
Implementation of the Advanced SAT Search Techniques
in Reconfigurable Hardware

IOULIIA SKLIAROVA, ANTÓNIO B. FERRARI

Department of Electronics and Telecommunications, IEETA
University of Aveiro

3810-193 Aveiro
PORTUGAL

Abstract: - This paper presents an application-specific approach to solving the Boolean satisfiability (SAT)
problem with the aid of reconfigurable hardware. In the proposed architecture an instance-specific hardware
compilation is completely avoided, requiring for each problem instance just the formula information to be
downloaded to an FPGA. The previously suggested method of software/reconfigurable hardware partitioning
enables problems to be solved that exceed the available FPGA resources. The distinctive feature of this work
consists of addressing the possibility of implementation of advanced search techniques such as
nonchronological backtracking and conflict clause addition, in reconfigurable hardware.

Key-Words: - Boolean satisfiability, reconfigurable hardware, software/reconfigurable hardware partitioning

1 Introduction
During the last eight years a great deal of research
effort was aimed at the implementation of efficient
Boolean satisfiability (SAT) solvers on the basis of
reconfigurable hardware (in FPGA, in particular).
This was stimulated by the fact that current
reconfigurable systems possess both the flexibility
and low development costs of software and a high
speed of hardware realizations. Besides, the SAT
problem is very well suited to parallel
implementations that take advantage of the basic
capabilities of reconfigurable computing.

SAT is a very well known combinatorial problem
that consists of determining whether a given Boolean
formula can be satisfied by some truth assignment.
The search variant of this problem requires at least
one satisfying assignment to be found. Usually, the
formula is presented in conjunctive normal form
(CNF), which is composed of a conjunction of a
number of clauses, where a clause is a disjunction of
a number of literals. Each literal represents either a
Boolean variable or its negation. For example, the
following formula in CNF is satisfied when x1=’1’,
x2=’0’ and x3=’-‘ (don’t care):

))()((3213221 xxxxxxx ∨∨∨∨
The SAT problem has a lot of practical

applications in a variety of engineering areas,
including the testing of electronic circuits, pattern
recognition, logic synthesis, etc. A good review of
possible applications with the respective references
can be found in [1].

It should be noted that SAT was the first problem
shown to be NP-complete [2]. It means that the
existing algorithms have an exponential worst-case
complexity. Implementations based on
reconfigurable hardware enable the primary
operations of the respective algorithms to be
executed in parallel. Consequently, the exponential
growth of the execution time, as a function of the
size of a problem instance, can be delayed.

This paper analyzes the possibility and
effectiveness of implementation of advanced search
techniques (that are successfully applied in the state-
of-the-art software SAT solvers) in reconfigurable
hardware. Section 2 that follows this introduction is
devoted to the description of the algorithm
employed. Section 3 gives a brief overview of the
existing hardware SAT solvers emphasizing their
advantages and weaknesses and formulates the
primary requirements of the reconfigurable hardware
SAT satisfier. The proposed architecture of FPGA-
based SAT solver is presented in section 4. The
conclusion is given in section 5.

2 The SAT Algorithm
Practically all the existing reconfigurable hardware
SAT solvers employ some variations of the well-
known Davis-Putnam algorithm [3]. The algorithm
starts with an empty variable assignment. After that a
unit clause rule, a pure literal rule and decisions are
alternately applied.

A unit clause rule consists of finding unit clauses,
i.e. such clauses that contain just one unassigned
literal [4]. The respective variable can be assigned a
value (either ‘1’ if the literal is positive, or ‘0’ if the
literal is negative) without losing any possible
solution. The selected variable is said to be implied
to the respective value.

A pure literal rule is based on finding pure
literals, i.e. such literals that are either all positive or
all negative. The variable corresponding to a pure
literal can be assigned a value (either ‘1’ if all the
occurrences of the literal are positive, or ‘0’ if all the
occurrences of the literal are negative) without
influencing in any way the satisfiability of the
formula.

These two rules are known as reduction methods
because they allow an initial formula to be simplified
without affecting the satisfiability of the formula.

When there are no more unit clauses and pure
literals, a decision is taken. The decision consists of
choosing one unassigned variable and assigning a
value to it. There exist two basic approaches to the
selection of the decision variables: static and
dynamic. In the static approach all the variables are
initially pre-ordered using some criteria. The
resulting static sequence is used to fetch the next
decision variable when required. In the dynamic
approach such a variable and a value are chosen that
are most likely to help in satisfying the formula (a
variety of heuristic methods are employed for this
purpose).

