
A Multimedia Meta-Database Model for Distributed MultiMedia DBMS 
 

Georges CHALHOUB, Samir SAAD, Richard CHBEIR, Kokou YETONGNON 
Computer Science Department  
LE2I – Bourgogne University 

BP 47870 21078 Dijon CEDEX - FRANCE 
Phone: (+33) 3 80 39 36 55, Fax: +333 80 39 68 69 

 
 

Abstract: - In this paper, we address the issue of Distributed MultiMedia DBMS (DM²DBMS) where traditional meta-
database used to describe the database schema is no longer appropriate. The meta-database is the kernel of the DBMS 
and we do believe that new generation of meta-database is required for DM²DBMS. For this, we provide a multimedia 
meta-database model M² able to improve multimedia management in DM²DBMS in terms of distributed data storage 
and retrieval. The proposed multimedia meta-database model is independent (but compatible) of all current data format 
models (MEPG-4, MPEG-7, etc.). We show how M² can allow to DBMS to easily respond to new requirements 
imposed by distributed multimedia data. 
 
Key-Words: Distributed Multimedia data, Database Management System, meta-database.  
 
1   Introduction 
In the past few years, multimedia data have become 
available at an increasing rate, especially in digital 
format. There has been a tremendous need for the ability 
to store, query and process non-traditional data in a wide 
variety of applications. For example, medical 
applications create and use large amount of X-ray and 
ultrasound pictures; geographical information systems 
and location-based applications often manipulate digital 
maps; satellite based applications routinely generate and 
use large amount of images; video surveillance cameras 
such as those used in criminal investigations generates 
large number of video frames; and  web-based 
applications have access to heterogeneous multimedia 
data composed of different data types and formats. Early 
on, the particular needs and requirements of multimedia 
database management systems (MMDBMS) have been 
recognized and their differences from traditional 
database management systems have been pointed out. 
These differences stem from the diversity of the data 
formats and media sources that must be handled by 
multimedia systems including image, video, audio, text 
document and other pictorial data. Therefore, it has 
become naturally important to focus several research 
efforts on extending and using traditional DBMS 
technologies to develop multimedia management 
systems that are able to not only store but also filter, 
retrieve, and organize the mass of available multimedia 
data.  
 
A lot of work has been done in the past to increase the 
efficiency of multimedia management in DBMS and to 
integrate data in the standard data processing 
environments [3, 4, 6]. Early research in multimedia data 

processing has been carried out separately in the 
database and computer vision communities. The 
database approach focuses on metadata management and 
content-based semantic annotations for storage and 
retrieval of multimedia data. This approach has several 
inadequacies as it is time-consuming, subjective, and 
cannot adequately describe the content of multimedia 
data [4, 7]. The computer vision approach has addressed 
content-based issues such as information coding, lossless 
data compression, image segmentation. This approach is 
based on low level features such as color, texture, shape, 
layout etc. [1, 2, 8]. To integrate the two approaches, 
several research activities have focused on defining new 
representation formats and standards allowing the 
description of multimedia data through several 
dimensions. For example, the MPEG family of standards 
[5] aims to define a framework for the efficient 
representation of multimedia data (MPEG-4, 7 and 21). 
Their goal is to provide core technologies for efficient 
storage, transmission and manipulation of multimedia 
data.  
 
The need for a full fledge multimedia DBMS becomes 
even more apparent when one considers distributed 
processing environments (such as P2P architectures) in 
which complex multimedia objects can be shared on 
demand and replicated over several sites. To provide 
database functionalities and meet the growing demands 
for efficient processing of the vast quantities of data, 
multimedia data management systems must incorporate 
several of the following capabilities:  
 

 Multimedia-oriented operations: For instance, users 
need queries that involve "similarity-based” 
selection and join operations that use both content-



based and metadata representation of multimedia. 
Such a "similarity-based join" operation on 
multimedia tables is not considered by existing 
systems. For example, in a firm time management 
application, we stock in a EMPL table the 
employees names, addresses, and images and in 
ENTRANCE table, the video captured by a 
monitoring camera at different times. A 
multimedia-join operation between the two tables, 
can be used to determine the name of employees 
entering (or leaving) the firm at a given time.  

 Appropriate security: Current security policies are 
no longer appropriate for multimedia objects where 
several layers (sub-objects) and parameters need to 
be considered such as user profiles, network, and 
media type.  

