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Abstract: - This paper presents an application-specific approach to solving the Boolean satisfiability (SAT) 
problem with the aid of reconfigurable hardware. In the proposed architecture an instance-specific hardware 
compilation is completely avoided, requiring for each problem instance just the formula information to be 
downloaded to an FPGA. The previously suggested method of software/reconfigurable hardware partitioning 
enables problems to be solved that exceed the available FPGA resources. The distinctive feature of this work 
consists of addressing the possibility of implementation of advanced search techniques such as 
nonchronological backtracking and conflict clause addition, in reconfigurable hardware. 
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1 Introduction 
During the last eight years a great deal of research 
effort was aimed at the implementation of efficient 
Boolean satisfiability (SAT) solvers on the basis of 
reconfigurable hardware (in FPGA, in particular). 
This was stimulated by the fact that current 
reconfigurable systems possess both the flexibility 
and low development costs of software and a high 
speed of hardware realizations. Besides, the SAT 
problem is very well suited to parallel 
implementations that take advantage of the basic 
capabilities of reconfigurable computing.  

SAT is a very well known combinatorial problem 
that consists of determining whether a given Boolean 
formula can be satisfied by some truth assignment. 
The search variant of this problem requires at least 
one satisfying assignment to be found. Usually, the 
formula is presented in conjunctive normal form 
(CNF), which is composed of a conjunction of a 
number of clauses, where a clause is a disjunction of 
a number of literals. Each literal represents either a 
Boolean variable or its negation. For example, the 
following formula in CNF is satisfied when x1=’1’, 
x2=’0’ and x3=’-‘ (don’t care): 
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The SAT problem has a lot of practical 

applications in a variety of engineering areas, 
including the testing of electronic circuits, pattern 
recognition, logic synthesis, etc. A good review of 
possible applications with the respective references 
can be found in [1].  

It should be noted that SAT was the first problem 
shown to be NP-complete [2]. It means that the 
existing algorithms have an exponential worst-case 
complexity. Implementations based on 
reconfigurable hardware enable the primary 
operations of the respective algorithms to be 
executed in parallel. Consequently, the exponential 
growth of the execution time, as a function of the 
size of a problem instance, can be delayed. 

This paper analyzes the possibility and 
effectiveness of implementation of advanced search 
techniques (that are successfully applied in the state-
of-the-art software SAT solvers) in reconfigurable 
hardware. Section 2 that follows this introduction is 
devoted to the description of the algorithm 
employed. Section 3 gives a brief overview of the 
existing hardware SAT solvers emphasizing their 
advantages and weaknesses and formulates the 
primary requirements of the reconfigurable hardware 
SAT satisfier. The proposed architecture of FPGA-
based SAT solver is presented in section 4. The 
conclusion is given in section 5. 

 
 

2 The SAT Algorithm 
Practically all the existing reconfigurable hardware 
SAT solvers employ some variations of the well-
known Davis-Putnam algorithm [3]. The algorithm 
starts with an empty variable assignment. After that a 
unit clause rule, a pure literal rule and decisions are 
alternately applied. 

 



A unit clause rule consists of finding unit clauses, 
i.e. such clauses that contain just one unassigned 
literal [4]. The respective variable can be assigned a 
value (either ‘1’ if the literal is positive, or ‘0’ if the 
literal is negative) without losing any possible 
solution. The selected variable is said to be implied 
to the respective value. 

A pure literal rule is based on finding pure 
literals, i.e. such literals that are either all positive or 
all negative. The variable corresponding to a pure 
literal can be assigned a value (either ‘1’ if all the 
occurrences of the literal are positive, or ‘0’ if all the 
occurrences of the literal are negative) without 
influencing in any way the satisfiability of the 
formula. 

These two rules are known as reduction methods 
because they allow an initial formula to be simplified 
without affecting the satisfiability of the formula. 

When there are no more unit clauses and pure 
literals, a decision is taken. The decision consists of 
choosing one unassigned variable and assigning a 
value to it. There exist two basic approaches to the 
selection of the decision variables: static and 
dynamic. In the static approach all the variables are 
initially pre-ordered using some criteria. The 
resulting static sequence is used to fetch the next 
decision variable when required. In the dynamic 
approach such a variable and a value are chosen that 
are most likely to help in satisfying the formula (a 
variety of heuristic methods are employed for this 
purpose). 

When a variable is assigned a value (either by 
means of a decision or a reduction), all the satisfied 
clauses together with the falsified literals are 
removed from the formula. 

