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Abstract: - Hyperspectral sounder data is used for retrieval of atmospheric temperature, moisture and trace 
gases profiles, surface temperature and emissivity, cloud and aerosol optical properties. The physical retrieval 
of these geophysical parameters is a mathematically ill-posed problem whose solution is sensitive to the error 
or noise in the data. Therefore, lossless or near lossless compression of hyperspectral sounder data is desired 
to avoid potential retrieval degradation of the geophysical parameters. In addition to the spatial correlations of 
observed nature scenes, the hyperspectral sounder data features high correlations in disjoint spectral regions 
affected by the same type of absorbing gases. A preprocessing scheme to explore the spectral and spatial 
correlations will be beneficial for compression gains. In this paper we investigate Mean-removed Nearest 
Neighbor Reordering (MR-NNR) for preprocessing the sounder data. The result is then encoded using state-
of-the-art compression algorithms such as CALIC, JPEG-LS and JPEG2000. It is shown that by use of the 
MR-NNR scheme, the compression gains of CALIC, JPEG-LS and JPEG2000 increase up to 15%, 5% and 
7% respectively over the original data without any preprocessing.  
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1   Introduction 
 The advance of contemporary and future 
hyperspectral infrared sounders such as Atmospheric 
Infrared Sounder (AIRS) [1], Cross-track Infrared 
Sounder (CrIS) [2], Infrared Atmospheric Sounding 
Interferometer (IASI) [3], Geosynchronous Imaging 
Fourier Transform Spectrometer (GIFTS) [4], and, 
Hyperspectral Environmental Suite (HES) [5] has 
made better weather prediction and climate 
monitoring possible. The sounders generate an 
unprecedented amount of three-dimensional (3D) 
data that consists of two spatial and one spectral 
dimension. For example, the HES is the next-
generation NOAA/NESDIS Geostationary 
Operational Environmental Satellite (GOES) 
hyperspectral sounder, slated to replace the current 
18-band GOES sounder in 2013. It would be either a 
Michelson interferometer or a grating spectrometer, 
with hyperspectral resolution (over one thousand 
infrared channels with spectral widths on the order 
of 0.5 wavenumber), high temporal resolution 
(better than 1 hour), high spatial resolution (less than 
10km) and hemispheric coverage. Given the large 
volume of 3D data that will be generated by a 
hyperspectral sounder each day, the use of robust 
data compression techniques will be beneficial to 
data transfer and archive. 

 There is a difference between hyperspectral sounder 
and imager data. The hyperspectral imager data (e.g. 
the well-known AVIRIS data [6],[7]) is in the visible 
or near-infrared regions with the main purpose of 
pattern recognition and classification where 
significant data loss from lossy compression is 
usually acceptable is usually acceptable due to 
limited visual perception of the human visual system 
(HVS). On the other hand, the hyperspectral sounder 
data is in the infrared region with the main purpose 
of retrieving atmospheric temperature, moisture and 
trace gases profiles, surface temperature and 
emissivity, cloud and aerosol optical properties for 
better weather and climate prediction. Physical 
retrieval of these geophysical parameters involves 
the inverse solution of the radiative transfer equation 
and it is a mathematically ill-posed problem [8], i.e. 
the solution is sensitive to the error or noise in the 
data. For example, the observed signal-to-noise 
ratios in the AIRS infrared longwave channels can 
be over 400 in the clear sky cases, implying that the 
allowable reconstructed error is lower than the 
smallest error visually perceptible by the HVS. 
Therefore there is a need for lossless or near-lossless 
compression of hyperspectral sounder data to avoid 
potential retrieval degradation of geophysical param-
eters due to lossy compression. 



