
Using a Genetic Algorithm for Detecting Repetitions in Biological
Sequences

ADAM ADAMOPOULOS
Department of Medicine

Democritus University of Thrace
68100 Alexandroupolis

GREECE

KATERINA PERDIKURI
Department of Computer Engineering and Informatics

University of Patras
26500 Patras

GREECE

Abstract: - One of the most important goals in computational molecular biology is allocating repeated patterns
in nucleic or protein sequences, and identifying structural or functional motifs that are common to a set of such
sequences. In this paper we describe a new approach to detect the repetitions of fixed length in Biological
Sequences using a Genetic Algorithm. The method involves evolving a population of patterns in an
evolutionary manner and gradually improving the fitness of the population as measured by an objective
function, which measures the approximate repetitions of the patterns in the given sequence. The general
attraction of the approach is the ability to detect repeated schemas, thus inferring motifs of fixed length from
biological sequences.

Key-Words: - Genetic Algorithms, Evolutionary Programming, Repetitions, Motifs, Biological Sequences,
Pattern Matching

1 Introduction
Biological Sequences, such as DNA and Protein
sequences, can be seen as long texts over specific
alphabets, encoding the genetic code of living
beings. Searching specific sub-sequences over those
texts appears as a fundamental operation for
problems such as assembling the DNA chain from
the pieces obtained by experiments, looking for
given DNA chains, or determining how different
two genetic sequences are.

Other problems in Molecular Biology involve
structure matching or searching for unknown
repeated patterns, often called “motifs”. For various
problems in molecular biology, in particular the
study of gene expression and regulation, it is
important to be able to infer repeated motifs or
structured patterns and answer many biological
questions, like for example what elements in
sequence and structure are involved in the regulation
and expression of genes through their recognition.
The analysis of the distribution of repeated patterns
permits biologists to determine whether there exists
an underlying structure and correlation at a local or
global genetic level.

In this work we address the problem of detecting
repeated patterns in biological sequences using a
Genetic Algorithm. Genetic Algorithms have been
applied so far in the Multiple Molecular Sequence
Alignment problem in order to identify similarities
among sequences [1]. Our method involves evolving
a population of patterns in an evolutionary manner
and gradually improving the fitness of the
population as measured by an objective function,
which measures the approximate repetitions of the
patterns in the given sequence. The general
attraction of the approach is the ability to detect
repeated schemas, thus inferring motifs of fixed
length from biological sequences.

The structure of the paper is as follows. In
Section 2 we give the basic theoretical background
of our methodology and all the basic definitions
used in the rest of the paper, in Section 3 we present
the methodology and a brief time complexity
analysis, while in Section 4 we give experimental
results. Finally in Section 5 we conclude and discuss
our future work and research interest in open
problems of the area.

2 Background
In the relevant literature, a variety of algorithms for
finding identical repetitions in DNA and protein
sequences have been presented. In particular in [2],
[3], [4] authors have presented efficient methods for
finding identical repetitions in biosequences. In our
method we use a Genetic Algorithm to efficiently
compute the repetitions of fixed length in a
biological sequence.

Genetic algorithms are stochastic approaches for
efficient and robust searching. The GA methodology
was invented by Holland [5] in order to study the
natural adaptation phenomena and to incorporate the
mechanisms of natural adaptation into computer
systems, inspired by natural evolution methods [6],
[7]. GAs, together with Evolution Strategies,
Evolutionary Programming (EP), presented by Fogel
et al. [8] and finally Genetic Programming (GP),
proposed by Koza [9], form the field of
Evolutionary Computation.

In Evolutionary Computation, a probabilistic
algorithm maintains a population of individuals in
every iteration k. Each one individual is a potential
solution of the problem under consideration. With
respect to the nature of the problem to be solved
each individual is evaluated by an appropriate
fitness function. Based on the fitness of the
individuals a selection procedure, which mimics
natural selection, is applied to form a new
population (iteration k + 1). Some members of the
new population undergo genetics-inspired
transformations to form new solutions.

These transformations are either unary (mutation
type), which create new individuals by small
alterations in a single individual, or higher order
(crossover type), which create new individuals by
combining and exchanging, subparts of two (or in
general, more) individuals. After the application of
these transformation operators each individual of the
new population is tested in order to evaluate the
fitness of the solution it represents. After a
reasonable number of generations the program
converges to individuals that are optimal or near
optimal (sub-optimal) solutions of the problem
under consideration. Despite the simplicity of its
implementation rules (selection, mutation and
crossover), evolution is a powerful method of
searching among an enormous number of
possibilities for desired solutions. It is a massively
parallel search method, which allows to the fittest
(i.e. the optimal or near-optimal) solutions of each
generation to survive, to be reproduced and finally
to converge.