A conflict appears if either a variable is implied to 
two opposite values or there exists an empty clause. 
In this case it is necessary to erase all actions 
performed after the last decision and invert the value 
of the current decision variable. If both possible 
values have already been tried, the algorithm 
backtracks to the previous decision variable. 

When the last clause becomes satisfied and is 
deleted from the formula, it means that the current 
variable assignment represents a solution. If all 
possible assignments of values to variables have 
been implicitly tested (i.e. both values of the first 
decision variable were tried out without success), 
thus the formula is unsatisfiable. 

In the DP algorithm, the search process is usually 
represented with the aid of a decision tree, whose 
nodes correspond to intermediate sub-formulae 
obtained during the search, and edges represent the 
decisions taken. The decision tree is traversed using 
the depth-first-search approach. 

In the present-day software SAT solvers a lot of 
advanced techniques are applied that enable those 
regions of the search space that do not contain any 
solution to be discovered and their exploration to be 
avoided. Let us describe some of these techniques 
that we are going to implement in reconfigurable 
hardware. 

In the DP algorithm, in case of a conflict, the 
control process backtracks always to the most 
recently assigned decision variable. Such 
backtracking is called chronological [5]. However, 
an analysis of the conflict causes may lead to the 
discovery of the decision variables that are really 
responsible for the conflict occurrence. Thus, the 
algorithm can backtrack directly to the most recent 
of these decision variables enabling in this way some 
branches of the decision tree to be pruned. The 
process is usually referred to as nonchronological 
backtracking [5]. 

Let us illustrate this feature with the aid of the 
following formula: 
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      (1) 

In order to find out a solution we could apply an 
algorithm that includes application of the unit clause 
rule and employs dynamic selection of the next 
decision variable based on a maximum-occurrence-
in-clauses heuristics. This heuristics, at each step 
tries to satisfy as many clauses as possible by 
choosing such a variable that occurs in the maximum 
number of clauses. If the majority of the respective 
literals are positive, the variable is assigned a value 
‘1’, in the opposite case the variable is set to ‘0’. 

The resulting decision tree for formula (1) is 
presented in fig. 1a). As it can be seen the algorithm 
requires 12 nodes to be visited. 

The technique of nonchronological backtracking 
for SAT was proposed in GRASP [5]. It relies on the 
construction of a directed implication graph that 
represents the sequence of implications generated 
during the search. When a conflict arises, the 
implication graph is analyzed to determine those 
variable assignments that are directly responsible for 
the conflict. This requires a conflict-induced clause 
to be constructed. After that, instead of performing 
chronological backtracking, the algorithm may jump 
directly to the most recently assigned decision 
variable that appears in the conflict-induced clause. 
As a result, some branches of the decision tree may 

 



be pruned away, thus saving the time that would 
otherwise be needed to explore them. Applying the 
technique to the formula (1) will lead to the 
construction of the decision tree depicted in fig. 1b). 
In this case only 9 nodes must be visited. 

Additionally, the conflict-induced clauses may be 
recorded, allowing the occurrence of similar 
conflicts to be prevented later on during the search. 
This process is referred to as dynamic clause 
addition.  
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Fig. 1. The decision tree constructed for formula (1) applying chronological (a) and  
nonchronological (b) backtracking 

 
 

 

3 The Primary Requirements of the 
SAT Solver 
In this section we will formulate the primary 
requirements of the reconfigurable hardware SAT 
solver taking into account the previous work done in 
this domain [6-13]. 

Initially, all the proposed hardware SAT solvers 
were based on the instance-specific approach [6-9]. 
In this case a specific hardware circuit is compiled 
and downloaded to FPGA for each problem instance 
to be solved. However, the compilation time may 
constitute a large portion of the total solving time. 
For easy problem instances it even dominates and 
cancels out all the benefits of fast hardware 
execution. Therefore, a lot of work in this direction 
was done to enable the generation of hardware 
configurations to be accelerated [9]. The more recent 
investigation [10, 11, 12, 13] is tailored to either 
partial or complete avoiding of instance-specific 
hardware compilation.  

In this work we will follow the policy proposed in 
[12] where a dynamically reconfigurable architecture 
is described enabling both the FPGA configuration 
time to be reduced and the hardware compilation 
overhead to be eliminated. Consequently, the SAT 
satisfier should have such architecture that is not 
required to be modified from problem instance to 
problem instance. In this case, the respective circuit 

would be downloaded to the FPGA and after that it 
could be employed to solve a series of problem 
instances. For each Boolean formula to be 
considered, only the formula-specific information 
should be communicated to the FPGA.  