 Appropriate data storage: classical methods used to 
achieve textual data storage are no longer 
applicable (index, cluster, fragment, etc.) where 
criteria are built on identical attributes. When 
managing multimedia data and an alternative 
solution should be found. 

 Appropriate multimedia query model and 
optimization techniques: the system uniform query 
capabilities over the diverse multimedia data types. 
The query interface and the traditional SQL query 
standard must be extended to deal with not only 
traditional relational data but also the image, audio 
and video data types. Moreover, the various 
similarity based, cluster based and different range 
queries must be taken into account. 

 Appropriate relation abstraction capabilities: it is 
widely accepted by multimedia and database 
communities that multimedia data model must 
include different layers of abstractions to better 
capture the relationships that may be multimedia 
objects at different levels. For example, two or 
more multimedia objects can be related because of 
similarities in their low level features values. It is 
important therefore to allow classification schemes 
to define classes or clusters of similar object on the 
basis of traditional textual, physical and/or 
semantic features of different media types. 
Moreover, multimedia object can be linked by 
higher level relationships types. Spatial and 
temporal relationships can be defined on the 
objects. Composition and other semantic 
relationships (generalization, specialization and 
instance of) can be established among classes of 
multimedia objects.  

 Appropriate meta-database management: in reality, 
for processing almost all functions, the DBMS 
accesses the meta-database to find details about the 
tables or objects. As an example let us consider the 
SQL query in Relational DBMS: "SELECT ename, 

age FROM Emp WHERE sal= 2500". Before 
executing this query on Emp table, the DBMS 
checks in the meta-database the existence of Emp 
and its attributes ename, age and sal.  

 
In this paper, we present a multimedia meta-data model 
M2 to address some of the above issues and to support 
the design of efficient multimedia meta-database model 
able to improve multimedia management. The goal is to 
provide a modeling framework to express the properties 
of data items and the meta-data that are necessary for 
organizing multimedia management systems at different 
levels. Built on relational-object paradigm (to support 
both of them), our multimedia meta-database model is 
independent (but compatible) of all current data format 
models (MEPG-4, MPEG-7, etc.) and able to organize 
distributed multimedia data in an efficient manner in 
order to optimize queries response. The key feature of 
the model is that it captures in a single modeling meta-
concept the low-level features, the structural and 
semantic properties, and the relationship descriptions of 
both multimedia object and meta-object. The meta-
model is the core component of an ongoing research on 
distributed multimedia management environment which 
aims to address design issues involving security and 
fragmentation. 
 
The rest of the paper is organized as follows. Section 2 
presents the M² model. Section 3 presents some 
examples of descriptions of multimedia data based on 
the M² model and how multimedia distribution is done. 
And finally section 5 concludes the paper. 
 

2   A multimedia meta-database model M² 
Operations on the meta-database include creation, 
modification, and access organizing operations. Below, 
we will explain our proposal for structuring meta-
database for DM²DBMS. The proposed meta-database is 
built on relational-object paradigm is order to be able to 
consider both relational and object-oriented DBMS. It 
can also be used on XML-Based DBMS. Our proposal is 
built upon a main component M² detailed here below. 
 
2.1 Definition 
In essence, the multimedia model M² extends a previous 
repository model for the management of image databases 
[9] which describes the image data through several 
abstraction levels. This model has been used to establish 
an algebra for image databases where SQL and image-
oriented operations can be written. Two basic concepts 
are provided by the multimedia repository model M²: a 
meta-object and a meta-class.  
A meta-object has a set of properties used to capture the 
descriptions of an object at different levels of description 
and can be related to other meta-objects via one or more 



relationships. The representation M² (id, O, F, A, R) of a 
meta-object consists of: 
 

 Id is a unique identifier associated to a meta-object. 
It is used to differentiate an object from any other 
object. It represents an instance of a multimedia 
object or a record. The id includes the location of 
the instance (or record) which allows considering 
data distribution and global unique identification. 

 O is a reference to the raw data of the object (or the 
file). For complex multimedia data, O is the actual 
(image, video, or audio) object file which can be 
stored as BLOB. For set oriented data, O is an 
index for the data structure used to store the 
elements of the set. O can be null for some meta-
object. 