In the following paragraphs we give the basic
definitions used in the rest of the paper.

2.1 Basic Definitions
Let Σ be a finite alphabet, which consists of a set of
characters (or symbols). The cardinality of an
alphabet, denoted by |Σ|, expresses the number of
distinct characters in the alphabet. In the case of
DNA sequences the alphabet consists of four
nucleotides: ΣDNA = {a,c,g,t}, while in the case of
protein sequences, the alphabet consists of twenty
amino acids.

DNA and protein sequences can be seen as long
texts over specific alphabets representing the genetic
code of living beings. A string or word is a sequence
of zero or more characters drawn from an alphabet.
The set of all non-empty words over the alphabet Σ
is denoted by Σ+. A word w of length n is
represented by:

w[1..n] = w[1]w[2] …,w[n],
where w[i] ∈ Σ, for 1≤i≤n, and n = |w| is the length
of w. The empty word is the empty sequence (of
zero length) and is denoted by ε; A factor f of length
p is said to occur at position i in the word w if
f =w[i,…, i+p-1]. In other words f is a substring of
length p occurring at position i in word w. A word
has a repetition when it has at least two consecutive
equal factors.

In our approach every member or individual of
the population is considered a factor f of length ℓ,
where ℓ is an input variable to our algorithm, which
represents the size of the repeated patterns under
investigation.

2.2 The Suffix Tree
The Suffix Tree is a fundamental data structure
supporting a wide variety of efficient string
searching algorithms. In particular, the Suffix Tree is
well known to allow efficient and simple solutions to
many problems concerning the identification and
location either of a set of patterns or repeated
substrings (contiguous or not) in a given sequence.
The reader can find an extended literature on such
applications in [12].

In our algorithm we use the Suffix Tree of the
input sequence to locate the occurrences of the
repeated patterns. The pattern matching problem is
solved by traversing the Suffix Tree in a top-down
procedure and reporting the positions where a
pattern p occurs in S. Starting from the root we are
descending the tree following the edge dictated by

the characters of the pattern. If we have a mismatch
at any point then there is no occurrence of the
pattern in the input sequence. On the contrary, if all
the characters of the pattern are consumed then we
report all the leafs (positions of the sequence)
spanning from the point of the ST where the
matching ended.

Thus, for the reporting from the point that the
matching has ended, we traverse (e.g. depth first
search) the sub-tree and we report all the positions
we discover on the leafs. If k leafs are spanned then
the above procedure will take O(k) time because the
tree is at least binary thus having O(k) internal
nodes. Thus the pattern matching problem is linear
to the size of the patterns.

3 Methodology
In this section we present the genetic algorithm
developed and the proposed methodology. The
population we consider in the GA consists of a
population of p words of length ℓ. For each
particular run, the populations size p (i.e. the number
of individuals) of each generation, as well as the
length ℓ of each one word of the population is kept
constant. After establishing a population of words
the population is randomly initialized. When the
initialization procedure is completed all words of the
population are random strings drawn from the ΣDNA
alphabet. The fitness ƒ of each particular word is
evaluated considering as fitness (or evaluation)
function the number of approximate occurrences
(repetitions) of the word in the input sequence.
Therefore:

ƒ(word) = matching characters/ length of word
The overall structure of the method is shown in
Figure 1.

F
le
ite
sp

crossover, pm and pC respectively, as well as the elitism
parameter are user-defined.

To go from one generation to the next, children

are derived from parents that are chosen by some
kind of natural selection. To create a child, an
operator is selected that can be a crossover (mixing
the contents of the two parents) or a mutation
(modifying a single parent). Each operator has a
probability of being chosen.

The algorithm is divided in two stages. The first
one is the evolutionary phase where the new
population of individuals/words is generated and the
searching phase where each individual is evaluated
by counting its number and exact positions of
occurrences using the Suffix Tree data structure.

3.1 Evolutionary phase
When individuals’ fitness evaluation is terminated,
the selection procedure is applied in order to select
the words for reproduction and the generation of the
new population. Elitism is also applied during the
selection phase. Elitism ensures that a user-defined
number of the best individuals of each generation
will be copied into the succeeding generation.

When the total number of words for reproduction
is selected, the crossover and mutation operators are
applied. The crossover operator randomly chooses
two words. If a random number is less than, or
equals to a given crossover probability (or crossover
rate) pc, then a locus of diversion of the words is
randomly selected, splitting each one of them in two
subparts. Then, two offspring are created by cross
changing these subparts. Else (i.e., in the case that
the random number is greater than pc) clones of the
two individuals are copied unchanged to the new
population. On the new offspring the mutation
operation is applied.