When a variable is assigned a value (either by
means of a decision or a reduction), all the satisfied
clauses together with the falsified literals are
removed from the formula.

A conflict appears if either a variable is implied to
two opposite values or there exists an empty clause.
In this case it is necessary to erase all actions
performed after the last decision and invert the value
of the current decision variable. If both possible
values have already been tried, the algorithm
backtracks to the previous decision variable.

When the last clause becomes satisfied and is
deleted from the formula, it means that the current
variable assignment represents a solution. If all
possible assignments of values to variables have
been implicitly tested (i.e. both values of the first
decision variable were tried out without success),
thus the formula is unsatisfiable.

In the DP algorithm, the search process is usually
represented with the aid of a decision tree, whose
nodes correspond to intermediate sub-formulae
obtained during the search, and edges represent the
decisions taken. The decision tree is traversed using
the depth-first-search approach.

In the present-day software SAT solvers a lot of
advanced techniques are applied that enable those
regions of the search space that do not contain any
solution to be discovered and their exploration to be
avoided. Let us describe some of these techniques
that we are going to implement in reconfigurable
hardware.

In the DP algorithm, in case of a conflict, the
control process backtracks always to the most
recently assigned decision variable. Such
backtracking is called chronological [5]. However,
an analysis of the conflict causes may lead to the
discovery of the decision variables that are really
responsible for the conflict occurrence. Thus, the
algorithm can backtrack directly to the most recent
of these decision variables enabling in this way some
branches of the decision tree to be pruned. The
process is usually referred to as nonchronological
backtracking [5].

Let us illustrate this feature with the aid of the
following formula:

))((
))()()((

))()((
))()()((

))()()((

111011110

111011108464

74122543

54438171

612102110

xxxxx
xxxxxxxx

xxxxxxx
xxxxxxxx

xxxxxxxxx

∨∨∨∧
∧∨∨∨∨∧

∧∨∨∨∨∧
∧∨∨∨∨∧

∧∨∨∨∨∨

 (1)

In order to find out a solution we could apply an
algorithm that includes application of the unit clause
rule and employs dynamic selection of the next
decision variable based on a maximum-occurrence-
in-clauses heuristics. This heuristics, at each step
tries to satisfy as many clauses as possible by
choosing such a variable that occurs in the maximum
number of clauses. If the majority of the respective
literals are positive, the variable is assigned a value
‘1’, in the opposite case the variable is set to ‘0’.

The resulting decision tree for formula (1) is
presented in fig. 1a). As it can be seen the algorithm
requires 12 nodes to be visited.

The technique of nonchronological backtracking
for SAT was proposed in GRASP [5]. It relies on the
construction of a directed implication graph that
represents the sequence of implications generated
during the search. When a conflict arises, the
implication graph is analyzed to determine those
variable assignments that are directly responsible for
the conflict. This requires a conflict-induced clause
to be constructed. After that, instead of performing
chronological backtracking, the algorithm may jump
directly to the most recently assigned decision
variable that appears in the conflict-induced clause.
As a result, some branches of the decision tree may

be pruned away, thus saving the time that would
otherwise be needed to explore them. Applying the
technique to the formula (1) will lead to the
construction of the decision tree depicted in fig. 1b).
In this case only 9 nodes must be visited.

Additionally, the conflict-induced clauses may be
recorded, allowing the occurrence of similar
conflicts to be prevented later on during the search.
This process is referred to as dynamic clause
addition.

start

x1=1 x1=0

x4=1 x4=0

x10=1 x10=0 x10=1 x10=0

x4=0

x10=0

x2=1

x3=1

start

x1=1 x1=0

x4=1

x10=1 x10=0

x4=0

x10=0

x2=1

x3=1

a) b)

Fig. 1. The decision tree constructed for formula (1) applying chronological (a) and
nonchronological (b) backtracking

3 The Primary Requirements of the
SAT Solver
In this section we will formulate the primary
requirements of the reconfigurable hardware SAT
solver taking into account the previous work done in
this domain [6-13].

Initially, all the proposed hardware SAT solvers
were based on the instance-specific approach [6-9].
In this case a specific hardware circuit is compiled
and downloaded to FPGA for each problem instance
to be solved. However, the compilation time may
constitute a large portion of the total solving time.
For easy problem instances it even dominates and
cancels out all the benefits of fast hardware
execution. Therefore, a lot of work in this direction
was done to enable the generation of hardware
configurations to be accelerated [9]. The more recent
investigation [10, 11, 12, 13] is tailored to either
partial or complete avoiding of instance-specific
hardware compilation.