 F (Descriptor, Model, Value) is a feature vector 
representation of the object O. 

 
o Descriptor: is the type of representation (such as 

Color Histogram, Color distribution, Texture 
Histogram, Start Time, End Time, Duration, 
Motion, Camera Motion, Audio freq., 
Amplitude, Band no., Power (dB), etc.) 

o Model: is the description format (such as RGB, 
RHV, etc.) 

o Value: is the content descriptor. This component 
contains the physical, visual, spatial and 
temporal feature data value. 

 
 A (ES, Sem_F) contains meta-data where: 

 
o ES: is the External Space descriptions consisting 

of: 
- Context-Oriented (CO) data that are 

completely independent of the multimedia 
object content. For example, in a route 
monitoring application, it contains the name of 
the monitoring center. 

- Domain-Oriented (DO) data are directly or 
indirectly related to the object. For example, it 
contains the traffic state of the route or the 
street.   

- Multimedia-oriented (MO) data are directly 
associated to the multimedia object creation 
such as compression type (MPEG, MP3, etc.) 
and type (movie, home media, video, video 
shot, region, filming date, etc.). 

o Sem_F(Type, Description): 
- Type: defines the type and the semantic 

feature (keyword, scene, etc.) 
- Description: is a textual representation 

 R ({{S1={idi i=1..n}, S2={idj j=1..m}, Re={Relk 

k=1..p)}}): This component represents zero or more 
relationships between objects. The description of 
each relationships consists of:  

o The set of the identities of objects participating 
in the relation. These may be from different 
tables. The sets S1 and S2 can be empty when 
they represent the meta-object itself.  

o Re represents a set of relationships between two 
sets of objects. Each triplet (S1, S2, Re) means 
that for any couple of S1 and of S2, each 
element in Re is valid, e.g. ({id1}, {id2}, {R1, 
R2}) ⇒ id1 R1 id2 and id1 R2 id2. Each relation 
can be a spatial (directional, metrical, 
topological), semantic, temporal, and similarity 
relation. Using the relations, we can easily 
identify the spatial and semantic hierarchies 
between multimedia objects represented in our 
model. This component also implements the 
traditional composition and membership 
relations. 

 
In our approach, a meta-class is used to construct sets of 
objects which verify a membership relation. Contrary to 
traditional database model, the meta-class is schemaless. 
The meta-model M² defines self-describing objects 
which encapsulate their description schema with their 
values. A meta-class therefore does not define a 
structure or a set of properties that is shared by all its 
members. A meta-class is represented as a meta-object 
M² (id, O, F, A, R) where: 
 

 id is the unique identifier of the meta-class 
 O is a null reference.  
 F: contains a median feature vector of the meta-

class. This is very useful for data organizing and 
accessing. 

 A: contains a representative meta-data set. This 
would be very important for indexing purposes. 

 The R component includes a mandatory 
Instance_of relationship between a meta-class and 
its member. It is defined by:   

R= {(S1= {idi}, S2= {}, Re= {Instance_of})} 
The Instance_of relationship specifies the 
members of a meta-class based on a meta-class 
membership condition or predicate which is 
verified by the instances of the meta-class. The set 
S1 contains the identifiers idi of the meta-objects. 
The definition of the meta-class membership 
predicate can be based on: 
 

o The meta-properties defined by parameter 
A of the member objects 

o Similarity expression defined on the low 
level features (component F of the 
representation) of the objects. For example, 
one can consider the class of images that 
are predominantly blue. In this case, the 
meta-class regroups objects that verify this 



condition regardless of the values of the 
other components of the object.  

o A semantic expression based on the 
context-based annotations of the objects.  

 
R can be extended with additional meta-
class relationships. For example, 
generalization and specialization 
relationships between a meta-class and one 
or more meta-classes or meta-objects can be 
defined by:  
 
R= {(S1= {idi}, S2= {}, Re= {Instance_of}), (S1= 
{idi}, S2= {}, Re= {Generalization}), (S1= {idi}, S2= 
{}, Re= {Specialization})}  
 

- The Generalization relationship defines a link 
between a meta-class and its sub-meta-classes.  
It can be used to express traditional super-class 
relationships between classes. A super-meta-
class in this case defines a membership 
relationship that can be subsumed by the sub-
classes. 

- The Specialization relationship is the inverse of 
the generalization relationship. A sub-meta-class 
inherits and subsumes the membership condition 
or predicate of its super-meta-class. 
 

