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Abstract: - In the literature the most common proposed solutions for training inverse neural models are the 
direct (or general) and specialized methods. The second one being considered as more reliable to produce 
correct inverse models has nevertheless some drawbacks in the implementation.  
The present paper introduces a hybrid solution that copes with the problems and limitations of both solutions. 
The hybrid solution merges the training and evaluation stages for producing an inverse model, ensuring the 
production of a correct inverse which is goal directed and does not need iterative algorithms to be produced. 
This new solution was developed within the preparation of an automated procedure for creating models for 
control purposes, which consists in a combination of Genetic Algorithms and Neural Networks. 
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1   Introduction 
The issue of producing Artificial Neural Network 
(ANN) models of systems to be used for modeling 
or control purposes has deserved a reasonable slice 
of interest in the ANN community. Most of the new 
proposed solutions concern the use of new types of 
ANN or the development of new algorithms, while 
the structures used are, in almost every application 
in spite of the extensive description of the many 
solutions for the training structures present in [16], 
the classical direct (or general) and the specialized 
training methods as reported in [1].  
Nevertheless, it is known that the direct training 
method has severe disadvantages and the specialized 
training method is difficult to implement for most of 
the algorithms.  
The present work reports a rather simple hybrid 
solution to cope with the disadvantages of both 
architectures. 
This solution resulted from the development of an 
automated procedure for creating models for control 
purposes, which consists in a combination of 
Genetic Algorithms and Neural Networks.  
The hybrid solution can be used also in non-
automated construction of models. 

 
 

2   Direct, Specialized and COEM 
Training Methods 
The simplest approach is the direct method, which is 
closely related to forward modeling. A block 
diagram of this type of training can be seen in figure 
1. 
However simple, this approach has some 
drawbacks[1]: 

• The learning procedure is not goal directed. 
The training signal must be chosen to 
sample over a wide range of system inputs 
and the actual operational inputs may be 
hard to define a priori. The actual goal in the 
context is to make the system output behave 
in a desired way and thus the training signal 
in direct inverse modeling does not 
correspond to the explicit goal.  

• In situations where the mapping is not 1:1 
an incorrect inverse can be obtained.  

To avoid these problems, another way of training 
inverse models is present in the literature (for 
example in  [1] and [2]): specialized inverse model 
training. The models and plant are connected 
according to figure 2. 
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Fig. 1.  Structure for inverse model training, 
according to the direct training method. 
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Fig. 2.  Structure for inverse model training, 
according to the specialized training method. 
 
The inverse model is connected in series with the 
plant, but since usually the internal states of the 
Plant are unknown and do not allow performing the 
necessary calculations to report the error ey (between 
plant output and desired output) to the output of the 
inverse model eu, a direct model is placed in parallel 
with plant. Through this model it is possible to 
obtain the error eu from the error ey using the 
appropriate derivative calculations. 
This structure is supposed to overcome the problems 
mentioned for the direct training because the 
network is trained in a situation similar to the one 
that the NN will assume in a control situation. 
Nevertheless the specialized training method has 
some drawbacks:  

• Although it has been shown to work 
properly even when the forward model is 
not exact (as referred in [1]), this method is 
difficult to use with noisy systems.  

• The structure requires, in principle, an 
iterative version of the training algorithm. 
This limits the training to the algorithms for 
which there are iterative versions. 

The second problem makes it impossible to use for 
instance the Levenberg-Marquardt algorithm, for 
which a true iterative version has not yet been 
developed and the use of iterative versions like the 
ones proposed for the Gauss-Newton methods are 
clearly not as effective as the Levenberg-Marquardt 
algorithm.  

Figure 3 represents Indirect Inverse Adaptation 
(IIA)[16]. In this structure an inverse model is used 
instead of a direct model. The inverse model allows 
estimating uhat from the output of the plant enabling 
the calculation of the error eu, which will be used to 
adapt the controller and the inverse model. In the 
case of the Controller Output Error Method (COEM) 
the inverse model and the controller are the same. 
The only change this fact produces is that 
calculations have to be performed in two steps using 
the same model. 
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Fig. 3. Structure for Indirect Inverse Adaptation. 
 
The COEM solution or the IIA solution, present the 
same type of advantages and problems that have 
been reported for the specialized training solution. 
 