Of course such a circuit could not be used for 
processing an arbitrary problem instance because the 
available hardware resources are always limited. 
Thus, the SAT solver should address and efficiently 
overcome this limitation. For such a purpose the 
following four approaches are usually applied.  

The first one requires the original formula to be 
decomposed into a series of sub-formulae, each of 
which respects the capacity constraints [9]. The 
resulting sub-formulae can be handled either 
sequentially or in parallel by employing several 
unconnected FPGAs. The main limitation of this 
technique is that decomposing some formulae may 
be very inefficient, therefore increasing the 
computation time to unacceptable levels [10]. 

The second approach consists of partitioning the 
circuit into multiple interconnected FPGAs [7]. The 
primary limitation of this method is that it requires 
signals to propagate off-chip, resulting in large 
delays. Besides, fast and efficient multi-FPGA 
partitioning and routing is quite a difficult task. 

The third method is based on a virtual hardware 
scheme proposed in [10], which relies on dividing 
the circuit into a series of hardware pages that are 

 



successively run. Since all the hardware pages have 
the same structure with only a number of registers 
being reconfigured, page switching is performed 
very fast. The computed variable assignment is 
stored in external memory blocks and is processed 
when traversing the FPGA from one memory block 
to another 

The last approach that is currently intensively 
investigated is based on partitioning the problem 
solution between software and reconfigurable 
hardware. Within the domain of 
software/reconfigurable hardware partitioning two 
different techniques are applied. The first one [10] 
requires the most computationally intensive tasks 
(namely, computing implications and selecting 
dynamically the next decision variable) to be 
assigned to reconfigurable hardware, while the 
control-oriented tasks that are inherently sequential 
(in particular, the conflict analysis) are realized in 
software. It is difficult to estimate the efficiency of 
this approach because the published results [10] are 
based on simulation in software and do not account 
the time that would be spent in communication 
between the host processor and an FPGA. 

The second partitioning technique was proposed 
in [14]. In this case an FPGA is only responsible for 
processing sub-problems that appear at various levels 
of the decision tree and satisfy the imposed hardware 
constraints (such as the maximum allowed number 
of variables and clauses in a sub-formula). Those 
sub-formulae that do not respect the constraints are 
initially processed by a software program that 
implements the same algorithm as the FPGA circuit. 
In this work we will follow the same method of 
partitioning. 

The remaining set of requirements is related to the 
algorithm itself. First of all, the dynamic selection of 
the next decision variable should be performed 
because it has a significant impact on the 
convergence of the search. The majority of hardware 
SAT satisfiers employ just a static selection 
mechanism. Second, a conflict analysis engine 
should be implemented in hardware. Practically all 
FPGA-based SAT solvers lack this feature. An 
attempt to realize a conflict analysis in hardware was 
performed in [7]. Our approach is similar to that 
proposed in [7]. 

The following list summarizes the formulated 
requirements: 

1. The circuit should be application-specific (as 
opposed to instance-specific) eliminating in 
this way the hardware compilation step. 

2. The problem has to be partitioned between 
software and reconfigurable hardware, what 

allows the limited FPGA capacity problem to 
be alleviated. 

3. The next decision variable has to be selected 
dynamically. 

4. The conflict analysis should be implemented 
both in software and in FPGA. 

It should be noted that a SAT solver architecture 
that satisfies the first three points, was proposed in 
[12, 13]. The main objective of this work is to 
incorporate the hardware support for 
nonchronological backtracking and dynamic clause 
addition. 
 
 
4 SAT Solver Architecture 
As it was mentioned in section 3, the architecture we 
are going to propose is based on the work described 
in [12, 13]. Thus, the principle design decisions 
made in [12, 13] should be first outlined. 

The SAT problem containing m clauses and n 
variables is formulated over a ternary matrix with 
dimensions m×n. Consequently, the required 
hardware resources depend only on the size of a 
formula and do not depend on its complexity. It 
should be underlined that the suggested design does 
not require an initial formula to be transformed to k-
SAT problem, as it is demanded by some other 
proposed architectures [6, 10]. In order to find a 
satisfying assignment, we need to discover a ternary 
vector, which is orthogonal to every row of the 
matrix. If such vector cannot be found, the formula is 
unsatisfiable. 