2.2   Example 
Using the proposed multimedia meta-database model, 
either static object (e.g. image), dynamic object (e.g. 
movie), or a set (or a table) of media objects can be 
represented in the DBMS. Here below, we give an 
example concerning the representation of a movie object 
(or a record). As we will see, the R component of M² 
plays a major role here.  
Let us study the movie components appearing in Fig. 1. 
The hierarchical relations between objects in M² are 
represented by a N-ary tree where the root M represents 
the entire multimedia object and where each node is a 
static or dynamic object having one or several outgoing 
edges. A tree leaf includes either still or moving regions, 
audio file, or annotation data.  
 
In M², this movie M is represented as follows. The 
components O and F will not be presented in this 
example. Here below, we only represent relations 
between object and direct sub-objects. We think that it is 
appropriate for multimedia objects level. However, any 
link of relations could be use at meta-class level: 
 
o M.A component: 

 ES.MO contains the object type: movie 
 Sem_f.type decribes the movie type: comedy 

o M.R component: 

 ({M1.id}, {M2.id}, {before}): allows to both 
implicitly identify the composition of the 
object M, and the sequencing between the 
movie scene M1 and M2 present in object M 

o M1A component: 
 ES.MO contains the object type: movie scene  
 Sem_f.type: contains the location  
 Sem_f.description: road and trees in Spain 

o M1R component: 
 ({}, {M11.id, M12.id, M13.id}, {Equal}): It 

expresses the composition and the parallel 
executing of video, audio and annotation in 
M1. 
• … 

o M211.A component: 
 ES.MO: moving region  
 Sem_f.type: color and name of the moving 

region  
 Sem_f.description: red car 

o M211.R component: 
  ({}, {M212.id}, {left, Disjoint}): identifies the 

spatial (directional, topological and metric 
relations between M211 and M212 

 

-It’s a good day 

– I think we are going to have fun

-what’s that ?!

– Oh! Take care

Movie M

M1 2

1
2 3

1

2

M

M1 M1 M1

M11

M11

Movie 
scenes

Moving and still region

M2

M21 M21

1

1
2

M2M2

Audio files and annotations
23

 
Fig. 1: Movie representation 

 

3 Applications 
The applications of our multimedia meta-model M² are 
various. In this section, we show how queries can be 
designed, and how data distribution and clustering can 
be performed. 
3.1 Multimedia Query Model M²Q 
We define here the query model of M². We consider 
several types of query: metadata-based, content-based 
and multicriteria-based query. A meta-data query is 
based on meta-data while content-based query addresses 
feature vectors. The initial content-based query input 
could be an image, a video sequence, a movie scene, or a 
set (or table) of objects. A multicriteria-based query 
includes meta-data and feature vectors parameters.  



The proposed query model can support these query 
types. It is expressed as follows  
M²Q(idq, Oq, Fq, Aq, Rq) → M²QR where:  
 

 idq is a unique identifier of an instance of Q. ID is 
useful when a table of query objects or records is 
submitted. 

 Oq is a reference of the query object itself that can 
be stored as BLOB. It has a null value in case of 
metadata-based query  

 Fq, Aq, Rq  have the same roles of F, A, R in the 
multimedia meta-model M². 

 M²QR is the Query Result. It allows to identify 
the desired attributes or properties. 

 
Here below, we show how to use the M²Q to answer 
metadata-based, content-based, and multicriteria-based 
queries. We give query examples with their 
corresponding SQL statements.  
 
Q1: Find all comedy movies where Eddy Murphy plays? 
is expressed as:  

M²Q1(iq1, null, null, A.*={movie, comedy, Eddy 
Murphy}, null) → M²QR1(,*(movie), , ,) 

 
M_Q1: SELECT M².O FROM M² WHERE 
(A.ES.MO="Movie" AND A.Sem_f.Type="movie type") AND 
(A.* contains "comedy") AND (A.* contains "Eddy Murphy"). 
 
