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Abstract: - The paper suggests a technique, which permits to describe modular, hierarchical and parallel 
algorithms in Handel-C. This opportunity has been provided by generating the required control 
sequences with the aid of a hierarchical finite state machine. The proposed specification in Handel-C is 
synthesizable and it can be translated (for example, in DK2 environment of Celoxica) to EDIF format. 
The latter can be converted to a bit-stream for commercially available FPGAs. An example of sorting 
procedure was described in detail and implemented in Xilinx Spartan II XC2S200 FPGA available on 
Celoxica RC100 prototyping board.  
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1. Introduction 

Hierarchical finite state machines (HFSMs) 
[1] allow modular, hierarchical and recursive 
algorithms to be implemented. These facilities 
are very useful and we will show just a few 
examples. 

It is known that a digital system can be 
composed of an execution (EU) and a control 
(CU) unit. EU is responsible for operations over 
data and for data transfer between registers in 
order to perform the given algorithms. CU 
forces the required sequence of operations. Any 
operation can be elementary and non 
elementary. The first one can be executed by the 
relevant circuit of EU. The second one can be 
composed of elementary and/or non elementary 
operations. This permits a hierarchical 
specification to be built. Thus support for 
modularity and hierarchy is very helpful. Any 
module can be seen a specification of a non 
elementary operation. Hierarchy makes possible 
to construct new modules from elementary 
operations and existing modules. A significant 
benefit of such an opportunity is that any 
complex algorithm can be developed step by 
step, so that our efforts can be concentrated at 
each stage on a specified level of abstraction 
(that is, on a particular module). Each module is 
usually relatively simple, and can be checked 
and debugged independently. Modular 
specification provides support for either top-
down or bottom-up design. Top-down design is 
based on extending given modules by supplying 

more and more detail. Bottom-up design enables 
us to use more complicated components that are 
defined as modules and to organize the design 
process with the aid of libraries of modules. 
Any module can be reused. For many practical 
applications extending or modifying a module 
does not change the existing specification.  

 Generally speaking, an opportunity of 
describing algorithms at different levels of 
complexity makes possible to concentrate 
efforts of the designer at the desired level and to 
abstract from all non essential details. Note that 
some modules might be virtual [1] that permits 
to redefine them later if necessary. Besides, for 
testing some ideas it is not required to 
implement all modules and we can deal with 
incompletely specified functionality, which is 
very helpful for debugging purposes [1]. 

For some applications a module might call 
itself. For example, many problems can be 
solved through traversing binary trees [2,3]. The 
nodes of the tree are maintained so that at any 
node N, the left sub-tree contains only values 
belonging to a range A, and the right sub-tree 
contains only values belonging to a range B 
(A∩B=∅). The value written in the node N 
makes possible the ranges A and B to be 
calculated. Possible extra fields in the node N 
keep additional information, for example, the 
number of occurrences of the value associated 
with the respective node N. It is known, for 
example, that such a tree can be constructed and 
used for sorting various types of data [3]. In 



order to build this tree for a given set of values, 
we have to find the appropriate place in the 
current tree for incoming items. In order to sort 
the data, we can apply a special technique [3] 
using forward and backtracking propagation 
steps that are exactly the same for each node. 
Thus a recursive procedure is very efficient and 
support for this is very helpful. Sorting of this 
type will be considered in the paper as a 
working example and all the required additional 
details can be found in [4,5]. 

Note that existing specification tools do not 
provide direct support for majority of the 
considered above features. On the other hand 
these features can be realized if the control 
sequence is generated by an HFSM and it was 
shown in [4], where VHDL-based 
implementation of modular, hierarchical and 
recursive algorithms has been proposed and 
tested in Spartan IIE XC2S300E/XC2S400E 
FPGAs on examples of recursive sorting and 
data compression. This paper suggests the 
method of description of modular, hierarchical, 
recursive and parallel algorithms in Handel-C, 
which is a system level specification language.  

The remainder of this paper is organized in 
six sections. Section 2 shows how to describe 
modular and hierarchical algorithms. Section 3 
explains various opportunities allowing modules 
to be executed in parallel. Section 4 considers 
recursive algorithms. Section 5 describes a 
Handel-C project for sorting algorithms, which 
provides support for modularity, hierarchy and 
recursive module invocations. The conclusion is 
in section 7. 
 