   CALIC [9], JPEG-LS [10], and JPEG2000 [11] are 
the state-of-the-art compression algorithms but they 
only support compression of 2D data. To apply these 
algorithms to the 3D hyperspectral sounder data, one 
can process the data framewise or make the data 
two-dimensional by converting the two spatial 
dimensions into one dimension via a continuous 
scan. The disadvantage to the first approach is that it 
does not explore the correlation between different 
spectral channels. The second approach is a better 
alternative for exploring the correlation among 
neighboring channels via the local predictor 
techniques (JPEG-LS, CALIC) or the wavelet 
transform (JPEG2000), but it does not explore the 
correlation among distant channels – an important 
feature in the hyperspectral sounder data. To 
improve the compression gains of these state-of-the-
art 2D compression algorithms on the hyperspectral 
sounder data, we implement a mean-removed 
nearest neighbor reordering (MR-NNR) scheme to 
convert the 3D data into 2D with the highest 
correlation channels rearranged together.  
   This MR-NNR scheme takes advantage of the 
unique spectroscopic characteristic of the hyper-
spectral sounder data that features high correlations 
in disjoint spectral regions affected by the same type 
of absorbing gases. It can also explore the spatial 
correlations of disjoint geographical regions affected 
by the same type of absorbing gases or clouds. It is 
geared towards exploiting these correlations along 
different dimensions. 
  The rest of the paper is arranged as follows. 
Section 2 describes the hyperspectral sounder data 
used in this study. Section 3 highlights the 
compression schemes used, while Section 4 
elaborates the MR-NNR algorithm. The compres-
sion results with and without the MR-NNR scheme 
are presented in Section 5. Section 6 concludes the 
paper. 
 
 
2   Hyperspectral Sounder Data 
As previously mentioned, the hyperspectral sounder 
data could be generated from either a Michelson 
interferometer (e.g. CrIS, IASI and GIFTS) or a 
grating spectrometer (e.g. AIRS). In this paper we 
have adopted the NASA AIRS radiance observations 
on Sept. 6, 2002. The AIRS instrument aboard 
NASA’s Aqua spacecraft employs a 49.5 degree 
cross-track scanning with a 1.1 degree instantaneous 
field of view to provide twice daily coverage of 
essentially the entire globe in a 1:30 PM sun 
synchronous orbit. The AIRS data includes 2378 
infrared channels in the 3.74 to 15.4 µm region of 

the spectrum. A day's worth of AIRS data is divided 
into 240 granules, each of 6 minute durations. Each 
granule consists of 135 scan lines containing 90 
cross-track footprints per scan line; thus there are a 
total of 135 x 90 = 12,150 footprints per granule. 
The 16-bit raw radiances are converted into the 
brightness temperatures, and then scaled as unsigned 
16-bit integers. To make the selected data more 
generic to other hyperspectral sounders, 270 bad 
channels identified in the supplied AIRS infrared 
channel properties file are excluded, assuming that 
they occur only in the AIRS sounder. Each resulting 
granule is saved as a binary file, arranged as 2108 
channels, 135 scan lines, and 90 pixels for each scan 
line.  
   For this hyperspectral sounder data compression 
study, ten granules, five daytime and five nighttime, 
are selected from representative geographical 
regions of the Earth. Their locations, UTC times and 
local time adjustments are listed in Table 1. The data 
is available via anonymous ftp [12]. More 
information regarding the AIRS instrument may be 
acquired from the NASA AIRS website [13]. Fig. 1 
shows the AIRS radiances at wavenumber 900.3cm-
1 for the 10 selected granules on Sept. 6, 2002. In 
these granules, coast lines are depicted by solid 
curves and multiple clouds at various altitudes are 
shown as different shades of colored pixels.  
 
 
3   Compression Schemes 
CALIC, JPEG-LS and JPEG2000 are the state-of-
the-art lossless compression schemes that are studied 
in the paper. CALIC and JPEG-LS utilize 
neighboring pixels to predict the current pixel, 
followed by entropy coding of the prediction errors. 
JPEG2000 performs a wavelet transform on the 
pixels followed by block coding. 
 