In this work we will follow the policy proposed in
[12] where a dynamically reconfigurable architecture
is described enabling both the FPGA configuration
time to be reduced and the hardware compilation
overhead to be eliminated. Consequently, the SAT
satisfier should have such architecture that is not
required to be modified from problem instance to
problem instance. In this case, the respective circuit

would be downloaded to the FPGA and after that it
could be employed to solve a series of problem
instances. For each Boolean formula to be
considered, only the formula-specific information
should be communicated to the FPGA.

Of course such a circuit could not be used for
processing an arbitrary problem instance because the
available hardware resources are always limited.
Thus, the SAT solver should address and efficiently
overcome this limitation. For such a purpose the
following four approaches are usually applied.

The first one requires the original formula to be
decomposed into a series of sub-formulae, each of
which respects the capacity constraints [9]. The
resulting sub-formulae can be handled either
sequentially or in parallel by employing several
unconnected FPGAs. The main limitation of this
technique is that decomposing some formulae may
be very inefficient, therefore increasing the
computation time to unacceptable levels [10].

The second approach consists of partitioning the
circuit into multiple interconnected FPGAs [7]. The
primary limitation of this method is that it requires
signals to propagate off-chip, resulting in large
delays. Besides, fast and efficient multi-FPGA
partitioning and routing is quite a difficult task.

The third method is based on a virtual hardware
scheme proposed in [10], which relies on dividing
the circuit into a series of hardware pages that are

successively run. Since all the hardware pages have
the same structure with only a number of registers
being reconfigured, page switching is performed
very fast. The computed variable assignment is
stored in external memory blocks and is processed
when traversing the FPGA from one memory block
to another

The last approach that is currently intensively
investigated is based on partitioning the problem
solution between software and reconfigurable
hardware. Within the domain of
software/reconfigurable hardware partitioning two
different techniques are applied. The first one [10]
requires the most computationally intensive tasks
(namely, computing implications and selecting
dynamically the next decision variable) to be
assigned to reconfigurable hardware, while the
control-oriented tasks that are inherently sequential
(in particular, the conflict analysis) are realized in
software. It is difficult to estimate the efficiency of
this approach because the published results [10] are
based on simulation in software and do not account
the time that would be spent in communication
between the host processor and an FPGA.

The second partitioning technique was proposed
in [14]. In this case an FPGA is only responsible for
processing sub-problems that appear at various levels
of the decision tree and satisfy the imposed hardware
constraints (such as the maximum allowed number
of variables and clauses in a sub-formula). Those
sub-formulae that do not respect the constraints are
initially processed by a software program that
implements the same algorithm as the FPGA circuit.
In this work we will follow the same method of
partitioning.

The remaining set of requirements is related to the
algorithm itself. First of all, the dynamic selection of
the next decision variable should be performed
because it has a significant impact on the
convergence of the search. The majority of hardware
SAT satisfiers employ just a static selection
mechanism. Second, a conflict analysis engine
should be implemented in hardware. Practically all
FPGA-based SAT solvers lack this feature. An
attempt to realize a conflict analysis in hardware was
performed in [7]. Our approach is similar to that
proposed in [7].

The following list summarizes the formulated
requirements:

1. The circuit should be application-specific (as
opposed to instance-specific) eliminating in
this way the hardware compilation step.

2. The problem has to be partitioned between
software and reconfigurable hardware, what

allows the limited FPGA capacity problem to
be alleviated.

3. The next decision variable has to be selected
dynamically.

4. The conflict analysis should be implemented
both in software and in FPGA.

It should be noted that a SAT solver architecture
that satisfies the first three points, was proposed in
[12, 13]. The main objective of this work is to
incorporate the hardware support for
nonchronological backtracking and dynamic clause
addition.

4 SAT Solver Architecture
As it was mentioned in section 3, the architecture we
are going to propose is based on the work described
in [12, 13]. Thus, the principle design decisions
made in [12, 13] should be first outlined.

The SAT problem containing m clauses and n
variables is formulated over a ternary matrix with
dimensions m×n. Consequently, the required
hardware resources depend only on the size of a
formula and do not depend on its complexity. It
should be underlined that the suggested design does
not require an initial formula to be transformed to k-
SAT problem, as it is demanded by some other
proposed architectures [6, 10]. In order to find a
satisfying assignment, we need to discover a ternary
vector, which is orthogonal to every row of the
matrix. If such vector cannot be found, the formula is
unsatisfiable.

