the Euler system of 
differential equations (9), (10), which determine 
extremals )(tx∗ , )(t∗λ  of the functional J  (3). 
The saddle point can only be reached on the 
extremal. It is known that if the solution of the 
equation (4) exists then along the extremal the linear 
relation holds: 
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consider the case when the initial vector  
allows the representation of the form 
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0 )( Dtx = . We shall then prove that along 
the extremal another linear relation also holds: 
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solution of the Euler system of differential equations 
(9), (10) with given bounded terminal vectors 

and 
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the extremal may be constructed  with the use  of 
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Φ ),( 001 ττ , where I  stands for the unity 
matrix. In the case at hand, 0 , and 
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way that .                                                  
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         Now consider the solution  of the 
equation (4) (considered backward in time) with the 
boundary condition ∆=)0(P . Similarly, we obtain 
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 where 2Φ  is the transition matrix of the 
linear system 
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with ττ ≥ .                                      
             Hence we obtain that 
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 as well as with the use of , if the initial 
vector  allows the representation of the form 

. In general case, the terminal 
vector  ought to allow the representation 

 where  , so that 
the boundary condition 
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 be satisfied. 
With the use of  the  solution of the Euler 
differential equations (9), (10) with the terminal 
conditions  , ) ∆=(λ  and 

 would be presented in the form 
, 
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)(t)(1 tD)(tx λ= , )(tλ  (so that the initial vector 
)0t()0(1 tD)( 0tx λ= ). But the use of the pseudo-

inverse matrix  provides opportunity to 
avoid computational difficulties that might arise in 
obtaining the matrix function , since 
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might be increasing significantly as τ  and T  
increases (as shown in [7, Section 3]), while )(τ1D  

and )(1 τ+D  remains uniformly bounded. Besides, 
it might even occur that )(τP  becomes unbounded, 
i.e. the solution  does not exist on the whole 
time interval , while the non-negative 
definite solution  still exists.  
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        Furthermore,  with the use of the pseudo-

inverse matrix  the uncontrollable or almost 
uncontrollable components may be automatically 
eliminated in choosing optimal control. Although 
the "best choice" of the boundary matrix , that 
excluded uncontrollable or almost uncontrollable 
components, might be unknown in advance, it could 
be found with aid of  computation of , and 
the robust control could be determined with the use 

of .  
          The consideration given in [7, Section 3] also 
confirms that with the use of the pseudo-inverse 

matrix  the uncontrollable components may 
be automatically eliminated in choosing optimal 
control, and the computational difficulties may be 
overcome. 
Theorem. (Sufficient conditions). For the saddle 
point (2) of the functional (3) subject to condition 
(1) to exist, it is  sufficient that  the following 
conditions are satisfied: 

       (a) there exists the non-negative definite 
solution  (in other words, the guarantee that 

 remains bounded and non-negative definite) 
to the  matrix differential equation (5), on the time 
interval 
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+∆=)(TD , where ∆  is the non-negative definite 

symmetric matrix  introduced in (3); 
      (b) the initial condition   allows 
representation of the form 
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       Then the "best" control law and the "worst" 
external disturbance are determined by the formulae 
(6) and (7), that correspond to this saddle point. 
Proof. Suppose that there exists the solution  
of the equation (5) on the interval t
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 remains  bounded) with a boundary condition )(tD
+∆=)(TD , and is non-negative definite. We 

shall prove then that there exists a saddle point (2) 
of functional (3) provided that  satisfies the 
equation (1) with the initial vector 
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satisfies the condition (b). The "best" control input  

)(tu∗  and the "worst" disturbance , defined 
by (6) and (7), shall correspond to this saddle point.  
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        For the saddle point (2), (3), (1) to exist it is 
necessary that the first variance of the functional (3) 
subject to condition (1) vanishes at that saddle point. 
Then on the basis of standard procedure from 
calculus of variations we obtain the known Euler 
differential equations: 
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The solution that satisfies (9), (10) and (13)  is 
referred to as an extremal. The saddle point of the 
functional (3) can only be reached  on an extremal. 
         We can check directly, substituting 
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functions )()( ttD)(tx λ= , )(tλ satisfies the Euler 
equations (9), (10) with initial conditions 

00 )( xtx = , 00 )( λλ =t , if )()() 00 ttD( 0tx λ= . 



Choose  , then the linear 

relation  holds along that 
trajectory. Then the boundary condition 
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We shall demonstrate now that the obtained 
extremal does indeed provide a saddle point for the 
functional . At first we consider the case when 

 varies without changing rank on the 
considered time interval t Tt ≤  .The proof is 
done via the following calculation similar to the 
known method of "completing the square". We can 
rewrite (3) as 
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        Now consider the hypothetical case when 
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the evolution of backward in time. It suffice to 
consider the evolution  on the first time interval 
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     The expression (16) shows that the functional J  
does indeed have a saddle point which is achieved 
with the "best" control input 

 and the "worst" 

exogenous input .  It 
also shows that for the initial condition 
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the value of the functional J  (3) at the saddle point 
is zero. Since , the robust control 
law is defined as a feedback (6). 
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           A pseudo-inverse matrix  of any 
symmetric matrix  that varies without 
changing rank satisfies  [6, 8] 
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differentiable with respect to  on the finite time 
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Recall, that 0)()()( 000 ≥+ txtDtxT  due to the 
assumption  of  the Theorem.  
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       Denote the functional J  (3) as  to 
indicate explicitly the dependence on the initial 

condition of the trajectory  . For t
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           The mini-maximum value of the functional 
(3) could be only achieved on an extremal, since 
that condition is necessary. We have found the 
extremal , , and if the control input 

 would be different from the "optimal" control 

law  on some time 
interval then the value of the functional (3) would 

not be lesser Similarly,  
represent the "worst" disturbance. Hence, the 
extremal 
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     Then the expression (19) holds for the functional 
(3) on the extremal , . The value of the 
functional (3) on that extremal equals to 
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[6] E.M. Khazen, Reduction of dimensionality in 

choosing optimal control. Int. J. Adapt. Control 
Signal Process. 2003; 17: 1- 18. 

       The proof of the Theorem  is completed. 
 
 
 
4   Conclusion 
In this work, we have derived and proved the new 
sufficient conditions for the existence of robust 
optimal control and new explicit formulae (6) and 
(7), with the use of the pseudo-inverse matrices 

)(tD+ , that overcome computational difficulties 
inherent in not-completely controllable systems. The 
geometrical meaning of the appearance of the 
pseudo-inverse matrix  is that the trajectories 

of the considered controlled system belong 
(exactly or approximately) to the subspace of 
dimensionality less than n .   
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