
Synthesis and FPGA-based Implementation of Hierarchical Finite
State Machines from Specification in Handel-C

VALERY SKLYAROV

Electronics and Telecommunications Department
Aveiro University, IEETA

Campus Universitário de Santiago, 3810-193 Aveiro
PORTUGAL

Abstract: - The paper suggests a technique, which permits to describe modular, hierarchical and parallel
algorithms in Handel-C. This opportunity has been provided by generating the required control
sequences with the aid of a hierarchical finite state machine. The proposed specification in Handel-C is
synthesizable and it can be translated (for example, in DK2 environment of Celoxica) to EDIF format.
The latter can be converted to a bit-stream for commercially available FPGAs. An example of sorting
procedure was described in detail and implemented in Xilinx Spartan II XC2S200 FPGA available on
Celoxica RC100 prototyping board.

Key-Words – hierarchical finite state machines, system-level specification, Handel-C, FPGA

1. Introduction

Hierarchical finite state machines (HFSMs)
[1] allow modular, hierarchical and recursive
algorithms to be implemented. These facilities
are very useful and we will show just a few
examples.

It is known that a digital system can be
composed of an execution (EU) and a control
(CU) unit. EU is responsible for operations over
data and for data transfer between registers in
order to perform the given algorithms. CU
forces the required sequence of operations. Any
operation can be elementary and non
elementary. The first one can be executed by the
relevant circuit of EU. The second one can be
composed of elementary and/or non elementary
operations. This permits a hierarchical
specification to be built. Thus support for
modularity and hierarchy is very helpful. Any
module can be seen a specification of a non
elementary operation. Hierarchy makes possible
to construct new modules from elementary
operations and existing modules. A significant
benefit of such an opportunity is that any
complex algorithm can be developed step by
step, so that our efforts can be concentrated at
each stage on a specified level of abstraction
(that is, on a particular module). Each module is
usually relatively simple, and can be checked
and debugged independently. Modular
specification provides support for either top-
down or bottom-up design. Top-down design is
based on extending given modules by supplying

more and more detail. Bottom-up design enables
us to use more complicated components that are
defined as modules and to organize the design
process with the aid of libraries of modules.
Any module can be reused. For many practical
applications extending or modifying a module
does not change the existing specification.

 Generally speaking, an opportunity of
describing algorithms at different levels of
complexity makes possible to concentrate
efforts of the designer at the desired level and to
abstract from all non essential details. Note that
some modules might be virtual [1] that permits
to redefine them later if necessary. Besides, for
testing some ideas it is not required to
implement all modules and we can deal with
incompletely specified functionality, which is
very helpful for debugging purposes [1].

For some applications a module might call
itself. For example, many problems can be
solved through traversing binary trees [2,3]. The
nodes of the tree are maintained so that at any
node N, the left sub-tree contains only values
belonging to a range A, and the right sub-tree
contains only values belonging to a range B
(A∩B=∅). The value written in the node N
makes possible the ranges A and B to be
calculated. Possible extra fields in the node N
keep additional information, for example, the
number of occurrences of the value associated
with the respective node N. It is known, for
example, that such a tree can be constructed and
used for sorting various types of data [3]. In

order to build this tree for a given set of values,
we have to find the appropriate place in the
current tree for incoming items. In order to sort
the data, we can apply a special technique [3]
using forward and backtracking propagation
steps that are exactly the same for each node.
Thus a recursive procedure is very efficient and
support for this is very helpful. Sorting of this
type will be considered in the paper as a
working example and all the required additional
details can be found in [4,5].

Note that existing specification tools do not
provide direct support for majority of the
considered above features. On the other hand
these features can be realized if the control
sequence is generated by an HFSM and it was
shown in [4], where VHDL-based
implementation of modular, hierarchical and
recursive algorithms has been proposed and
tested in Spartan IIE XC2S300E/XC2S400E
FPGAs on examples of recursive sorting and
data compression. This paper suggests the
method of description of modular, hierarchical,
recursive and parallel algorithms in Handel-C,
which is a system level specification language.

The remainder of this paper is organized in
six sections. Section 2 shows how to describe
modular and hierarchical algorithms. Section 3
explains various opportunities allowing modules
to be executed in parallel. Section 4 considers
recursive algorithms. Section 5 describes a
Handel-C project for sorting algorithms, which
provides support for modularity, hierarchy and
recursive module invocations. The conclusion is
in section 7.