3.1 CALIC 
The CALIC scheme is considered as the most 
efficient and complex encoder for compression of 
2D continuous-tone images. Among the nine 
proposals in the initial ISO/JPEG evaluation in July 
1995, CALIC was ranked first. It works on the 
principle of a context-adaptive non-linear predictor 
which adjusts to the local gradients around the 
current pixel. The algorithm operates in the binary or 
continuous modes. The binary mode codes the 
regions of the image in which the intensity value is 
no more than two. In the continuous mode, the 
system has four major components: gradient-
adjusted prediction, context selection and quanti-
zation, context modeling of prediction errors, and 



entropy coding of prediction errors. 
 
3.2 JPEG-LS 
The ISO/IEC working group released a new standard 
for the lossless/ near lossless compression of 
continuous-tone images in 1999, popularly known as 
JPEG-LS. It features low complexities based on 
predictive coding technique. Near lossless compres-
sion is controlled through an integer valued 
threshold representing the maximum permissible 
absolute difference between each original pixel 
value and its decompressed value. The JPEG-LS 
encoder is composed of four main stages: prediction, 
context modeling, error encoding, and run mode. 
 
3.3 JPEG2000 
Unlike CALIC or JPEG-LS, JPEG2000 is the state-
of-the-art compression algorithm for 2D still images 
based on wavelet transforms. It is published as a 
standard of the International Organization for 
Standardization/International Electrotechnical Com-
mission (ISO/IEC), as well as an International 
Telecommunications Union-Terminal Sector (ITU-
T) Recommendation. It is intended to replace the 
previous ISO/IEC standard, JPEG, which is based on 
discrete cosine transforms. It features progressive 
transmission by quality, resolution, component, or 
spatial locality, lossy and lossless compression, 
region of interest coding by progression, and limited 
memory implementations, to name a few.  
 
 
4 Mean-removed Nearest Neighbor 
Reordering 
Consider a 3D hyperspectral data cube of size cn by 

xn  by yn . For CALIC, JPEG-LS and JPEG2000 
compression, the data is reshaped into a 2D data of 
size cn  by sn  via a continuous zigzag scan, where 

s x yn n n= × . When data is spectrally reordered, 

there are cn  vectors, each with sn  components. The 
mean is removed and rounded from each of the cn  
vectors. Let S be the pool of the mean-removed 
vectors not yet reordered. In the MR-NNR scheme 
along the spectral dimension we start with a 
reference vector, and each vector V ∈S is compared 
with the reference vector. The best matched vector is 
the nearest neighbor of the reference vector. It then 
becomes a new reference vector and is removed 
from S. The process is repeated until the pool S 
becomes empty. Mathematically, given the i-th 

reordered vector iV , we are seeking *V , the mini-
mum norm solution of  

min ( ),i

V S
f V

∈
 

where 
( )i if V V V= − . 

Then the (i+1)-th reordered vector is simply 
1 *iV V+ = . 

     The minimum norm solution *V can be found via 
exhaustive comparisons of all the vectors V in S with 

iV for the nearest neighbor.  This approach has a 
complexity of O( 2

sn ).  A faster approach with an 
O( sn ) complexity can be obtained via a linear sort 
of all the vectors in S based on their rounded 
absolute distances, and then only comparing m 
nearest neighbors around the reference vector.  The 
actual nearest neighbor is found when the constant m 
is large enough but still much smaller than sn .   
 
 
5   Results 
The ten 3D AIRS granules mentioned in section 2 
are studied in this paper for lossless hyperspectral 
sounder data compression. Each granule with the 
size of 2108 channels by 135 scan lines by 90 
footprints is converted into 2D with the size of 2108 
channels by 12150 samples via a horizontal zigzag 
scan. The MR-NNR scheme is then applied to the 
2D granule along the spectral and/or spatial 
dimension, followed by encoding with the CALIC, 
JPEG-LS or JPEG2000 schemes. Table 2(a)-(c) 
show the achieved bit rates in bits per pixels for all 
the granules compressed using the three different 
encoders. For all the three tables, column 2 shows 
the compression result without any data reordering; 
columns 3, 5, and 7 are the results for the NNR 
scheme without mean removal along the spectral, 
spatial and both dimensions, respectively; whereas 
columns 4, 6, and 8 are for MR-NNR along spectral, 
spatial and both dimensions, respectively. 
      Alternatively, the compression results can be 
represented in terms of compression ratios as 
illustrated in Fig. 2. As seen in Fig. 2(a)-(c), all the 
compression algorithms combining reordering 
schemes and either the CALIC, JPEG-LS, or 
JPEG2000 significantly outperform the CALIC, 
JPEG-LS, and JPEG2000 compression alone. Also, 
the results from the NNR with mean removal is 
much better than the plain NNR without mean 
removal. Moreover, MR-NNR in the spectral 
dimension yields significantly better results than its 