The mutation operator acts on each single
character of a word. A random number is selected
and if it is less than, or equals to a given mutation
probability (or mutation rate) pm the character under
consideration is replaced by another character of the
ΣDNA alphabet that is randomly selected with the
condition to differ from the original character. With
the completion of the crossover and the mutation
procedures the new generation is formed and a new
evolution circle may begin. As termination condition
of the GA procedures described above is the

FIND REPETITIONS (X, ℓ, p, n, pm, pc, elitism)
Initialize population of words
WHILE n ≥ 1, DO
Evaluate-Fitness: compute the repetitions of each
word of the population;
Produce Next Generation: compute the next
generation;

If elitism = 0, perform elitism;
If pm ≤ const, perform mutation;
If pc ≤ const, perform uniform crossover;
Report individuals in descending order

igure 1. The algorithm computes all repetitions of
ngth ℓ for the input sequence X. The number of
rations n as well as the size of the population p is
ecified by the user. The probabilities of mutation and

evolution for a certain number of generations
specified by the user. When the GA comes to an end,
the resulted words are reported in a descending order
with respect to their fitness. Since the fitness of each
word represents the number of occurrences found in

the input sequence, these results are easily readable.

3.2 Searching phase
In the searching phase we use the Suffix Tree data
structure in order to compute the number of
occurrences and positions of every repeated word.

3.3 Time Complexity Analysis
In this sub section we present a brief time
complexity analysis of our algorithm. As already
described our algorithm operates in two phases:
searching and evolution. During the searching
phase, repeated patterns with high frequency are
identified. In the evolution phase repeated motifs
are progressively mutated or crossed until all the
existing, repeated patterns have been identified. In
the computational analysis we will use the following
notation:
p: the size of the population in each generation
ℓ: the length of each individual/word
n: the number of iterations/ generations
|X|: the length of the input sequence
The total time complexity is:

n* (p*ℓ + p* logp) + |X|.
According to the above analysis, the time

complexity of our algorithm is linear to the size |X|
of the input biological sequence and thus it is more
efficient than other approaches of the relative
literature. The time complexity also depends on the
size of the population p, the length ℓ of each pattern
and the specified number of generations/ iterations n
of the algorithm.

4 Experimental Results
In this section we present experiments on real data
using the above-described GA. A C++ program has
been written to implement the technique. It is
available on request from the authors. In order to
test our method we used as input data biological
sequences (such as genome sequences) downloaded
from the European Bioinformatics Institute- EBI
Database (http://srs.ebi.ac.uk).

Our method efficiently discovers the fittest atom
per generation, i.e. the atom with the maximum
number of occurrences, while moreover the
algorithm reports all the atoms with high frequency
per generation.

In Figure 2 it is shown the evolution of the mean
fitness value of the GA for the same example. In
Figure 3 we present the evolution of the mean fitness
value of the GA for patterns of length ℓ = 32. These

lengths were randomly chosen only for purpose of
demonstration. The algorithm finds the most
frequent patterns for any length ℓ ≤ |X|/2 (if the
pattern equals to |X|/2 it can appear at most twice in
the input sequence).

0 10 20 30 40 50 60 70 80 90 100
2450

2500

2550

2600

2650

2700

2750

2800

GENERATION

M
E

A
N

 F
IT

N
E

S
S

Figure 2. Evolution of the mean fitness value per
generation for patterns of length ℓ =8.

0 10 20 30 40 50 60 70 80 90 100
2500

2550

2600

2650

M
E

A
N

 F
IT

N
E

S
S

GENERATION
Figure 3. Evolution of the mean fitness value per
generation for patterns of length ℓ =32.

5 Future Work
As previously analysed our method involves
evolving a population of patterns in an evolutionary
manner and gradually improves the fitness of the
population as measured by an objective function.
The general attraction of the approach is the ability
to detect repeated schemas, thus inferring motifs of
fixed length from biological sequences.

Our future work is two fold. The first one
concerns the modification of the algorithm by
assigning a credit to the operators of mutation and
crossover. When creating a “child-pattern”, the
choice of mutation or crossover (as expressed by the
respective probabilities) is just as important as the
choice of the “parents-patterns”. Therefore it makes
sense to allow operators to compete for usage, just as
parents do for survival, in order to make sure that the

most useful operator is likely to be used. Thus, each
time a new individual is generated, if it yields some
improvement over its parents, the operator that was
directly responsible for its creation gets the largest
part of the credit and so in the new generation we
can dynamically change the probability of the
mutation or crossover operator. This can reduce the
time complexity needed to compute the mutation and
crossover operation for the population in each
generation.