The basic components of the proposed
architecture are shown in fig. 2.

Data
matrices

Control
Unit























111111
101001
100001
011000
000101

ALUStack

from host computer

Registers

to/from host computer

Implication
matrix
(IM)

Fig. 2. Architecture of SAT solver

The central control unit executes the required
algorithm. The block Registers consists of
components that store such kind of data as addresses

of the currently active row and column, the deleted
rows, etc. The matrix is implemented with the aid of
two memory blocks corresponding to the original
matrix and to its transpose. Therefore, any row and
column can be read in just one clock cycle. During
the search process some rows and columns of the
matrix have to be deleted. However, the matrix itself
is not modified and all possible changes are reflected
in the respective registers. The ALU is used to
perform the primary computations over different
ternary vectors that include calculation of the
number of ones and zeros, checking two vectors for
orthogonality, etc. The stack memory supports the
backtracking process. When a decision is performed,
the current values from all the registers are stored in
the stack and these values are restored during the
backtracking process, i.e. they are moved from the
stack back to the registers.

Let us now describe the control algorithm we are
going to implement (see fig. 3). There are two
primary reduction methods employed. They are the
unit clause rule and the pure literal rule explained in
section 2.

begin

Apply the unit clause rule/
Update implications

Is the matrix empty?

Apply the pure-literal rule

Is there any conflict?

Was at least one of
the rules applied?

Select the next decision
variable with the aid of the

current conflict-induced
clause

no

no

no

yes

The currect partial
assignment represents

a solution
endyes

Is it possible to
backtrack?yes

yes

The formula is
unsatisfiable

no

Construct the new
conflict-induced clause

Add the conflict-induced
clause to the matrix

yes

Erase all actions
performed after
the last decision

no

Have already
both values of the current

decision variable
been tried?

Invert the value
of the current

decision variable

Fig. 3. The implemented algorithm

In order to realize nonchronological backtracking
a conflict-induced clause should be constructed. This
clause is held in an n-bit register. In our design, the

conflict-induced clause is generated when both
values of some decision variable were tried out
without success. To construct a conflict-induced
clause, we should keep track of the sequence of
implications produced during the search process.
This sequence is maintained in an n×n DPRAM
block referred to as Implication matrix (IM) in fig. 2.

When the unit clause rule is applied, the
implication matrix needs to be updated. If a variable
xj, j=1,…,n, is implied because of a unit clause ci,
i=1,…,m, then a value at the address j of IM has to
be modified. The new value must reflect the
complete sequence of implications that finally
caused xj to be implied.

If an initial clause ci is equal to (lj∨lk∨…∨lr),
where lj, lk,…,lr represent some literals,
1≤(j,k,…,r)≤n, then the following value should be
written at the address j of IM: IM[j]=ci

B∨IM[k]∨…
∨IM[r], where ci

B is an n-bit Boolean vector that has
1s in the positions corresponding to the literals
occurring in ci, and has 0s in all the remaining
positions.

During backtracking, we should erase all the
actions performed after the last decision. These
actions include:
• restoring recently deleted rows and columns;
• recovering the previous value of a ternary vector

that is being looked for;
• undoing the recent sequence of implications.

The first two points are very easy to implement.
For such purposes the previous values of the
respective registers have to be restored from the
stack memory. To implement the last point, the
contents of IM should be updated in such a way that
the current decision variable is removed from the
sequence of implications. To accomplish this task the
following operation must be executed for j=1,…,n:

rcur_des_vajj]IM[]IM[∧= , where cur_des_var is a
binary decoded value of a log2n-bit register that
stores the number of the current decision variable. Of
course this operation is quite expensive, that is why
it is better to perform it with the aid of an n-bit
register, which can mark by 1s the deleted columns
of IM.

To construct a conflict-induced clause, we need to
perform a disjunction of those rows of IM that
correspond to the literals occurring in a clause that is
the cause of a conflict.

When the backtracking process is activated, only
those variables should be selected, that appear in the
current conflict-induced clause, because unless a
value of one of these variables is inverted, the same
kind of conflict will occur later on during the search.

The actual dimensions of the initial matrix are
stored in two special registers. If these dimensions
(the number of rows, in particular) are smaller than
the maximum allowed, then the generated conflict-
induced clauses can be added to the matrix to enable
the subsequent occurrence of similar conflicts to be
avoided.