2. Modular and hierarchical 
algorithms 

It is known [1] that CU algorithms can be 
constructed from modules and described 
hierarchically with the aid of the language that 
is called hierarchical graph-schemes (HGS). 
Fig. 1,a demonstrates an example of a binary 
tree, which keeps a set of unsigned integers. Fig. 
1,b shows how to describe a simple algorithm 
(HGS) for finding an integer with minimum 
value. Here the logic condition x1 tests if the 
node has a left sub-tree, the micro-operation y1 
selects the left sub-tree through its number (see 
Italic digits in fig. 1,a) and the micro-operation 
y2 copies the value from the selected node to the 
result. Let us designate the HGS in fig. 1,b as z1. 
Fig. 1,c depicts a fragment of an HGS of a 
higher hierarchical level, which invokes the 

HGS z1 in the rectangular node am. This enables 
us more complicated HGSs to be constructed 
from elementary operations and other HGSs 
designated as modules z0,z1,z2,… . 

Any HGS can be described in Handel-C 
using a finite state machine (FSM) notation 
[1,4] such as the following (see also fig. 1,b): 

do  {   // module z1 in fig. 1,b     
   CS = NS; 
   switch(CS) 
   {  case 0:  // state a0 
  if (RAM[reg][2] != 31)      // x1 

                par { reg=RAM[reg][2]; NS=1; }  // y1 
  else NS=2; 
       break; 
       case 1:   // state a1 
   if (RAM[reg][2] != 31) 

                par { reg=RAM[reg][2]; NS=1; }  // y1 
   else NS=2;    
       break; 
       case 2:   // state a2 
   result=RAM[reg][0];    // y2 
    }  
      } 
while(CS != 2); 
Here CS/NS is a variable, which keeps 

current/next FSM state, the labels a0, a1, a2 (see 
fig. 1,b) are considered to be FSM states, reg is 
the RAM address register, which was initially 
set to 0. The tree shown in fig. 1,a is stored in a 
RAM block as follows: 

RAM[0][0]=5;   RAM[0][1]=1;   RAM[0][2]=2; 
RAM[1][0]=4;   RAM[1][1]=3;   RAM[1][2]=31; 
RAM[2][0]=9;   RAM[2][1]=4;   RAM[2][2]=9; 
RAM[3][0]=3;   RAM[3][1]=5;   RAM[3][2]=31; 
RAM[4][0]=6;   RAM[4][1]=31; RAM[4][2] = 8; 
RAM[5][0]=1;   RAM[5][1]=31; RAM[5][2] = 6; 
RAM[6][0]=2;   RAM[6][1]=31; RAM[6][2]=31; 
RAM[7][0]=7;   RAM[7][1]=31; RAM[7][2]=31; 
RAM[8][0]=8;   RAM[8][1]=7;   RAM[8][2]=31; 
RAM[9][0]=10; RAM[9][1]=31; RAM[9][2]=31;  
The value 31 indicates an absence of the 

respective (either left or right) sub-tree. Note 
that for simplicity the RAM is declared as: 

unsigned int 5 RAM[32][3]; 
i.e. it keeps 5-bit unsigned integers. It enables us 
to sort values from 0 to 30 (because the value 31 
is used as a flag). However this declaration can 
easily be changed in order to hold data with the 
required size. Here RAM[i][0] is the saved 
value (unsigned integer), RAM[i][1] is a pointer 
to the left sub-tree, RAM[i][2] is a pointer to the 
right sub-tree and i = 0,1,…,9. 

Note that the considered above Handel-C 
code does not support any feature mentioned in 
the introduction. We want to make this code 



reusable in such a way that the module z1 might 
be called from any other HGS much like we can 
invoke any elementary operation. 
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Fig. 1. Examples of HGSs (b and c) for operations 

over a binary tree (a) 

It is known that hierarchical invocations of 
different modules (HGSs) z0,z1,z2,...(where z0 is 
a top-level HGS) can be provided by HFSM [1], 
which contains two stack memories for modules 
(M_stack) and states (FSM_stack) (see [4] for 
details). A stack pointer is the same for the both 
stacks. Top-level registers of the stacks keep the 
codes for an active module and an active state. 
Any hierarchical call causes the stack pointer to 
be incremented and new top-level stack registers 
to be appropriately set. As a result these 
registers enable the module specified by the 
relevant algorithm to be selected and the 
required functionality of the module to be 
established. The code in the register of the 
M_stack points to the active module and codes 
in the register of the FSM_stack correspond to 
different states allowed for providing the 
module functionality. Thus an HGS for the new 
module can now be executed. Any hierarchical 
return forces the stack pointer decrement. As a 
result the control flow is returned to the module, 
from which the terminating module was called. 

