Non-linear fractal interpolating functions of one and two variables
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We consider non—linear generalizations of fractal interpolating functions applied to functions of
one and two variables. The use of such interpolating functions in representing images by an iterated
function system is illustrated, particularly as applied to the problem of resizing images, or portions

thereof.

I. INTRODUCTION

An Tterated Function System (IFS) may be used to
construct fractal interpolation functions for some data
[1-3]. The simplest example of interpolating a function
z(t), given data points (¢;, x;), 7 = 0,1,..., N, starts with

an IFS
()= (200 (3) o

The coefficients ay,, ¢y, en, and f, determined from the
conditions, for n =1,2,..., N,

wa ()= (). Wn(;x)(iz)(~2)

which leads to
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With this, the transformation of Eq. (1) can be written
as

_y _ (t—t) (t—tn)
Wn(t) =t = (tN —to) tn + (to —tN) th—1
;o (= ta) (" —tn)
Wn(x) =T (t'n, _ tn—l) Ty + (tn—l _ tn) xn—l(4)

in which form it is apparent W,,(x) = 2z’ is determined by
a linear (in ¢) interpolating function between the points
(tn—1,Tn—1) and (t,,x,). Graphs of fractal interpolat-
ing functions can then be made by applying the random
iteration algorithm:

e initialize (¢,2) to a point in the interval
of interest
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e for a set number of iteratioms

— randomly select a transformation
W (t, )

— plot (t',2') = W, (¢, x)
—set (t,z) = (t',2)

e end for

In this paper we consider two non—linear generaliza-
tions of such fractal interpolating functions. The first
concerns how to extend the linear interpolation of Eq. (4)
to higher—degree interpolations. The second generaliza-
tion arises when one considers the construction of frac-
tal interpolating functions for functions of two (or more)
variables — here, even a linear interpolation of the form
of Eq. (4), when applied to each variable, will result in a
non-linear interpolating function. This case has an obvi-
ous application to the problem of how to represent a two—
dimensional image in terms of an iterated function sys-
tem; these two—dimensional interpolating functions (as
a function of the pixel coordinates) can be used to rep-
resent a black—and-white image (using a Boolean func-
tion), a gray—scale image (using a scalar function), or a
colour image (using a vector—valued function of the three
rgb [red, green, blue] values). This problem has been ex-
amined extensively in the context of image compression
[4-7]; in the last section we consider a related problem of
using these iterated function systems to rescale images,
or portions thereof.

II. FUNCTIONS OF TWO VARIABLES

We first consider a function z(z,y) of two variables,
and examine the problem of constructing a fractal in-
terpolating function from the data x;,y;, 2; j, where i =
0,1,...,M,j=0,1,...,N, and z; ; = z(z;,y;). To this
end, consider the transformation

Wmn (-T) = AmnT + Emn
Won(2) = Apn + Buny + Corunzy + D (5)



We then impose, for m =1,2,...,
the conditions

T M _ Tm
Wm'rL(yN)—(yn);

Mandn=1,2,...,N
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Wmn (zM,N) = Zm,n
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With these, the transformation of Eq. (5) can be written as
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[
in which form it is apparent W,,,,,(2) = 2’ is determined Wo(z) = cpt 4+ dnt® + f (9)
by a function implementing a linear interpolation over the and impose the conditions, for n =2,3,..., N,

gI‘ld (xmflvynfl)v (fmfhyn)v (xmaynfl)a and (xmayn)

IIT. QUADRATIC INTERPOLATING
FUNCTIONS

The interpolating functions considered up to now have
used a linear interpolating formula between adjacent
points to construct the IFS. In this section we indicate
how this can be generalized to quadratic interpolations.

A. Functions of one variable

For a function z(t) of one variable, using data points
(tiyx;), 1=0,1,..., N, consider the transformations

Wo(t) = ant+ey,

Zo Tp—2
Wn < tM ) _ ( tn—l > ,
M Tp—1

tn 129
W, ( i ) ( " ) | (10)
The point t;; is determined as
(tn—l - tn—2) (tn—l - tn)
ty =——""—"7"=-1 —t 11
M (tn - tn—2) N + (tn—2 - tn) 0 ( )

with corresponding point z,,. The coeflicients of the IFS
are determined as
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In this form we see that a quadratic (in ') interpolating
function is used between the points (t,,, ), (tn—1, Tn—1),
and (tn_g, In_g).