2. Modular and hierarchical
algorithms

It is known [1] that CU algorithms can be
constructed from modules and described
hierarchically with the aid of the language that
is called hierarchical graph-schemes (HGS).
Fig. 1,a demonstrates an example of a binary
tree, which keeps a set of unsigned integers. Fig.
1,b shows how to describe a simple algorithm
(HGS) for finding an integer with minimum
value. Here the logic condition x1 tests if the
node has a left sub-tree, the micro-operation y1
selects the left sub-tree through its number (see
Italic digits in fig. 1,a) and the micro-operation
y2 copies the value from the selected node to the
result. Let us designate the HGS in fig. 1,b as z1.
Fig. 1,c depicts a fragment of an HGS of a
higher hierarchical level, which invokes the

HGS z1 in the rectangular node am. This enables
us more complicated HGSs to be constructed
from elementary operations and other HGSs
designated as modules z0,z1,z2,… .

Any HGS can be described in Handel-C
using a finite state machine (FSM) notation
[1,4] such as the following (see also fig. 1,b):

do { // module z1 in fig. 1,b
 CS = NS;
 switch(CS)
 { case 0: // state a0
 if (RAM[reg][2] != 31) // x1

 par { reg=RAM[reg][2]; NS=1; } // y1
 else NS=2;
 break;
 case 1: // state a1
 if (RAM[reg][2] != 31)

 par { reg=RAM[reg][2]; NS=1; } // y1
 else NS=2;
 break;
 case 2: // state a2
 result=RAM[reg][0]; // y2
 }
 }
while(CS != 2);
Here CS/NS is a variable, which keeps

current/next FSM state, the labels a0, a1, a2 (see
fig. 1,b) are considered to be FSM states, reg is
the RAM address register, which was initially
set to 0. The tree shown in fig. 1,a is stored in a
RAM block as follows:

RAM[0][0]=5; RAM[0][1]=1; RAM[0][2]=2;
RAM[1][0]=4; RAM[1][1]=3; RAM[1][2]=31;
RAM[2][0]=9; RAM[2][1]=4; RAM[2][2]=9;
RAM[3][0]=3; RAM[3][1]=5; RAM[3][2]=31;
RAM[4][0]=6; RAM[4][1]=31; RAM[4][2] = 8;
RAM[5][0]=1; RAM[5][1]=31; RAM[5][2] = 6;
RAM[6][0]=2; RAM[6][1]=31; RAM[6][2]=31;
RAM[7][0]=7; RAM[7][1]=31; RAM[7][2]=31;
RAM[8][0]=8; RAM[8][1]=7; RAM[8][2]=31;
RAM[9][0]=10; RAM[9][1]=31; RAM[9][2]=31;
The value 31 indicates an absence of the

respective (either left or right) sub-tree. Note
that for simplicity the RAM is declared as:

unsigned int 5 RAM[32][3];
i.e. it keeps 5-bit unsigned integers. It enables us
to sort values from 0 to 30 (because the value 31
is used as a flag). However this declaration can
easily be changed in order to hold data with the
required size. Here RAM[i][0] is the saved
value (unsigned integer), RAM[i][1] is a pointer
to the left sub-tree, RAM[i][2] is a pointer to the
right sub-tree and i = 0,1,…,9.

Note that the considered above Handel-C
code does not support any feature mentioned in
the introduction. We want to make this code

reusable in such a way that the module z1 might
be called from any other HGS much like we can
invoke any elementary operation.

5

4 9

3

1

2

6 A

8

7

0

1

3

5

6

2

4 9

8

7

a) b) c) Begin

End

z1 am

ao

aend

Begin

x1

No left
node

There is a
left node

z1

End (y2)
y1

ao

a1

a2

Fig. 1. Examples of HGSs (b and c) for operations

over a binary tree (a)

It is known that hierarchical invocations of
different modules (HGSs) z0,z1,z2,...(where z0 is
a top-level HGS) can be provided by HFSM [1],
which contains two stack memories for modules
(M_stack) and states (FSM_stack) (see [4] for
details). A stack pointer is the same for the both
stacks. Top-level registers of the stacks keep the
codes for an active module and an active state.
Any hierarchical call causes the stack pointer to
be incremented and new top-level stack registers
to be appropriately set. As a result these
registers enable the module specified by the
relevant algorithm to be selected and the
required functionality of the module to be
established. The code in the register of the
M_stack points to the active module and codes
in the register of the FSM_stack correspond to
different states allowed for providing the
module functionality. Thus an HGS for the new
module can now be executed. Any hierarchical
return forces the stack pointer decrement. As a
result the control flow is returned to the module,
from which the terminating module was called.