5 Conclusion
This paper analyzes the possibility of implementing
nonchronological backtracking and dynamic clause
addition in reconfigurable hardware. The basic
architecture of the respective SAT solver is
proposed. It should be noted that a lot of work is to
be done to draw a more deterministic conclusion. In
particular, we are going to implement a small
prototype of the SAT satisfier. It will permit to
measure the total execution time including the
communication between the host processor and the
FPGA. The implementation will be based on the
Xilinx XC2VP7 FPGA [15] installed on an ADM-
XPL PCI board.

The design described in [12, 13] demonstrated
very good results for some classes of difficult
problems from the DIMACS benchmark suite [16].
Therefore we expect that implementing the proposed
architecture will lead to further performance
improvements.

Acknowledgment
This work was supported by the Portuguese
Foundation of Science and Technology under grants
No. FCT-PRAXIS XXI/BD/21353/99 and No.
POSI/43140/CHS/2001.

References:
[1] J. Gu, Satisfability Problems in VLSI
Engineering, DIMACS Workshop on Satisfability
Problem, Mar. 1996.
[2] S.A. Cook, The complexity of theorem-proving
procedures, Proc. 3rd ACM Symp. on Theory of
Computing, 1971, pp. 151-158.
[3] M. Davis, G. Logemann, and D. Loveland, A
machine program for theorem proving,
Communications of the ACM, 5:394-397, 1962.
[4] J. Gu, P. W. Purdom, J. Franco, and B. W. Wah,
Algorithms for the Satisfiability (SAT) Problem: A
Survey, DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, Vol. 35, pp. 19-
151, 1997.

[5] J.M. Silva, and K.A. Sakallah, GRASP: a search
algorithm for propositional satisfiability, IEEE
Trans. Computers, pp. 506-521, Vol. 48, No. 5, May
1999.
[6] T. Suyama, M. Yokoo, H. Sawada, and A.
Nagoya, Solving satisfiability problems using
reconfigurable computing, IEEE Trans. VLSI
Systems, Vol. 9, No. 1, pp. 109-116, Feb. 2001.
[7] P. Zhong, P. Ashar, S. Malik, and M. Martonosi,
Using reconfigurable computing techniques to
accelerate problems in the CAD domain: a case
study with Boolean satisfiability, Proc. of the Design
Automation Conf. – DAC, 1998, pp. 194-199.
[8] O. Mencer and M. Platzner, Dynamic Circuit
Generation for Boolean Satisfiability in an Object-
Oriented Design Environment, Proc. 32nd Hawaii
Int. Conf. on System Sciences - HICSS-32
(Configware - Reconfigurable Engineering track),
Island of Maui, 1999.
[9] M. Abramovici and J.T. de Sousa, A SAT solver
using reconfigurable hardware and virtual logic,
Journal of Automated Reasoning, Vol. 24, Nos. 1-2,
pp. 5-36, Feb. 2000.
[10] J. de Sousa, J.P. Marques-Silva, and M.
Abramovici, A configware/software approach to
SAT solving, 9th IEEE Proc. Int. Symp. on Field-
Programmable Custom Computing Machines,
FCCM, 2001.
[11] M. Boyd and T. Larrabee, ELVIS – a scalable,
loadable custom programmable logic device for
solving Boolean satisfiability problems, Proc. 8th
IEEE Int. Symp. on Field-Programmable Custom
Computing Machines - FCCM, 2000.
[12] I. Skliarova and A.B. Ferrari, A SAT Solver
Using Software and Reconfigurable Hardware, Proc.
of the Design, Automation and Test in Europe
Conference – DATE’2002, 2002, p. 1094.
[13] I. Skliarova and A.B. Ferrari, A
hardware/software approach to accelerate Boolean
satisfiability, Proc. of IEEE Int. Workshop on Design
and Diagnostics of Electronic Circuits and Systems –
IEEE DDECS’2002, 2002, pp. 270-277.
[14] I.Skliarova, A.B.Ferrari, Design and
Implementation of Reconfigurable Processor for
Problems of Combinatorial Computations, Proc. of
the Euromicro Symp. on Digital System Design –
DSD’2001, 2001, pp.112-119.
[15] Xilinx FPGA. [Online]. Available:
http://www.xilinx.com/.
[16] DIMACS challenge benchmarks. [Online].
Available: http://www.intellektik.informatik.tu-
darmstadt.de/SATLIB/benchm.html.

	Implementation of the Advanced SAT Search Techniques
	in Reconfigurable Hardware
	
	
	5 Conclusion
	Acknowledgment

	References:

