
A New Hybrid Direct/Specialized Approach for
Generating Inverse Neural Models

FERNANDO MORGADO DIAS1, ANA ANTUNES1, 2ALEXANDRE MANUEL MOTA

1Escola Superior de Tecnologia de Setúbal do Instituto Politécnico de Setúbal
Campus do IPS, Estefanilha, 2914-508 Setúbal

2 Departamento de Electrónica e Telecomunicações
Universidade de Aveiro, 3810 Aveiro

PORTUGAL

Abstract: - In the literature the most common proposed solutions for training inverse neural models are the
direct (or general) and specialized methods. The second one being considered as more reliable to produce
correct inverse models has nevertheless some drawbacks in the implementation.
The present paper introduces a hybrid solution that copes with the problems and limitations of both solutions.
The hybrid solution merges the training and evaluation stages for producing an inverse model, ensuring the
production of a correct inverse which is goal directed and does not need iterative algorithms to be produced.
This new solution was developed within the preparation of an automated procedure for creating models for
control purposes, which consists in a combination of Genetic Algorithms and Neural Networks.

Key-Words: - Feedforward Neural Networks, Direct Inverse Control, Internal Model Control, Measurement
Noise, Genetic Algorithm, Inverse Modelling, Early Stopping, Direct Training and Specialized Training

1 Introduction
The issue of producing Artificial Neural Network
(ANN) models of systems to be used for modeling
or control purposes has deserved a reasonable slice
of interest in the ANN community. Most of the new
proposed solutions concern the use of new types of
ANN or the development of new algorithms, while
the structures used are, in almost every application
in spite of the extensive description of the many
solutions for the training structures present in [16],
the classical direct (or general) and the specialized
training methods as reported in [1].
Nevertheless, it is known that the direct training
method has severe disadvantages and the specialized
training method is difficult to implement for most of
the algorithms.
The present work reports a rather simple hybrid
solution to cope with the disadvantages of both
architectures.
This solution resulted from the development of an
automated procedure for creating models for control
purposes, which consists in a combination of
Genetic Algorithms and Neural Networks.
The hybrid solution can be used also in non-
automated construction of models.

2 Direct, Specialized and COEM
Training Methods
The simplest approach is the direct method, which is
closely related to forward modeling. A block
diagram of this type of training can be seen in figure
1.
However simple, this approach has some
drawbacks[1]:

• The learning procedure is not goal directed.
The training signal must be chosen to
sample over a wide range of system inputs
and the actual operational inputs may be
hard to define a priori. The actual goal in the
context is to make the system output behave
in a desired way and thus the training signal
in direct inverse modeling does not
correspond to the explicit goal.

• In situations where the mapping is not 1:1
an incorrect inverse can be obtained.

To avoid these problems, another way of training
inverse models is present in the literature (for
example in [1] and [2]): specialized inverse model
training. The models and plant are connected
according to figure 2.

Plant Inverse
Modelu(k)

y(k) +
-

eu(k)

uhat(k)

Fig. 1. Structure for inverse model training,
according to the direct training method.

PlantInverse
Model

Direct
Model

-

+

r(k) uhat(k) y(k)
ey(k)

eu(k)

Fig. 2. Structure for inverse model training,
according to the specialized training method.

The inverse model is connected in series with the
plant, but since usually the internal states of the
Plant are unknown and do not allow performing the
necessary calculations to report the error ey (between
plant output and desired output) to the output of the
inverse model eu, a direct model is placed in parallel
with plant. Through this model it is possible to
obtain the error eu from the error ey using the
appropriate derivative calculations.
This structure is supposed to overcome the problems
mentioned for the direct training because the
network is trained in a situation similar to the one
that the NN will assume in a control situation.
Nevertheless the specialized training method has
some drawbacks:

• Although it has been shown to work
properly even when the forward model is
not exact (as referred in [1]), this method is
difficult to use with noisy systems.

• The structure requires, in principle, an
iterative version of the training algorithm.
This limits the training to the algorithms for
which there are iterative versions.

The second problem makes it impossible to use for
instance the Levenberg-Marquardt algorithm, for
which a true iterative version has not yet been
developed and the use of iterative versions like the
ones proposed for the Gauss-Newton methods are
clearly not as effective as the Levenberg-Marquardt
algorithm.

Figure 3 represents Indirect Inverse Adaptation
(IIA)[16]. In this structure an inverse model is used
instead of a direct model. The inverse model allows
estimating uhat from the output of the plant enabling
the calculation of the error eu, which will be used to
adapt the controller and the inverse model. In the
case of the Controller Output Error Method (COEM)
the inverse model and the controller are the same.
The only change this fact produces is that
calculations have to be performed in two steps using
the same model.

PlantController

-

+

r(k)

uhat(k)

y(k)

eu(k)

Inverse
Model

u(k)

eu(k)

Fig. 3. Structure for Indirect Inverse Adaptation.

The COEM solution or the IIA solution, present the
same type of advantages and problems that have
been reported for the specialized training solution.

3 The Hybrid Approach
Usually the evaluation of the quality of a model is
done using a second sequence of data called the test
sequence. Some authors also use a third sequence,
which is used for comparing different neural models
[3].
The hybrid approach is a mixture of the structure
and quality evaluation and consists of the following
steps:

1. Produce a direct model.
2. Train the inverse model using a direct

structure.
3. Evaluate the quality of the inverse model

using a simulation of Direct Inverse Control
(DIC) as depicted in figure 4, where the
plant is replaced by its model.

This solution, although very simple and intuitive,
does in fact improve the development of inverse
models.
Analysing the problems of both architectures it is
possible to verify that they are solved:

• The hybrid approach is goal directed since
the models are now evaluated in a
simulation of control, which is exactly the

situation where the inverse model will be
used.

• There is no risk of obtaining an incorrect
inverse since the inverse will be evaluated in
control simulation.

• This solution does not need iterative
versions of the algorithms and therefore
does not impose limitations on the algorithm
to be used.

PlantInverse
Model

u(k)r(k) y(k)

Fig. 4. Structure for Direct Inverse Control. The
signal r(k) is the reference, u(k) the control signal
and y(k) the output signal.

Although the hybrid approach can be used in a
general way, it was developed during the
implementation of a combination of Genetic
Algorithms and Feedforward Neural Networks
(FNN) for the choice of the best architecture. This
combination will be described shortly in the next
sections, in order to present the results obtained with
the hybrid approach.

4 Combination of Genetic Algorithms
and Artificial Neural Networks
Genetic Algorithms and Neural Networks are both
inspired by computation in biological systems. A
good deal of biological neural architecture is
determined genetically. It is therefore not surprising
that as some neural network researchers explored
how neural systems are organized that the idea of
evolving neural networks should arise [4].
This sort of combination has already originated
enough work to enable the production of many
surveys and reviews around this research field from
which [4][5][6][7] are only a small sample.
As pointed out in [4] the three major ways that have
been receiving attention from researchers
developing combinations between GAs and ANNs
are:

• Setting weights in fixed architectures.
• Learning neural network topologies.
• Select training data and interpret the output

behavior of ANN.
More recently other trends have appeared as Genetic
Encoding strategies [8] is an example.

4.1 The Automated Procedure
The combination of GAs and ANN developed falls
in the second situation pointed above: learning
neural network topologies. In the present
implementation that means optimising the
architecture of a fully connected FNN of one hidden
layer, with linear output, hyperbolic tangents as
hidden layer’s activation function and Auto-
Regressive with eXogenous input (ARX)
architectures.

4.1.1 Structure of the Networks
The structure of the network is composed of four
parameters: number of past inputs, number of past
outputs, number of neurons in the hidden layer and
number of training iterations.
The first two parameters allow choosing the past
information to be used, using only the information
that is important.
The number of neurons in the hidden layer allows
the adjustment of the network size to the complexity
of the system to be modelled.
Using the number of training iterations also as a
parameter gives the possibility to use early stopping.
The parameters and their ranges are summarized in
table 1. The choice of the ranges involves previous
work done with the system used as test bench
[9][10].
The networks are represented in a simple bit string,
which will be used by a GA algorithm to choose the
best network. The evaluation of each model
contained in the bit stings is based on the Mean
Square Error (MSE) between the model and the
sequence used for testing, when the direct model is
used or the error between the reference signal and
the output when the inverse model is used.

TABLE I - PARAMETERS TO USE IN THE
OPTIMIZATION PROCEDURE.

Parameter Number of bits Range of values
Past outputs 2 1:4
Past inputs 2 1:4

Hidden
neurons

4 1:16

Iterations 8 1:256

In the latter situation the hybrid direct/specialized
approach for generating inverse neural models is
used, because the initial tests that were done using a
simple test sequence showed that although the
evaluation of the models reported good quality, they
were not good enough to control the real system.

Each model proposed holds a value for each of the
parameters, forming a different network. The
models are trained using the Levenberg-Marquardt
(LM) algorithm because of its fastest convergence.
During the identification and control tasks the
NNSYSID [3] and NNCTRL [4] toolboxes for
MATLAB were used.

4.1.2 Evolution of the Networks
As stated, the evolution of the networks is done
using a GA algoritm. The GA optimisation is
especially useful when there is no deterministic
solution for the problem or the range of solutions is
too wide for an exhaustive search and local
minimum can be acceptable. Both situations are true
in the ANN field, which makes GAs particularly fit
for this evolution. The algorithm implemented
includes Crossover, Mutation and Elitism according
to what is detailed below. Using a small population
of 20 individuals, a strong elitism of 20% is
assumed, crossover of one site splicing is performed
and all the individuals are subjected to mutation
except the elites.The mutation operator is a binary
mask generated randomly according to a selected
rate that is superposed to the existing binary
codification of the population changing some of the
bits. Crossover is performed over 50% of the
population, always including the elites. The
individuals are randomly selected with equal
opportunity to create the new population. The fitness
of the solution is the Mean Square Error obtained
between the output of the model and the desired
output. The desired output can be the output values
in the training set for the direct model or the
reference used in the DIC simulation for the inverse
model. The fittest solution is the one with the lower
fitness value. A global perspective of the
optimization solution can be obtained from figure 5.
Generation of Initial Population - This block
represents the generation of the initial population,
which consists basically of generating a random
population.
Network Parameter Extraction – The bit string is
sliced according to the size of the parameters, which
are converted using their ranges.
Training of each Individual – Each element of the
population, after the extraction of the parameters,
represents a ANN that is trained with the
Levenberg-Marquardt algorithm according to the
training structures defined for the direct and inverse
models.
Evaluation of each Individual – Each individual’s
fitness is now evaluated using a test sequence or

direct inverse control according to the type of
model.
Selection of the elite – After the evaluation phase,
the individuals are now sorted according to their
fitness and the best 20% will constitute the elite.

Fig. 5. Representation of the optimisation solution.
The block diagram shows the operations performed
in each generation of the genetic algorithm.

The overall results are evaluated to check if the
search is over. The search might terminate by
reaching a certain number of iterations or by
achieving a certain quality of the models. If these

Generation of
Initial Population

Training of each
Individual

(Levenberg-Marquardt
Algorithm)

Evaluation
of each

Individual

Network
Parameter
Extraction

Selection
of the Elite

R
e
p
r
o
d
u
c
t
i
o
n

Finished?
No

Yes

Stop

conditions are met the search is terminated
otherwise the reproduction process is activated.
Reproduction - The new population is generated by
reproduction using mutation and crossover.

5 The Plant
The plant used is a reduced scale prototype kiln and
the tests reported concern the implementation of the
temperature control loop.
Figure 6 shows a scheme of the modules composing
the system. An electrical resistor driven by a power
controller heats the kiln and the temperature is
measured by a B type thermocouple. The sensor and
the actuator are connected to a Hewlett Packard
HP34970A Data Logger that supplies real-time data
to MATLAB using the RS232C serial line. The Data
Logger though a helpful tool limits the measurement
to temperatures superior to 300ºC and the
thermocouple introduces measurement noise, which
makes identification more complex. This approach
allows the use of the entire MATLAB powerful
environment together with real-time capability.

Heating
Element

thermocouple

Power
Module

Data
Logger PC

Fig. 6. Schematic of the modules composing the
system.

The kiln is completely closed and operates around
750ºC having as superior limit of operation 1000ºC.
The Data Logger is used as the interface between PC
and the rest of the system.
Since the Data Logger can be programmed using a
protocol called Standard Commands for
Programmable Instruments (SCPI), a set of
functions have been developed to provide MATLAB
with the capability to communicate through the RS-
232C port to the Data Logger.
A picture of the system can be seen in figure 7. The
kiln can be seen in the center and at the lower half
the prototypes of the electronic modules and the
cooling fans.

Fig. 7. Picture of the kiln and electronics.

6 Control Structures
The control structures used to test the optimization
procedure are: Direct Inverse Control and Internal
Model Control. These structures are briefly
presented in the following subsections.

6.1 Direct Inverse Control (DIC)
Direct inverse control is the simplest solution for
control that consists of connecting in series the
inverse model and the plant as can be seen in figure
4. If the inverse model is accurate the output of the
system y(k) will follow the reference r(k).

6.2 Internal Model Control (IMC)
Internal Model Control is a structure that allows the
error feedback to reflect the effect of disturbance
and plant mismodelling.
In fact it can be shown [9] that a good match
between forward and inverse models is enough to
have good control and that with this structure
disturbance’s influence is also reduced. The basic
IMC structure can be seen in figure 8.

6.3 Adapting the Control Structures to
use Neural Network Models
The structure presented in the subsection A can be
used with Neural Network (NN) models without the
need of major changes, but the structure used in
section B needs some refinements to work properly
[11].

PlantInverse
Model

u(k)r(k) y(k)

Direct
Model

+
-

+

-

yhat(k)

e(k)

Fig. 8. Structure for Internal Model Control. The
signal r(k) is the reference, u(k) the control signal,
y(k) the output signal, yhat(k) the estimate of the
output and e(k) the error between the output and the
estimate.

The good match between forward and inverse
models, referred above translates to having the
forward model outputs feedback to the input of the
inverse and direct model instead of the outputs of
the plant.
This means that the inverse model will implement
the following equation:

u k g
r k yhat k yhat k n
u k t u k n t

y

d u d

()
(), (),..., ()
(),..., ()

=
+ − +

− − − +











1 1
1

 (1)

instead of:










+−−−

+−+
=

)1(),...,(
)1(),...,(),1(

)(
dud

y

tnkutku
nkykykr

gku (2)

Where ny is the number of previous output samples
used, nu is number of previous control signal
samples used and td is the time delay of the system.
During the identification and control tasks the
NNSYSID [12] and NNCTRL [13] toolboxes for
MATLAB were used.

7 The Models Obtained
Figure 9 shows the training and test signals used for
training the models, separated by the hashed vertical
line.
Table 2 shows the details of the best solution
obtained for direct and inverse models, where NU
stands for number of past inputs, NY is the number
of past inputs, Nhidden is the number of hidden
neurons in the hidden layer, Iteration is the number
iterations during which the network was trained and
NGen is the number of generation used for the NN
evolution.

0 1000 2000 3000 4000 5000
0

0.5

1

Input sequence (training and test set, respectively)

0 1000 2000 3000 4000 5000
300

400

500

600

700

800

Output sequence

time (samples)

Fig. 9. Training and test signals.

TABLE II - PARAMETERS OF THE BEST
MODELS OBTAINED.

Model\
Parameters

NU NY Nhidden Iteration NGen

Previous
Direct

2 2 4 50 n.a.

New Direct 3 3 7 58 49
Previous
Inverse

2 2 5 70 n.a.

New Inverse 1 1 3 225 89

The models denoted as previous are the models used
in previous work [9] [10] and are inserted here as a
reference for comparison. These models were
optimised using the author’s knowledge about the
system and neural models.
Figures 10 and 11 show the evolution of the error in
the direct and inverse models through the
generations.

0 10 20 30 40 50 60 70 80 90 100
3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6
x 10-5 Evolution of the best solution

Te
st

 E
rro

r

Generations

Fig. 10. Evolution of the best solution found for the
direct model through the generations.

Although this type of combination between Gas and
NN is considered to be very slow, in the present case
the evolution is very fast when compared with the

typical applications. This is due to the fact that the
ranges are carefully selected in the beginning and to
the efficiency of the LM training algorithm.

0 10 20 30 40 50 60 70 80 90
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
Evolution of the best solution

Te
st

 E
rro

r

Generations

Fig. 11. Evolution of the best solution found for the
inverse model through the generations.

8 The Real Time Control Action
The new models from table 2 were used to
implement DIC and IMC according to section V.
The results obtained can be seen in figures 12 and
13 and they confirm the expectation that this
technique can produce models of good quality.

0 20 40 60 80 100 120 140 160 180 200
200

400

600

800
Direct Inverse Control - Kiln Temperature and Set Point

0 20 40 60 80 100 120 140 160 180 200
-5

0

5
 Error

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5
 Control Signal

time x30s

Fig. 12. Direct Inverse Control results.

Table 3 presents a summary of the results in terms
of Mean Square Error (MSE) and a comparison
between the best results obtained for both control
strategies in present and previous work.
As can be seen the results obtained show an
enormous improvement in the results when
compared with the results obtained previously.

0 20 40 60 80 100 120 140 160 180 200
200

400

600

800
Internal Model Control - Kiln Temperature and Set Point

0 20 40 60 80 100 120 140 160 180 200
-5

0

5
 Error

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5
 Control Signal

time x30s

Fig. 13. Internal Model Control results.

TABLE III - SUMMARY OF THE RESULTS
OBTAINED FOR BOTH CONTROL
STRATEGIES.

MODELS\
STRATEGY

DIC (MSE) IMC
(MSE)

Previous Models 5.14 0.96
Models 2 0.58 0.30

9 Conclusion
A new hybrid technique has been presented for
replacing the classical structures for inverse
modelling (direct and specialized). This technique is
called hybrid since it is composed of training and
evaluation. The training is done according to the
direct training structure and the test is done by
simulation of control. The hybrid approach
overcames the problems usually pointed out for both
the classical solutions.
The technique has been tested using an automated
procedure, which consists of a combination of GAs
and ANN and the results of a test using a real system
under measurement noise condition show that this
technique can produce models with very good
quality.
The hybrid technique was used with an optimisation
algorithm, based in Genetic Algorithms to search for
the best models, The evolution performed is short in
terms of generations but is quite consuming in CPU
time.

References:

[1] K. J. Hunt, D. Sbarbaro, R. Zbikowski and P. J.

Gawthrop, ”Neural Networks for Control
Systems-A Survey”, Automatica, vol.28, nº6,
pp1083-1112, 1992

[2] M. Nørgaard, “System Identification and Control
with Neural Networks”. PhD Thesis, Department
of Automation, Technical University of
Denmark, 1996.

[3] Hagan, Demuth e Beale, “Neural Network
Design”, PWS Publishing Company, 1996.

[4] D. Whitley, “Genetic Algorithms and Neural
Networks”, Genetic Algorithms in Engineering
and Computer Science, edited by J. Periaux and
G. Winter, published by John Wiley and Sons,
1995.

[5] J. Schaffer, D. Whitley and L. Eshelman,
“Combination of Genetic Algorithms and Neural
Networks: The state of the art”, Combination of
Genetic Algorithms and Neural Networks, IEEE
Computer Society, 1992.

[6] X. Yao, “Evolutionary artificial neural
networks”, International Journal of Neural
Systems, 4, 203-222, 1993.

[7] T. Hussain, “Methods of Combining Neural
Networks and Genetic Algorithms”, Tutorial
Presentation, ITRC/TRIO Researcher Retreat,
Kingston, Ontario, Canada,1997.

[8] P. Köhn, “Genetic Encoding Strategies for
Neural Networks”, Information Processing and
Management of Uncertainty in Knowledge-
based Systems, Granada, Spain, 1996.

[9] F. M. Dias and A. M. Mota, “A Comparison
between a PID and Internal Model Control using
Neural Networks”, 5th World Multi-Conference
on Systemics, Cybernetics and Informatics,
Orlando, EUA, 2001.

[10] F. M. Dias and A. M. Mota, ”Comparison
between different Control Strategies using
Neural Networks”, 9th Mediterranean
Conference on Control and Automation,
Dubrovnik, Croatia, 2001.

[11] G. Lightbody and G. W. Irwin, “Nonlinear
Control Structures Based on Embedded Neural
System Models”, IEEE transactions on Neural
Networks, vol.8, no.3, 1997.

[12] M. Nørgaard, “Neural Network System
Identification Toolbox for MATLAB”,
Technical Report,1996.

[13] M. Nørgaard, Neural Network Control
Toolbox for MATLAB, Technical Report,1996.

[14] K. J. Hunt and D. Sbarbaro, ”Neural
Networks for Nonlinear Internal Model Control”,
 IEE Proceedings-D, vol.138, no.5, pp.431-
438, 1991.

[15] O. Sørensen, “Neural Networks in Control
Applications”, PhD Thesis, Department of
Control Engineering, Institute of Electronic
Systems, Aalborg University, Denmark, 1994.

[16] H. Andersen, ”The Controller Output
Method”, PhD Thesis, Department of Computer
Science and Electrical Engineering, University
of Queensland, St. Lucia 4072, Australia, 1998.