counterpart in the spatial dimension. CALIC has a 
9.6% average improvement for spectral MR-NNR 
over its original compression ratio; for JPEG-LS and 
JPEG2000 these values are 5.3% and 5.9% 
respectively. In case of spatial MR-NNR, the 
average percentage improvements for the ten 
granules drop down to 4.9%, 1.6%, and 2% for 
CALIC, JPEG-LS, and JPEG2000 respectively. This 
illustrates that better compression gains can be 
obtained by reordering correlated channels from 
disjoint spectral regions than by reordering 
correlated pixels from disjoint spatial regions. Fig. 3 
shows the sorting indices plotted against the original 
indices in the cases of spectral NNR and spectral 
MR-NNR for 3 granules. The sorting indices are 
quite different from the original indices as judged by 
their great deviation from the straight line. This 
shows the natural channel order given by the spectral 
wavelengths do not possess optimal correlation in 
neighboring channels. Since there is compression 
gain along each dimension, the reordering along 
both dimensions outperforms their reordering 
counterparts along the spectral or spatial dimension 
alone for most of the granules. Specifically, the 
average improvements for both MR-NNR are 
15.2%, 5.4%, and 7.3% for CALIC, JPEG-LS and 
JPEG2000 respectively. 
 
 
6   Conclusion 
The hyperspectral sounder data is a new class of 3D 
data for compression studies. The compression of 
this data is better to be lossless or near lossless to 
avoid significant degradation of the geophysical 
retrieval. In this paper lossless compression of the 
3D hyperspectral sounder data is performed using 
state-of-the-art compression schemes with MR-NNR 
reordering. A comparison of the compression results 
for CALIC, JPEG-LS and JPEG2000 are given. The 
results show that MR-NNR outperforms the 
compression schemes without reordering in terms of 
compression ratios for the ten granules of the AIRS 
hyperspectral data representing different geogra-
phical locations of the earth. 
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Granule   9 00:53:31 UTC  -12 H (Pacific Ocean, Daytime)   
Granule  16 01:35:31 UTC   +2 H (Europe, Nighttime)        
Granule  60 05:59:31 UTC   +7 H (Asia, Daytime)            
Granule  82 08:11:31 UTC    -5 H (North America, Nighttime) 
Granule 120 11:59:31 UTC  -10 H (Antarctica, Nighttime)     
Granule 126 12:35:31 UTC    -0 H (Africa, Daytime)          
Granule 129 12:53:31 UTC    -2 H (Arctic, Daytime)          
Granule 151 15:05:31 UTC +11 H (Australia, Nighttime)     
Granule 182 18:11:31 UTC   +8 H (Asia, Nighttime)          
Granule 193 19:17:31 UTC    -7 H (North America, Daytime)   

 
 
Table 1. Ten selected AIRS granules for hyperspectral sounding data compression studies. 

 
 



 
 

 
 

 
      

      
 

                 
 

 
 
 
Fig. 1. Spatial distribution of AIRS radiance at wavenumber 900.3cm-1 for the 10 selected 
granules on Sept. 6, 2002. 
 