Note that the operator contains in the predicate A.* is 
used to verify whether the corresponding meta-data 
(“comedy”, “Eddy Murphy”) belong to any A 
components  
 
Q2: Find all movie scenes containing the car driving 

. is expressed as:  

M²Q2(iq2, , F2
1, A.*={movie, scene, car, driving}, 

null) → M²QR2 (,*(movie scene), , ,) 
 
M²QR2_1: SELECT * FROM M² WHERE (A.ES.MO="Moving 
region") AND (A.* contains "car" AND A.* contains "driving") 
M²QR2_2: SELECT * FROM M²QR2_1 WHERE (M²QR2_1.F 
SIMILAR Q2.Fq) AND (A.ES.MO="frame") 
 
M²QR2_3: SELECT * FROM M² WHERE (A.ES.MO="Video") 
AND (null, {M²QR2_2.id}, {Contain}) IN R 
 
M²QR2: SELECT O FROM M²QR2_2 WHERE 
(A.ES.MO="Movie scene") AND (null, {M²QR2_3.id}, 
{Contain}) IN R 
 
Note that IN is an operator to express the membership 
inside the R component:  
({idi},{idj},{Rk}) IN R  {idi} ⊆ R.S1, {idj} ⊆ R.S2 and 
{Rk} ⊆ R.Re 

                                                           
1 The feature vector computing on the basis of the media 

 
The same reasoning can be used for Audio or other 
media type query using the correspondent feature vectors 
(frequency, amplitude, etc.). 
 
Q3: Find all movies containing the following movie 

scene  with total similarity2 (Video 
Audio, text), is expressed as: 

M²Q3(iq3, , F3, A.*={movie, scene, car, 
driving}, R SIMILAR (Video, Audio, text)) → M²QR3 

(,*(movie),,,) 
 
In this case, we represent the query M²Q3 according to M² as 
follows: 

Q3

Q31 Q32

Q311

Q312 Q312

Q321

Q322
Q323

Q3111 Q3112 Q3211 Q3212
 

Fig. 2: M² Query representation 
 
M²QR3_1: SELECT * FROM M² WHERE (A.ES.MO="Moving 
region") AND (A.* contains "car" AND A.* contains "driving") 
M²QR3_2: SELECT * FROM M²QR3_1 WHERE (F SIMILAR 
Q3111.Fq)  
M²QR3_3: SELECT * FROM M²QR3_1 WHERE (F SIMILAR 
Q3112.Fq) 
M²QR3_4: SELECT * FROM M²QR3_1 WHERE (F SIMILAR 
Q3211.Fq) 
M²QR3_5: SELECT * FROM M²QR3_1 WHERE (F SIMILAR 
Q3212.Fq)   
 
M²QR3_6: SELECT * FROM M² WHERE (A.ES.MO=”Video”) 
AND (A.* contains "location" AND A.* contains "Road") AND 
(null, {M²QR3_2.id, M²QR3_3.id}, {Contain}) IN R AND 
({M²QR3_2.id}, {M²QR3_3.id}, {Parallel}) IN R 
 
M²QR3_7: SELECT * FROM M² WHERE 
(A.ES.MO=”Audio”) AND (F SIMILAR Q312.F) 
 
M²QR3_8: SELECT * FROM M² WHERE (A.ES.MO=”text”) 
AND (F SIMILAR Q313.F) 
 
M²QR3_9: SELECT * FROM M² WHERE (A.ES.MO=”Movie 
Scene”) AND (null, {M²QR3_6.id, M²QR3_7.id, M²QR3_8.id}, 
{Contain, Equal}) IN R 

                                                           
2 The different types of similarity are out of scope of this paper 



 
M²QR3_10: SELECT * FROM M² WHERE 
(A.ES.MO=”Video”) AND (A.* contains "location" AND A.* 
contains "Road") AND ({M²QR3_5.id}, {M²QR3_4.id}, 
{Parallel}) IN R 
 
M²QR3_11: SELECT * FROM M² WHERE 
(A.ES.MO=”Audio”) AND (F SIMILAR Q322.F) 
 
M²QR3_12: SELECT * FROM M² WHERE (A.ES.MO=”text”) 
AND (F SIMILAR Q323.F) 
 
M²QR3_13: SELECT * From M² WHERE (A.ES.MO=”Movie 
Scene”) AND (null, {M²QR3_10.id, M²QR3_11.id, 
M²QR3_12.id}, {Contain, Equal}) IN R 

 
M²QR3: SELECT O FROM M² WHERE (A.ES.MO=”Movie”) 
AND (A.Sem_f.Type=”Scene” AND A.S* contains "two cars 
driving on a road between trees") AND ({M²QR3_13.id}, 
{M²QR3_9.id}, {immediately sequential}) IN R 
 
In partial similarity (Audio only, Video only, or Audio 
and text only, etc.), we can omit the correspondent sub-
query. 
 