 
3   The Hybrid Approach 
Usually the evaluation of the quality of a model is 
done using a second sequence of data called the test 
sequence. Some authors also use a third sequence, 
which is used for comparing different neural models 
[3].  
The hybrid approach is a mixture of the structure 
and quality evaluation and consists of the following 
steps:  

1. Produce a direct model. 
2. Train the inverse model using a direct 

structure. 
3. Evaluate the quality of the inverse model 

using a simulation of Direct Inverse Control 
(DIC) as depicted in figure 4, where the 
plant is replaced by its model. 

This solution, although very simple and intuitive, 
does in fact improve the development of inverse 
models. 
Analysing the problems of both architectures it is 
possible to verify that they are solved: 

• The hybrid approach is goal directed since 
the models are now evaluated in a 
simulation of control, which is exactly the 



situation where the inverse model will be 
used. 

• There is no risk of obtaining an incorrect 
inverse since the inverse will be evaluated in 
control simulation. 

• This solution does not need iterative 
versions of the algorithms and therefore 
does not impose limitations on the algorithm 
to be used. 
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Fig. 4. Structure for Direct Inverse Control. The 
signal r(k) is the reference, u(k) the control signal 
and y(k) the output signal. 
 
Although the hybrid approach can be used in a 
general way, it was developed during the 
implementation of a combination of Genetic 
Algorithms and Feedforward Neural Networks 
(FNN) for the choice of the best architecture. This 
combination will be described shortly in the next 
sections, in order to present the results obtained with 
the hybrid approach. 
 
 
4   Combination of Genetic Algorithms 
and Artificial Neural Networks 
Genetic Algorithms and Neural Networks are both 
inspired by computation in biological systems. A 
good deal of biological neural architecture is 
determined genetically. It is therefore not surprising 
that as some neural network researchers explored 
how neural systems are organized that the idea of 
evolving neural networks should arise [4]. 
This sort of combination has already originated 
enough work to enable the production of many 
surveys and reviews around this research field from 
which [4][5][6][7] are only a small sample.  
As pointed out in [4] the three major ways that have 
been receiving attention from researchers 
developing combinations between GAs and ANNs 
are: 

• Setting weights in fixed architectures. 
• Learning neural network topologies. 
• Select training data and interpret the output 

behavior of ANN. 
More recently other trends have appeared as Genetic 
Encoding strategies [8] is an example. 
 
 

4.1 The Automated Procedure  
The combination of GAs and ANN developed falls 
in the second situation pointed above: learning 
neural network topologies. In the present 
implementation that means optimising the 
architecture of a fully connected FNN of one hidden 
layer, with linear output, hyperbolic tangents as 
hidden layer’s activation function and Auto-
Regressive with eXogenous input (ARX) 
architectures. 
 
 
4.1.1   Structure of the Networks  
The structure of the network is composed of four 
parameters: number of past inputs, number of past 
outputs, number of neurons in the hidden layer and 
number of training iterations. 
The first two parameters allow choosing the past 
information to be used, using only the information 
that is important. 
The number of neurons in the hidden layer allows 
the adjustment of the network size to the complexity 
of the system to be modelled. 
Using the number of training iterations also as a 
parameter gives the possibility to use early stopping.  
The parameters and their ranges are summarized in 
table 1. The choice of the ranges involves previous 
work done with the system used as test bench 
[9][10]. 
The networks are represented in a simple bit string, 
which will be used by a GA algorithm to choose the 
best network. The evaluation of each model 
contained in the bit stings is based on the Mean 
Square Error (MSE) between the model and the 
sequence used for testing, when the direct model is 
used or the error between the reference signal and 
the output when the inverse model is used. 

 
TABLE I - PARAMETERS TO USE IN THE 
OPTIMIZATION PROCEDURE. 

Parameter Number of bits Range of values 
Past outputs 2 1:4 
Past inputs 2 1:4 

Hidden 
neurons 

4 1:16 

Iterations 8 1:256 
 
In the latter situation the hybrid direct/specialized 
approach for generating inverse neural models is 
used, because the initial tests that were done using a 
simple test sequence showed that although the 
evaluation of the models reported good quality, they 
were not good enough to control the real system. 



Each model proposed holds a value for each of the 
parameters, forming a different network. The 
models are trained using the Levenberg-Marquardt 
(LM) algorithm because of its fastest convergence.  
During the identification and control tasks the 
NNSYSID  [3] and NNCTRL [4] toolboxes for 
MATLAB were used. 
 