 



   

Granule 
No. Original Spectral 

NNR 
Spectral 
MR-NNR 

Spatial 
NNR 

Spatial 
MR-NNR

Both 
NNR 

Both  
MR-NNR 

9 8.8840 8.1587 7.9436 8.6072 8.5630 7.9063 7.6227 
16 9.0309 8.4193 8.2372 8.6398 8.5865 8.0661 7.8121 
60 9.3529 8.7170 8.5607 8.8164 8.7590 8.2398 7.9952 
82 8.9631 8.3529 8.1867 8.6170 8.5612 8.0341 7.7977 

120 9.0065 8.5745 8.4643 8.5952 8.5370 8.1888 8.0084 
126 9.2700 8.5247 8.2670 8.8874 8.8359 8.2123 7.8698 
129 8.7985 8.3700 8.2474 8.5174 8.4723 8.0992 7.9290 
151 8.6990 8.0229 7.8194 8.5206 8.4705 7.8698 7.5952 
182 9.3403 8.7724 8.6291 8.7941 8.7293 8.2764 8.0491 
193 9.1554 8.4643 8.2427 8.7840 8.7298 8.1404 7.8393 

Average 9.0500 8.4377 8.2598 8.6779 8.6244 8.1033 7.8518 
 (a)  

 
Granule 

No. Original Spectral 
NNR 

Spectral 
MR-NNR 

Spatial 
NNR 

Spatial 
MR-NNR

Both 
NNR 

Both  
MR-NNR 

9 8.0386 7.8178 7.6274 7.9777 7.9231 7.8205 7.6096 
16 8.2394 7.9697 7.8015 8.1649 8.1107 7.9868 7.7980 
60 8.4442 8.0972 7.9357 8.2966 8.2427 8.1136 7.9298 
82 8.2072 7.9709 7.8136 8.1392 8.0808 7.9769 7.7942 

120 8.4406 8.1670 8.0698 8.3581 8.3000 8.1691 8.0374 
126 8.2538 7.9956 7.7677 8.1508 8.0963 8.0192 7.7791 
129 8.2739 8.0548 7.9503 8.2474 8.2072 8.0678 7.9365 
151 7.9397 7.7851 7.6209 7.9452 7.8864 7.8034 7.6046 
182 8.4795 8.1649 8.0333 8.3481 8.2876 8.1804 8.0180 
193 8.2305 7.9499 7.7553 8.1562 8.1054 7.9884 7.7764 

Average 8.2547 7.9973 7.8376 8.1784 8.1240 8.0126 7.8284 
 (b) 

 
Granule 

No. Original Spectral 
NNR 

Spectral 
MR-NNR 

Spatial 
NNR 

Spatial 
MR-NNR

Both 
NNR 

Both  
MR-NNR 

9 8.1971 7.8682 7.7082 8.1136 8.0755 7.8136 7.6125 
16 8.4348 8.0951 7.9326 8.2854 8.2487 8.0164 7.8224 
60 8.6900 8.2859 8.1604 8.4273 8.3866 8.1525 7.9804 
82 8.3695 8.0568 7.9145 8.2636 8.2207 7.9880 7.8152 

120 8.5906 8.2992 8.2034 8.4446 8.4042 8.2254 8.0808 
126 8.4513 8.1025 7.8763 8.3082 8.2704 8.0370 7.7742 
129 8.3932 8.1620 8.0576 8.3268 8.3009 8.1272 7.9952 
151 8.0780 7.7923 7.6278 8.0775 8.0354 7.8102 7.6017 
182 8.6994 8.3294 8.2334 8.4665 8.4215 8.2077 8.0661 
193 8.4224 8.0536 7.8958 8.2949 8.2589 8.0008 7.8068 

Average 8.4326 8.1045 7.9610 8.3008 8.2623 8.0379 7.8555 
 (c) 

 
 
Table 2 (a)-(c) Bit rates for the 10 granules in bits per pixels with and without various 
reordering schemes for CALIC, JPEG-LS and JPEG2000, respectively. 
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Fig. 2 (a) Compression ratios for CALIC with and without various reordering schemes for all 
the 10 tested granules. (b) Same as (a) except for JPEG-LS. (c) Same as (a) except for 
JPEG2000. 
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Fig. 3 (a) Granule 9 Sorting indices for Spectral NNR and Spectral MR-NNR (b) Same as (a) 
except for Granule 16. (c) Same as (a) except for Granule 60. 