B. Functions of two variables

We next consider a function z(z,y) of two variables,
and construct a fractal interpolating function which em-
ploys a quadratic interpolation between points. To this
end, consider the transformation

Win(2) = amnt + emn
Winn (y) = Cmn¥ + frn
Wy (2) = Apnz®y? + Bpnz®y + Crunz® + Dppnay®
+ Enppzy + Fppr + Gmny2 4+ Hpny + Ln
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We then impose, form =2,3,...,M andn =2,3,..., N,

the conditions
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The points z; and yps are determined as
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along with the corresponding z points. The coefficients
of the IFS can then be determined, by which the trans-
formation of Eq. (15) can be written as
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Although tedious to work out, the generalization of the
preceding considerations to higher—order interpolating
functions is straightforward in principle.

IV. IMAGE REPRESENTATION AND SCALING

As an application of the preceding, in this section we
consider the task of representing a given colour image
by an iterated function system, and then using that sys-
tem to rescale a given portion of that image. This is a
natural problem for an interpolating function of two vari-
ables (z,y) interpreted as pixel coordinates — the func-
tion Z(z,y) in this case will be a vector—valued function
having three components representing the rgb value of
the pixel specifying the amount of red, green, and blue
present.

The procedure used to scale an image of size M pix-
els wide by N pixels high is as follows. We first read in
the rgb values of each pixel of the image, and use that
as the data to construct a fractal interpolating function
Z(i,7), where i =1,2,...,M and j =1,2,..., N are the
pixel coordinates. To then resize the image, so that the
resulting image is of size s, M x s,IN, we construct a new
fractal interpolating function Z'(%, j) = Z(sz1, s4j). Ap-
plying the random iteration algorithm to Z’(4, j), choos-
ing independently a transformation index (i,j) at each
stage, will then result in the rescaled image. The gen-
eralization of this procedure to rescale a portion of an
image is straightforward.

As examples of the results of this procedure, consider
the figures in the Appendix. We start with the image
appearing in Fig. 1, and zoom in on the area of the face.
The result appears in Fig. 2, together with a comparison
done using a simple linear interpolation scheme. Zoom-

)
(
(Tm—2 = Tm)(@m-2 = Tm—-1) Yn—-1 — Yn) Yn—-1 — Yn—2)
(
)

— Zm—1)Yn—2 = Yn) Yn—2 — Yn—1

) Zm—2,n—2

(17)

ing further into the area of the eye results in Fig. 3, again
with a comparison of the result of a simple linear interpo-
lation. Generally, the number of iterations needed in the
random iteration algorithm to produce acceptable images
is of the order of s, M x s, N, where the original image is
of size M x N. Also, while slower, the quadratic fractal
interpolating function typically produces, for the same
number of iterations, a “smoother” looking image than
the corresponding linear interpolating function. How-
ever, as with all interpolation schemes, there comes a
point where such higher—order interpolating formulas ac-
tually start to produce worse results due to an artificially
high sensitivity to fluctuations in the data.

Some informal tests of this procedure seems to indi-
cate that better results are obtained for images of people,
natural scenery, etc., as opposed to those containing let-
tering, simple geometric shapes, and similar constructs.
This might be expected, given the general fractal nature
of such objects in nature. However, as with all inter-
polating functions, it is important to remember that no
structural information beyond that of the original image
is being provided (for example, one could not zoom in on
the face of Fig. 1 to such a degree as to see individual
skin pores).

The preceding demonstrates that these non-linear
fractal interpolating functions of two variables can be
used in principle to represent images. The results for the
rescaling of images, or portions thereof, illustrates that,
at least for “natural” objects, such a representation has
potential advantages. It would be interesting to extend
the use of these two—dimensional functions to the case of
partitioned iterated function systems, upon which much
work has been done with respect to compressing images
[4]. As well as in the area of image compression, such
studies could lead to a more efficient representation of im-



ages by these two—dimensional functions; such partition-
ing involves examination of potential regions of a given
image that possess a fractal nature unto themselves, as
opposed to the approach used here which considers the
image as a whole to have a fractal nature. Work along
these directions is in progress.
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Figures

FIG. 1: Original figure




FIG. 2: Enlargement of the area around the face of Fig. 1 via a) a fractal interpolation function b) a linear interpolation



FIG. 3: Enlargement of the area around the eye of Fig. 1 via a) a fractal interpolation function b) a linear interpolation