 
4.1.2   Evolution of the Networks 
As stated, the evolution of the networks is done 
using a GA algoritm. The GA optimisation is 
especially useful when there is no deterministic 
solution for the problem or the range of solutions is 
too wide for an exhaustive search and local 
minimum can be acceptable. Both situations are true 
in the ANN field, which makes GAs particularly fit 
for this evolution. The algorithm implemented 
includes Crossover, Mutation and Elitism according 
to what is detailed below. Using a small population 
of 20 individuals, a strong elitism of 20% is 
assumed, crossover of one site splicing is performed 
and all the individuals are subjected to mutation 
except the elites.The mutation operator is a binary 
mask generated randomly according to a selected 
rate that is superposed to the existing binary 
codification of the population changing some of the 
bits. Crossover is performed over 50% of the 
population, always including the elites. The 
individuals are randomly selected with equal 
opportunity to create the new population. The fitness 
of the solution is the Mean Square Error obtained 
between the output of the model and the desired 
output. The desired output can be the output values 
in the training set for the direct model or the 
reference used in the DIC simulation for the inverse 
model. The fittest solution is the one with the lower 
fitness value. A global perspective of the 
optimization solution can be obtained from figure 5. 
Generation of Initial Population - This block 
represents the generation of the initial population, 
which consists basically of generating a random 
population.  
Network Parameter Extraction – The bit string is 
sliced according to the size of the parameters, which 
are converted using their ranges. 
Training of each Individual – Each element of the 
population, after the extraction of the parameters, 
represents a ANN that is trained with the 
Levenberg-Marquardt algorithm according to the 
training structures defined for the direct and inverse 
models.  
Evaluation of each Individual – Each individual’s 
fitness is now evaluated using a test sequence or 

direct inverse control according to the type of 
model. 
Selection of the elite – After the evaluation phase, 
the individuals are now sorted according to their 
fitness and the best 20% will constitute the elite.  

 
Fig. 5. Representation of the optimisation solution. 
The block diagram shows the operations performed 
in each generation of the genetic algorithm. 
 
The overall results are evaluated to check if the 
search is over. The search might terminate by 
reaching a certain number of iterations or by 
achieving a certain quality of the models. If these 
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conditions are met the search is terminated 
otherwise the reproduction process is activated.  
Reproduction - The new population is generated by 
reproduction using mutation and crossover. 
 
 
5 The Plant 
The plant used is a reduced scale prototype kiln and 
the tests reported concern the implementation of the 
temperature control loop. 
Figure 6 shows a scheme of the modules composing 
the system. An electrical resistor driven by a power 
controller heats the kiln and the temperature is 
measured by a B type thermocouple. The sensor and 
the actuator are connected to a Hewlett Packard 
HP34970A Data Logger that supplies real-time data 
to MATLAB using the RS232C serial line. The Data 
Logger though a helpful tool limits the measurement 
to temperatures superior to 300ºC and the 
thermocouple introduces measurement noise, which 
makes identification more complex. This approach 
allows the use of the entire MATLAB powerful 
environment together with real-time capability. 
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Fig. 6. Schematic of the modules composing the 
system. 
 
The kiln is completely closed and operates around 
750ºC having as superior limit of operation 1000ºC. 
The Data Logger is used as the interface between PC 
and the rest of the system. 
Since the Data Logger can be programmed using a 
protocol called Standard Commands for 
Programmable Instruments (SCPI), a set of 
functions have been developed to provide MATLAB 
with the capability to communicate through the RS-
232C port to the Data Logger.  
A picture of the system can be seen in figure 7. The 
kiln can be seen in the center and at the lower half 
the prototypes of the electronic modules and the 
cooling fans. 

 
 
Fig. 7. Picture of the kiln and electronics. 
 
 
6   Control Structures  
The control structures used to test the optimization 
procedure are: Direct Inverse Control and Internal 
Model Control. These structures are briefly 
presented in the following subsections. 
 
 
6.1 Direct Inverse Control (DIC)  
Direct inverse control is the simplest solution for 
control that consists of connecting in series the 
inverse model and the plant as can be seen in figure 
4.  If the inverse model is accurate the output of the 
system y(k) will follow the reference r(k). 
 
 
6.2 Internal Model Control (IMC)  
Internal Model Control is a structure that allows the 
error feedback to reflect the effect of disturbance 
and plant mismodelling.  
In fact it can be shown [9] that a good match 
between forward and inverse models is enough to 
have good control and that with this structure 
disturbance’s influence is also reduced. The basic 
IMC structure can be seen in figure 8. 
 