Let us consider an example. Fig. 2,a depicts
an HGS z2, which permits an integer with the
maximum value to be found. Fig. 2,b shows
how a new HGS z0 sequentially determines the
minimum and the maximum values to be kept
on the tree in fig. 1,a. This might be described in
Handel-C as follows:

do
{ par { module=get_module();
 state=get_state(); }
 switch(module) // select module
 { case 0: // module z0
 switch(state)
 { case 0: par { // state a0
 next_state(1); reg=0;
 new_module(1); } break;
 case 1: par { // state a1
 next_state(2); reg=0;

 new_module(2); } break;
 case 2: // state a2
 end_module();
 } break;
 case 1: // module z1
 switch(state)
 { case 0: // state a0
 if(RAM[reg][2]!=31)

 par { reg = RAM[reg][2];
 next_state(1); }

 else next_state(2);
 break;
 case 1: // state a1
 if(RAM[reg][2]!=31)

 par { reg = RAM[reg][2];
 next_state(1); }

 else next_state(2);
 break;

 case 2: par { // state a2
 result[0]=RAM[reg][0];
 end_module(); }
 } break;
 case 2: // module z2
 switch(state)
 { case 0: // state a0
 if (RAM[reg][1]!=31)
 par { reg = RAM[reg][1];
 next_state(1); }
 else next_state(2);
 break;
 case 1: // state a1
 if(RAM[reg][1]!=31)
 par { reg = RAM[reg][1];
 next_state(1); }
 else next_state(2);
 break;
 case 2: par { // state a2
 result[1] = RAM[reg][0];
 end_module(); }
 }
 } done=test_ends(); // z0 is terminated
} while(!done);
There are two levels of switch-case

statements in the code. The first level permits an
active module to be selected and the second
level makes possible the required FSM
functionality for the selected module to be
established.

The micro operation y3 in fig. 2 selects the
right sub-tree through its number. There are
some functions in the Handel-C code above,
which look like the following:

unsigned int module_size get_module()
{ return M_stack[stack_ptr]; }
unsigned int state_size get_state()
{ return FSM_stack[stack_ptr]; }
void next_state(unsigned int state)
{ FSM_stack[stack_ptr] = state; }

void new_module(unsigned int module)
{ if(stack_ptr != (MAX_H_INV-1))
 par { stack_ptr++;
 M_stack[stack_ptr+1] = module;
 FSM_stack[stack_ptr+1] = 0; }
}
void end_module(void)
{ if(stack_ptr == 0) ends = TRUE;
 else stack_ptr--; }
unsigned int 1 test_ends()
{ return ends; }
Here MAX_H_INV-1 is a predefined

constant, stack_ptr is the stacks (M_stack and
FSM_stack) pointer. The size of returned
values (such as module_size) is specified
through Handel-C #define directives.

a) b)Begin

x1

No right
node

There is a
right node

z2

End (y2)
y3

ao

a1

a2

Begin (z1)

End

z2 a1

ao

a2

z0

Fig. 2. An example of hierarchical module

invocations

3. Parallel algorithms

If two or more modules are activated at the
same time they will be executed in parallel [6].
For example, z1 and z2 can be invoked in the
same rectangular node of an HGS, which
enables us to find integers with minimum and
maximum values. In this case two modules z1
and z2 will be executed in parallel.

Suppose a node am contains a subset Zm of
modules. In such situation the transition to the
next after am node is allowed to be performed
only after all modules from Zm have been
terminated. Let q be the maximum number of
modules that might be executed in parallel. In
this case we have to build q stacks of modules
and states. This can be done in Handel-C by
allocation of q-element arrays for the objects
M_stack and FSM_stack, duplicating resources
that are required for parallel branches and taking
into account such additional issues as
synchronizations mechanisms [6] and parallel
algorithms correctness [7]. For relatively simple
applications it is easier to construct autonomous
FSMs for each module and to execute them at

the same time using Handel-C par statements.
For example, two concurrent FSMs can be built
for the modules z1 and z2, which will be run in
parallel. The respective example is given in [5].
Note that the resources of Xilinx XC2S200 [8]
FPGA for parallel FSMs comparing with
sequential FSMs are increased just by 9 slices.

4. Recursive algorithms

An algorithm becomes recursive, when it
calls itself. The following Handel-C code shows
how to describe an HGS z3 for recursive data
sorting extracted from the given tree (such as
that is depicted in fig. 1,a).

case 3: // module z3
 switch(state) {
 case 0: // state a0

if (reg != 31) next_state(1);
 else next_state(4);

 break;
 case 1: // state a1

par {
 next_state(2);

 local_stack[local_sp]= reg;
 local_sp++;

 reg=RAM[reg][2];
 new_module(3); } // recursive call
 break;

 case 2: // state a2
 par {
 next_state(3);

 output_stack[output_sp]
 = 000@RAM[reg][0];

 output_sp++; }
 break;

 case 3: // state a3
 par {
 next_state(4);

 local_stack[local_sp]=reg;
 local_sp++;
 reg = RAM[reg][1];
 new_module(3); } // recursive call
 break;
 case 4: // state a4
 par {
 next_state(4);
 end_module();
 if (local_sp>0) local_sp--;
 reg = local_stack[local_sp-1]; } }
Here local_stack and output_stack are

exactly the same as in [4]; local_sp and
output_sp are local and output stack pointers
respectively. All the details of recursive sorting
can be found in [4] and we won't discuss them
in order to keep the description short. The
complete synthesizable Handel-C project and
the relevant tutorial are available in [5].

It is important to note that the considered
modules (HGSs) can easily be reused. For
example, the module z2 (see the node a1 in fig.
2,b) can be replaced with the module z3. This
permits data in the node a1 to be sorted.

5. Handel-C project for sorting
algorithm

The detailed description of a recursive sorting
algorithm was considered in [4]. This section
shows how to specify a similar algorithm in
Handel-C using the proposed above technique.

Let us design a circuit, which has to receive
and sort unsigned integers from an external
source. As soon as a new item is available from
the source it has to be included in the sorted
sequence. The following module z4 constructs
the tree (such as that is shown in fig. 1,a) from
incoming unsigned integers:
 case 4: // module z4
 switch(state) {
 case 0: // state a0
 if (reg == 31) next_state(1);
 else if (ROM[ROM_address]

== RAM[reg][0]) next_state(6);
 else if (ROM[ROM_address]

> RAM[reg][0]) next_state(3);
 else next_state(2);
 break;
 case 1: // state a1
 par { next_state(7);
 RAM[RAM_w+1][0]

= ROM[ROM_address];
 RAM[RAM_w+1][1] = 31;
 RAM[RAM_w+1][2] = 31;
 RAM_w++;
 local_stack[local_sp] = RAM_w+1;

 } break;
 case 2: // state a2
 par { next_state(4);
 local_stack[local_sp]=reg;
 local_sp++;
 reg = RAM[reg][1];
 new_module(4); // recursive call
 } break;
 case 3: // state a3
 par { next_state(5);
 local_stack[local_sp]= reg;
 local_sp++;
 reg=RAM[reg][2];
 new_module(4); // recursive call
 } break;
 case 4: // state a4
 par { next_state(7);
 RAM[reg][1]
 = local_stack[local_sp+1];
 } break;

 case 5: // state a5
 par { next_state(7);
 RAM[reg][2]
 = local_stack[local_sp+1];
 } break;
 case 6: // state a6
 par { next_state(7);
 ROM_address++;
 local_stack[local_sp] = reg;
 } break;
 case 7: // state a7
 par { next_state(7);
 end_module();
 if (local_sp>0) local_sp--;
 reg = local_stack[local_sp-1]; }
 } break;

There are three modules in the Handel-C
project. The first module z0 calls the module z4
for each incoming integer and z4 incrementally
constructs the tree (such as that is shown in fig.
1,a), i.e. for any new integer either a new node
is allocated on the tree (if the integer is unique)
or a counter for a node is incremented (if the
value of the node is the same as the integer). As
soon as a new node has been included in the
tree, z0 calls the module z3 (see section 4). Thus
incoming data are kept permanently sorted.
Note that two modules z3 and z4 are recursive.

6. Experiments

Handel-C projects for the considered above
modular, hierarchical and parallel algorithms
have been described in Handel-C and debugged
in the Celoxica DK2 design suite [9]. After
verifying the required functionality in software
the relevant circuit was synthesized in the DK2
(for EDIF-based design flow). The resulting file
in electronic design interchange format (EDIF)
was converted (in the Xilinx ISE 6.2.01 [9]) to a
bit-stream for the Xilinx XC2S200-5-FG456
FPGA [8]. Finally the bit-stream was loaded to
the FPGA available on the RC100 [9]
prototyping board with the aid of the Celoxica
FTU2 utility [9] and examined in hardware.

All the considered above circuits have been
designed, implemented and tested in the
following Handel-C projects (P1, P2, P3):

P1 - for discovering the minimum and the
maximum integers (see the modules z1 and z2 in
section 2) on the basis of data in the given tree,
such as that is shown in fig. 1,a;

P1 – for sequential and parallel execution of
the modules z1 and z2 (all these facilities have
been provided within the same project P1 and to
test the required module(s) it is necessary to
uncomment the relevant sections of the code);

P2 – for sorting of data receiving from an
internal source, which is an FPGA ROM block.
Arbitrary data were preliminary saved in the
ROM block and then they were read and the tree
(like shown in fig. 1,a) was constructed with the
aid of the module z4 (see section 5). Finally the
data were extracted from the tree, sorted by the
module z3 and displayed;

P3 – for sorting of data receiving from a
mouse connected to the prototyping board
RC100 [9]. The left mouse button was used to
get a value of one of the mouse coordinate. This
value is considered to be an incoming integer.
The right mouse button was used to withdraw
all previously received data and to start a new
data sequence. Obviously any other source
(such as serial interface, keyboard, etc.) can be
used.

All the considered projects are available in
[5] and can be downloaded and tested. The Web
site [5] contains also a set of very useful
tutorials that have already been very widely
used in educational process. There are also a
number of papers describing various methods
and tools for the design of FPGA-based digital
circuits, including more than 10 student
publications and many VHDL and Handel-C
based projects.

Note, that in general the number of FPGA
slices in case of synthesis from Handel-C is
larger then in case of synthesis from VHDL.
However, the time required for the design is
significantly shorter.

It is very important that the considered
modular specification is very flexible and can
easily be retargeted for different criteria. For
example, a trivial change to the module z3 (the
lines reg=RAM[reg][2]; and reg=RAM[reg][1];
are swapped) makes it possible to alter the order
of sorting. Other changes permit finding all data
within a given range, etc. The designed Handel-
C modules are parameterizable which permits
the circuit to be scaled very easy.

The modules considered, which form a
hierarchical specification, can be reused for new
circuits. This is especially interesting for FPGA-
based applications. The basic Handel-C core of
the HFSM can be seen as a template for
synthesis. The number of modules and the
number of states in each module can easily be
customized. The respective Handel-C code can
be inserted and used in any new project. This
permits synthesizable code to be constructed
from previously verified fragments, which can
be easily modified in future, if required.

7. Conclusion
The paper suggests a novel approach for

describing modular, hierarchical and recursive
algorithms in Handel-C system-level
specification language. The considered
technique is very helpful and it permits complex
solutions to be specified clearly and
implemented on the basis of relatively simple
circuits. This technique is used in software and
it is rational to study its opportunities in
hardware. The practicability of the proposed
methods has been demonstrated on numerous
examples Modular, hierarchical, parallel and
recursive algorithms have been coded in
Handel-C, implemented and tested in FPGA of
Spartan-II family from Xilinx.

Acknowledgement

This work was partially supported by the
grant POSI/43140/CHS/2001.

References
[1] V.Sklyarov, Hierarchical Finite-State

Machines and Their Use for Digital
Control. IEEE Transactions on VLSI
Systems, 1999, Vol. 7, No 2, pp. 222-228.

[2] Frank M.Carrano. Data Abstraction and
Problem Solving with C++. The
Benjamin/Cumming Publishing Company,
Inc., 1995.

[3] Brian W.Kernighan, Dennis M.Ritchie,
The C Programming Language, Prentice
Hall, 1988.

[4] V.Sklyarov, FPGA-based Implementation
of Recursive Algorithms, Elsevier Journal
Microprocessors and Microsystems, April,
2004.

[5] http://webct.ua.pt, the discipline
Computação Reconfigurável for the 2nd
semester. Login and password for access
to the protected section can be provided
via e-mail: skl@ieeta.pt.

[6] V.Sklyarov. Graphical Description and
Hardware Implementation of Parallel
Control Algorithms. Proceedings of
PDPTA'99, June, Las Vegas, USA, 1999,
pp. 1390-1396.

[7] A.Zakrevskij, V.Sklyarov. The
Specification and Design of Parallel
Logical Control Devices. Proceedings of
PDPTA'2000, June, Las Vegas, USA,
2000, pp. pp. 1635-1641.

[8] http://www.xilinx.com.
[9] http://www.celoxica.com.