3.2 Data Distribution 
Data distribution consists of creating and allocating data 
units, which are elementary fragments or clusters, 
among a set of distributed (logical or real network) sites 
[10, 11]. In our approach, the identification of 
multimedia objects and distribution units (fragment, 
object, table, etc.) is carried out using the extended URL 
based object identifier. The object id and various 
fragmentation meta-data are integrated in the meta-
database. The distribution of multimedia data can 
depend on various media. We distinguish 3 types of data 
distribution: the Logical-based media: where several 
logical criteria decide about data distribution, the 
Physical-based media: where media characteristics 
(type, size, quality, etc.) determine data distribution, 
And Mixed media: where criteria are physical and 
logical. We do believe that this kind of distribution is 
very important for multimedia applications.  

 

4   Conclusion and future work 
This paper describes an original manner to address 
distributed multimedia DBMS which consists of 
providing an appropriate multimedia meta-database 
model. The meta-database is the kernel of the DBMS 
which allows managing all internal functions. The 
proposed model, called M², is based on relational-object 
paradigm. It is able to consider both object (and record) 
representation and meta-class of media objects. Several 
examples and a query model were presented. We also 
discussed how to apply M² to achieve data distribution.  
 
The future directions will be focused on: 1- security 
policies on multimedia objects where several layers 

(sub-objects) and parameters need to be considered such 
as user profiles, network, and media type. 2- multimedia 
data fragmentation which consists of dividing data into 
several fragments in order to reduce processing cost 
and to minimize execution time. We are investigating 
how to extend traditional fragmentation techniques to 
take into account the main characteristics of 
multimedia data. 3- clustering algorithms where 
several criteria are involved. 
 
References: 
[1] J.K.Wu and A.D. Narasimhalu and B.M. Mehtre and C.P. 

Lam and Y.J. Gao, CORE: A Content-Based Retrieval 
Engine for Multimedia Information Systems, Multimedia 
Systems, 1995, Vol. 3, pp. 25-41. 

[2] S. Berchtold and C. Boehm and B. Braunmueller and D. 
A. Keim and H. P. Kriegel, Fast Parallel Similarity Search 
in Multimedia Databases, SIGMOD Conference, AZ, 
USA, 1997, pp. 1-12.  

[3] A. Yoshitaka and T. Ichikawa, A Survey on Content-
Based Retrieval for Multimedia Databases, IEEE 
Transactions on Knowledge and Data Engineering, Vol. 
11, No. 1, 1999, pp.81-93. 

[4] Y. Rui and T.S. Huang and S.F. Chang, Image Retrieval: 
Past, Present, and Future, Journal of Visual 
Communication and Image Representation, 1999, Vol. 10, 
pp.1-23. 

[5]http://www.chiariglione.org/mpeg/working_documents.htm 
(visited at April 4, 2004) 

[6] W. I. Grosky, Managing Multimedia Information in 
Database Systems, Communications of the ACM, 1997, 
Vol. 40, No. 12, pp. 72-80. 

[7] J. P. Eakins and M. E. Graham, Content-Based Image 
Retrieval: A Report to the JISC Technology Applications 
Program, January, 1999, Inst. for Image Data Research, 
Univ. of Northumbria at Newcastle. 

[8] William I. Grosky; Managing Multimedia Information in 
Database Systems, Communications of the ACM, Vol. 40, 
No. 12, 1997, pp. 72-80. 

[9]Atnafu S., Chbeir R., Brunie L., Integrating Similarity-
Based Queries in Image DBMSs, ACM SAC'04, Cyprus, 
march 04, To appear. 

[10]Ezeife, C.I. and Ken  Barker, A Comprehensive Approach 
to Horizontal Class Fragmentation in a Distributed Object 
Based System, International Journal of Distributed and 
Parallel Databases , Kluwer Academic Publishers, Volume 
3, No. 3, pp. 247-273, July 1995 

[11]Ezeife, C.I. and Ken Barker, "Distributed Object Based 
Design: Vertical Fragmentation of Classes",  International 
Journal of Distributed and Parallel Databases,  Vol. 6, No. 
4,  pp. 327-360, Kluwer Academic Publishers, October 
1998. 

[12] A Tutorial on Clustering Algorithms 
http://www.elet.polimi.it/upload/matteucc/Clustering/tutor
ial_html/index.html (visited at April 4, 2004) 

 