The basic components of the proposed 
architecture are shown in fig. 2.  
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Fig. 2. Architecture of SAT solver 

The central control unit executes the required 
algorithm. The block Registers consists of 
components that store such kind of data as addresses 

 



of the currently active row and column, the deleted 
rows, etc. The matrix is implemented with the aid of 
two memory blocks corresponding to the original 
matrix and to its transpose. Therefore, any row and 
column can be read in just one clock cycle. During 
the search process some rows and columns of the 
matrix have to be deleted. However, the matrix itself 
is not modified and all possible changes are reflected 
in the respective registers. The ALU is used to 
perform the primary computations over different 
ternary vectors that include calculation of the 
number of ones and zeros, checking two vectors for 
orthogonality, etc. The stack memory supports the 
backtracking process. When a decision is performed, 
the current values from all the registers are stored in 
the stack and these values are restored during the 
backtracking process, i.e. they are moved from the 
stack back to the registers. 

Let us now describe the control algorithm we are 
going to implement (see fig. 3). There are two 
primary reduction methods employed. They are the 
unit clause rule and the pure literal rule explained in 
section 2.  

begin
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Update implications
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Apply the pure-literal rule

Is there any conflict?

Was at least one of
the rules applied?

Select the next decision
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conflict-induced clause

Add the conflict-induced
clause to the matrix

yes

Erase all actions
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decision variable
been tried?

Invert the value
of the current

decision variable

 

Fig. 3. The implemented algorithm 

In order to realize nonchronological backtracking 
a conflict-induced clause should be constructed. This 
clause is held in an n-bit register. In our design, the 

conflict-induced clause is generated when both 
values of some decision variable were tried out 
without success. To construct a conflict-induced 
clause, we should keep track of the sequence of 
implications produced during the search process. 
This sequence is maintained in an n×n DPRAM 
block referred to as Implication matrix (IM) in fig. 2.  

When the unit clause rule is applied, the 
implication matrix needs to be updated. If a variable 
xj, j=1,…,n, is implied because of a unit clause ci, 
i=1,…,m, then a value at the address j of IM has to 
be modified. The new value must reflect the 
complete sequence of implications that finally 
caused xj to be implied.  

If an initial clause ci is equal to (lj∨lk∨…∨lr), 
where lj, lk,…,lr represent some literals, 
1≤(j,k,…,r)≤n, then the following value should be 
written at the address j of IM:  IM[j]=ci

B∨IM[k]∨… 
∨IM[r], where ci

B is an n-bit Boolean vector that has 
1s in the positions corresponding to the literals 
occurring in ci, and has 0s in all the remaining 
positions. 

During backtracking, we should erase all the 
actions performed after the last decision. These 
actions include: 
• restoring recently deleted rows and columns; 
• recovering the previous value of a ternary vector 

that is being looked for; 
• undoing the recent sequence of implications. 

The first two points are very easy to implement. 
For such purposes the previous values of the 
respective registers have to be restored from the 
stack memory. To implement the last point, the 
contents of IM should be updated in such a way that 
the current decision variable is removed from the 
sequence of implications. To accomplish this task the 
following operation must be executed for j=1,…,n: 

rcur_des_vajj   ]IM[  ]IM[ ∧= , where cur_des_var is a 
binary decoded value of a log2n-bit register that 
stores the number of the current decision variable. Of 
course this operation is quite expensive, that is why 
it is better to perform it with the aid of an n-bit 
register, which can mark by 1s the deleted columns 
of IM. 

To construct a conflict-induced clause, we need to 
perform a disjunction of those rows of IM that 
correspond to the literals occurring in a clause that is 
the cause of a conflict. 

When the backtracking process is activated, only 
those variables should be selected, that appear in the 
current conflict-induced clause, because unless a 
value of one of these variables is inverted, the same 
kind of conflict will occur later on during the search. 

 



The actual dimensions of the initial matrix are 
stored in two special registers. If these dimensions 
(the number of rows, in particular) are smaller than 
the maximum allowed, then the generated conflict-
induced clauses can be added to the matrix to enable 
the subsequent occurrence of similar conflicts to be 
avoided. 

 
 
5 Conclusion 
This paper analyzes the possibility of implementing 
nonchronological backtracking and dynamic clause 
addition in reconfigurable hardware. The basic 
architecture of the respective SAT solver is 
proposed. It should be noted that a lot of work is to 
be done to draw a more deterministic conclusion. In 
particular, we are going to implement a small 
prototype of the SAT satisfier. It will permit to 
measure the total execution time including the 
communication between the host processor and the 
FPGA. The implementation will be based on the 
Xilinx XC2VP7 FPGA [15] installed on an ADM-
XPL PCI board.  

The design described in [12, 13] demonstrated 
very good results for some classes of difficult 
problems from the DIMACS benchmark suite [16]. 
Therefore we expect that implementing the proposed 
architecture will lead to further performance 
improvements.  
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