 
6.3 Adapting the Control Structures to 
use Neural Network Models 
The structure presented in the subsection A can be 
used with Neural Network (NN) models without the 
need of major changes, but the structure used in 
section B needs some refinements to work properly 
[11]. 
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Fig. 8. Structure for Internal Model Control. The 
signal r(k) is the reference, u(k) the control signal, 
y(k) the output signal, yhat(k) the estimate of the 
output and e(k) the error between the output and the 
estimate. 
 
The good match between forward and inverse 
models, referred above translates to having the 
forward model outputs feedback to the input of the 
inverse and direct model instead of the outputs of 
the plant. 
This means that the inverse model will implement 
the following equation: 
 

u k g
r k yhat k yhat k n
u k t u k n t

y

d u d

( )
( ), ( ),..., ( )
( ),..., ( )

=
+ − +

− − − +











1 1
1

 (1) 

 
instead of: 
 










+−−−

+−+
=

)1(),...,(
)1(),...,(),1(

)(
dud

y

tnkutku
nkykykr

gku   (2) 

 
Where ny is the number of previous output samples 
used, nu is number of previous control signal 
samples used and td is the time delay of the system.  
During the identification and control tasks the 
NNSYSID  [12] and NNCTRL [13] toolboxes for 
MATLAB were used. 
 
 
7   The Models Obtained 
Figure 9 shows the training and test signals used for 
training the models, separated by the hashed vertical 
line. 
Table 2 shows the details of the best solution 
obtained for direct and inverse models, where NU 
stands for number of past inputs, NY is the number 
of past inputs, Nhidden is the number of hidden 
neurons in the hidden layer, Iteration is the number 
iterations during which the network was trained and 
NGen is the number of generation used for the NN 
evolution. 
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Fig. 9. Training and test signals. 
 
TABLE II - PARAMETERS OF THE BEST 
MODELS OBTAINED. 

Model\ 
Parameters 

NU NY Nhidden Iteration NGen

Previous 
Direct 

2 2 4 50 n.a. 

New Direct 3 3 7 58 49 
Previous 
Inverse 

2 2 5 70 n.a. 

New Inverse 1 1 3 225 89 
 
The models denoted as previous are the models used 
in previous work [9] [10] and are inserted here as a 
reference for comparison. These models were 
optimised using the author’s knowledge about the 
system and neural models. 
Figures 10 and 11 show the evolution of the error in 
the direct and inverse models through the 
generations. 
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Fig. 10. Evolution of the best solution found for the 
direct model through the generations. 
 
Although this type of combination between Gas and 
NN is considered to be very slow, in the present case 
the evolution is very fast when compared with the 



typical applications. This is due to the fact that the 
ranges are carefully selected in the beginning and to 
the efficiency of the LM training algorithm. 
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Fig. 11. Evolution of the best solution found for the 
inverse model through the generations. 
 
 
8   The Real Time Control Action 
The new models from table 2 were used to 
implement DIC and IMC according to section V. 
The results obtained can be seen in figures 12 and 
13 and they confirm the expectation that this 
technique can produce models of good quality. 
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Fig. 12. Direct Inverse Control results. 
 
Table 3 presents a summary of the results in terms 
of Mean Square Error (MSE) and a comparison 
between the best results obtained for both control 
strategies in present and previous work.  
As can be seen the results obtained show an 
enormous improvement in the results when 
compared with the results obtained previously. 
 

0 20 40 60 80 100 120 140 160 180 200
200

400

600

800
Internal Model Control - Kiln Temperature and Set Point

0 20 40 60 80 100 120 140 160 180 200
-5

0

5
 Error 

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5
 Control Signal

time x30s  
 
Fig. 13. Internal Model Control results. 
 
TABLE III - SUMMARY OF THE RESULTS 
OBTAINED FOR BOTH CONTROL 
STRATEGIES. 

MODELS\ 
STRATEGY 

DIC (MSE) IMC 
(MSE) 

Previous Models 5.14 0.96 
Models 2 0.58 0.30 

 
 
9   Conclusion 
A new hybrid technique has been presented for 
replacing the classical structures for inverse 
modelling (direct and specialized). This technique is 
called hybrid since it is composed of training and 
evaluation. The training is done according to the 
direct training structure and the test is done by 
simulation of control. The hybrid approach 
overcames the problems usually pointed out for both 
the classical solutions. 
The technique has been tested using an automated 
procedure, which consists of a combination of GAs 
and ANN and the results of a test using a real system 
under measurement noise condition show that this 
technique can produce models with very good 
quality.  
The hybrid technique was used with an optimisation 
algorithm, based in Genetic Algorithms to search for 
the best models, The evolution performed is short in 
terms of generations but is quite consuming in CPU 
time. 
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