Let us consider an example. Fig. 2,a depicts 
an HGS z2, which permits an integer with the 
maximum value to be found.  Fig. 2,b shows 
how a new HGS z0 sequentially determines the 
minimum and the maximum values to be kept 
on the tree in fig. 1,a. This might be described in 
Handel-C as follows: 

do 
{  par    {   module=get_module(); 
        state=get_state(); }  
   switch(module) // select module 
   {  case 0:    // module z0 
       switch(state) 
       { case 0:  par {  // state a0 
                next_state(1);  reg=0; 
                new_module(1); }  break; 
   case 1:  par {  // state a1 
                next_state(2); reg=0;   

                        new_module(2); }   break; 
  case 2:   // state a2 
               end_module(); 
   }  break; 
      case 1:    // module z1 
       switch(state)  
       { case 0:   // state a0 
      if(RAM[reg][2]!=31) 

        par {   reg = RAM[reg][2]; 
     next_state(1);  } 

      else next_state(2); 
  break; 
  case 1:   // state a1 
       if(RAM[reg][2]!=31)  

      par {    reg = RAM[reg][2]; 
                  next_state(1);  } 

       else next_state(2);  
  break; 

  case 2:  par {  // state a2 
         result[0]=RAM[reg][0]; 
         end_module();             } 
   }  break; 
      case 2:    // module z2 
 switch(state)  
 { case 0:   // state a0 
        if (RAM[reg][1]!=31)  
                  par {   reg = RAM[reg][1]; 
                         next_state(1);          } 
       else next_state(2); 
    break; 
    case 1:   // state a1 
        if(RAM[reg][1]!=31)  
                   par {   reg = RAM[reg][1]; 
           next_state(1);   } 
       else next_state(2); 
    break; 
    case 2:  par {  // state a2 
          result[1] = RAM[reg][0]; 
         end_module();   } 
        } 
   } done=test_ends();     // z0 is terminated 
}  while(!done);    
There are two levels of switch-case 

statements in the code. The first level permits an 
active module to be selected and the second 
level makes possible the required FSM 
functionality for the selected module to be 
established. 

The micro operation y3 in fig. 2 selects the 
right sub-tree through its number. There are 
some functions in the Handel-C code above, 
which look like the following: 

unsigned int module_size get_module() 
{ return M_stack[stack_ptr]; } 
unsigned int state_size get_state() 
{ return FSM_stack[stack_ptr]; } 
void next_state(unsigned int state) 
{ FSM_stack[stack_ptr] = state; } 



void new_module(unsigned int module) 
{   if(stack_ptr != (MAX_H_INV-1)) 
    par  {  stack_ptr++; 
       M_stack[stack_ptr+1] = module; 
       FSM_stack[stack_ptr+1] = 0;      } 
} 
void end_module(void) 
{  if(stack_ptr == 0) ends = TRUE; 
  else  stack_ptr--;  } 
unsigned int 1 test_ends() 
{  return ends;  } 
Here MAX_H_INV-1 is a predefined 

constant, stack_ptr is the stacks (M_stack and 
FSM_stack) pointer. The size of returned 
values (such as module_size) is specified 
through Handel-C #define directives. 
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Fig. 2. An example of hierarchical module 

invocations 

 
3. Parallel algorithms 

If two or more modules are activated at the 
same time they will be executed in parallel [6]. 
For example, z1 and z2 can be invoked in the 
same rectangular node of an HGS, which 
enables us to find integers with minimum and 
maximum values. In this case two modules z1 
and z2 will be executed in parallel.  

Suppose a node am contains a subset Zm of 
modules. In such situation the transition to the 
next after am node is allowed to be performed 
only after all modules from Zm have been 
terminated. Let q be the maximum number of 
modules that might be executed in parallel. In 
this case we have to build q stacks of modules 
and states. This can be done in Handel-C by 
allocation of q-element arrays for the objects 
M_stack and FSM_stack, duplicating resources 
that are required for parallel branches and taking 
into account such additional issues as 
synchronizations mechanisms [6] and parallel 
algorithms correctness [7]. For relatively simple 
applications it is easier to construct autonomous 
FSMs for each module and to execute them at 

the same time using Handel-C par statements. 
For example, two concurrent FSMs can be built 
for the modules z1 and z2, which will be run in 
parallel. The respective example is given in [5]. 
Note that the resources of Xilinx XC2S200 [8] 
FPGA for parallel FSMs comparing with 
sequential FSMs are increased just by 9 slices.    
 
4. Recursive algorithms 

An algorithm becomes recursive, when it 
calls itself. The following Handel-C code shows 
how to describe an HGS z3 for recursive data 
sorting extracted from the given tree (such as 
that is depicted in fig. 1,a). 

case 3:   // module z3 
   switch(state)   { 
      case 0:   // state a0 

if (reg != 31) next_state(1);  
 else next_state(4); 

      break; 
      case 1:   // state a1 

par {   
  next_state(2); 

               local_stack[local_sp]= reg;         
               local_sp++;  

   reg=RAM[reg][2];             
   new_module(3); } // recursive call 
       break; 

            case 2:   // state a2 
              par {   
                next_state(3); 

           output_stack[output_sp]  
      = 000@RAM[reg][0]; 

           output_sp++;   } 
       break; 

            case 3:   // state a3 
              par  {   
                 next_state(4); 

            local_stack[local_sp]=reg; 
     local_sp++; 
            reg = RAM[reg][1];        
            new_module(3);  }  // recursive call 
        break; 
        case 4:   // state a4 
          par   {  
             next_state(4); 
             end_module(); 
             if (local_sp>0)  local_sp--; 
             reg = local_stack[local_sp-1]; }       } 
Here local_stack and output_stack are 

exactly the same as in [4]; local_sp and 
output_sp are local and output stack pointers 
respectively. All the details of recursive sorting 
can be found in [4] and we won't discuss them 
in order to keep the description short. The 
complete synthesizable Handel-C project and 
the relevant tutorial are available in [5]. 



It is important to note that the considered 
modules (HGSs) can easily be reused. For 
example, the module z2 (see the node a1 in fig. 
2,b) can be replaced with the module z3. This 
permits data in the node a1 to be sorted.  
 
5. Handel-C project for sorting 
algorithm 

The detailed description of a recursive sorting 
algorithm was considered in [4]. This section 
shows how to specify a similar algorithm in 
Handel-C using the proposed above technique.  

Let us design a circuit, which has to receive 
and sort unsigned integers from an external 
source. As soon as a new item is available from 
the source it has to be included in the sorted 
sequence. The following module z4 constructs 
the tree (such as that is shown in fig. 1,a) from 
incoming unsigned integers: 
   case 4: // module z4 
     switch(state)   { 
      case 0:  // state a0 
        if (reg == 31) next_state(1);  
        else if (ROM[ROM_address]  

== RAM[reg][0])  next_state(6); 
        else if (ROM[ROM_address] 

> RAM[reg][0])  next_state(3); 
        else next_state(2); 
      break; 
      case 1:  // state a1 
        par {  next_state(7); 
                 RAM[RAM_w+1][0] 

= ROM[ROM_address]; 
     RAM[RAM_w+1][1] = 31; 
     RAM[RAM_w+1][2] = 31; 
     RAM_w++;   
     local_stack[local_sp] = RAM_w+1;  

 }  break; 
      case 2:  // state a2 
        par  {  next_state(4); 
                   local_stack[local_sp]=reg; 
       local_sp++; 
                   reg = RAM[reg][1];        
                   new_module(4); // recursive call  
              }  break; 
       case 3:  // state a3 
          par {  next_state(5); 
                    local_stack[local_sp]= reg;         
                    local_sp++;  
        reg=RAM[reg][2];             
        new_module(4); // recursive call 
            }  break; 
        case 4:  // state a4 
          par   {  next_state(7); 
         RAM[reg][1] 
                            = local_stack[local_sp+1];  
                  }  break;  

        case 5:  // state a5 
           par   {  next_state(7); 
           RAM[reg][2] 
                           = local_stack[local_sp+1];  
                   }  break; 
        case 6:  // state a6 
           par   {  next_state(7); 
           ROM_address++; 
           local_stack[local_sp] = reg; 
        }  break; 
        case 7:  // state a7 
          par   {  next_state(7); 
                      end_module(); 
                      if (local_sp>0)  local_sp--; 
                      reg = local_stack[local_sp-1]; } 
                     } break;   

There are three modules in the Handel-C 
project. The first module z0 calls the module z4 
for each incoming integer and z4 incrementally 
constructs the tree (such as that is shown in fig. 
1,a), i.e. for any new integer either a new node 
is allocated on the tree (if the integer is unique) 
or a counter for a node is incremented (if the 
value of the node is the same as the integer). As 
soon as a new node has been included in the 
tree, z0 calls the module z3 (see section 4). Thus 
incoming data are kept permanently sorted. 
Note that two modules z3 and z4 are recursive. 
 
6. Experiments 

Handel-C projects for the considered above 
modular, hierarchical and parallel algorithms 
have been described in Handel-C and debugged 
in the Celoxica DK2 design suite [9]. After 
verifying the required functionality in software 
the relevant circuit was synthesized in the DK2 
(for EDIF-based design flow). The resulting file 
in electronic design interchange format (EDIF) 
was converted (in the Xilinx ISE 6.2.01 [9]) to a 
bit-stream for the Xilinx XC2S200-5-FG456 
FPGA [8]. Finally the bit-stream was loaded to 
the FPGA available on the RC100 [9] 
prototyping board with the aid of the Celoxica 
FTU2 utility [9] and examined in hardware. 

All the considered above circuits have been 
designed, implemented and tested in the 
following Handel-C projects (P1, P2, P3): 

P1 - for discovering the minimum and the 
maximum integers (see the modules z1 and z2 in 
section 2) on the basis of data in the given tree, 
such as that is shown in fig. 1,a; 

P1 – for sequential and parallel execution of 
the modules z1 and z2 (all these facilities have 
been provided within the same project P1 and to 
test the required module(s) it is necessary to 
uncomment the relevant sections of the code); 



P2 – for sorting of data receiving from an 
internal source, which is an FPGA ROM block. 
Arbitrary data were preliminary saved in the 
ROM block and then they were read and the tree 
(like shown in fig. 1,a) was constructed with the 
aid of the module z4 (see section 5). Finally the 
data were extracted from the tree, sorted by the 
module z3 and displayed;  

P3 – for sorting of data receiving from a 
mouse connected to the prototyping board 
RC100 [9]. The left mouse button was used to 
get a value of one of the mouse coordinate. This 
value is considered to be an incoming integer. 
The right mouse button was used to withdraw 
all previously received data and to start a new 
data sequence. Obviously any other source 
(such as serial interface, keyboard, etc.) can be 
used. 

All the considered projects are available in 
[5] and can be downloaded and tested. The Web 
site [5] contains also a set of very useful 
tutorials that have already been very widely 
used in educational process. There are also a 
number of papers describing various methods 
and tools for the design of FPGA-based digital 
circuits, including more than 10 student 
publications and many VHDL and Handel-C 
based projects.  

Note, that in general the number of FPGA 
slices in case of synthesis from Handel-C is 
larger then in case of synthesis from VHDL. 
However, the time required for the design is 
significantly shorter. 

It is very important that the considered 
modular specification is very flexible and can 
easily be retargeted for different criteria. For 
example, a trivial change to the module z3 (the 
lines reg=RAM[reg][2]; and reg=RAM[reg][1]; 
are swapped) makes it possible to alter the order 
of sorting. Other changes permit finding all data 
within a given range, etc. The designed Handel-
C modules are parameterizable which permits 
the circuit to be scaled very easy. 

The modules considered, which form a 
hierarchical specification, can be reused for new 
circuits. This is especially interesting for FPGA-
based applications. The basic Handel-C core of 
the HFSM can be seen as a template for 
synthesis. The number of modules and the 
number of states in each module can easily be 
customized. The respective Handel-C code can 
be inserted and used in any new project. This 
permits synthesizable code to be constructed 
from previously verified fragments, which can 
be easily modified in future, if required.  

7. Conclusion 
The paper suggests a novel approach for 

describing modular, hierarchical and recursive 
algorithms in Handel-C system-level 
specification language. The considered 
technique is very helpful and it permits complex 
solutions to be specified clearly and 
implemented on the basis of relatively simple 
circuits. This technique is used in software and 
it is rational to study its opportunities in 
hardware. The practicability of the proposed 
methods has been demonstrated on numerous 
examples Modular, hierarchical, parallel and 
recursive algorithms have been coded in 
Handel-C, implemented and tested in FPGA of 
Spartan-II family from Xilinx. 
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