The second research direction concerns the
addition of one operator responsible for inserting
gaps inside repeated patterns thus giving the
possibility of inferring structured patterns from the
input biological sequence.

Moreover an interesting problem arises from
having “don’t care symbols” in the input sequence.
A “don’t care” symbol (denoted as * or $), has the
property of matching any symbol of a given alphabet
or another *, as well. For example the pattern p =
AC*AT can match the string s = A*G*T. In this case
the initial population will consist of patterns with
“don’t care symbols” or in other terms schemas.
Using the same methodology we can compute the
repetitions of such a sequence with “don’t care”
characters, as introduced in [14].

6 Conclusions
Detection of repeated patterns (as presented in

the above paragraphs) has nowadays become a
specific research field whose applications in
molecular biology are of high impact. In fact, due to
the huge amount of data entering genomic databases,
there is an urgent need for tools that can help
molecular biologist to interpret this data. In fact, a
typical way to start analyzing new sequences is to
group them into families that are assumed to be
biologically related because they present similar
function or structure, or because they are
evolutionary related.

Compared to other techniques our algorithm is
linear to the length of the input sequence and has the
advantage of allowing the user to specify the exact
length of the repetitions the biologist looks for.
Taking into consideration the easy parallelisation of
Genetic Algorithms we believe our method can be
used in many practical applications.

Finally we believe that Genetic Algorithms can
be successfully used as a practical way to solve
many computationally difficult problems in the
areas of Sequence Search and Alignment. They are
intellectually satisfying in their simplicity and the
way they attempt to mimic biological evolution.

References:
[1] C. Zhang, A.K. Wong, A genetic algorithm for

multiple molecular sequence alignment. Comput.
Appl. Biosci., Vol. 13, 1997, pp. 565–581.

[2] S. Kurtz, C. Schleiermacher, REPuter: fast
computation of maximal repeats in complete
genomes. Bioinformatics, Vol. 15, 1999, pp.
426–427.

[3] H. Martinez, An Efficient Method for Finding
Repeats in Molecular Sequences. Nucleic Acid
Research, Vol. 11, 1983, pp. 4626–4634.

[4] T. Tsunoda, M. Fukagawa, M, T. Takagi, Time
and memory efficient algorithm for extracting
palindromic and repetitive subsequences in
nucleic acid sequences. Pacific Symposium on
Biocomputing, Vol. 4, 1999, 202–213.

[5] J.H. Holland, Adaptation in Natural and
Artificial Systems- Second Edition, MIT Press,
1992.

[6] D.E. Goldberg, Genetic Algorithms in Search.
Optimization and Machine Learning. Addison-
Wesley, 1989.

[7] M. Mitchell, An Introduction to Genetic
Algorithms, MIT Press, 1996.

[8] L.J. Fogel, A.J. Owens, M.J. Walsh, Artificial
Intelligence through Simulated Evolution, Wiley,
1996.

[9] J.R. Koza, Genetic Programming: On the
Programming of Computers by Means of Natural
Selection, MIT Press, 1992.

[10] Z. Michalewicz, Genetic Algorithms + Data
Structures = Evolution Programs, Springer-
Verlag, 1994.

[11] C.H. Ooi, P. Tan, Genetic algorithms applied
to multiclass prediction for the analysis of gene
expression data, Bioinformatics, Vol. 19, 2003
pp. 37–44.

[12] D. Gusfield, Algorithms on Strings, Trees, and
Sequences: Computer Science and
Computational Biology, Cambridge University
Press, 1997.

[13] J. Stoye, D. Gusfield, Simple and flexible
detection of contiguous repeats using a suffix
tree. In proceedings of the 9th Annual
Symposium on Combinatorial Pattern Matching
(CPM), Vol. 1448 of Lecture Notes in Computer
Science, 1998, pp. 140–152.

[14] C. Iliopoulos, M.Mohamed, L.Mouchard, K.
Perdikuri, W. Smyth, A. Tsakalidis String
Regularities with Don't Cares, Nordic Journal of
Computing, Vol.10, 2003, pp. 40-51.

	4 Experimental Results
	5 Future Work
	6 Conclusions
	Detection of repeated patterns (as presented in the above paragraphs) has nowadays become a specific research field whose applications in molecular biology are of high impact. In fact, due to the huge amount of data entering genomic databases, there is
	Compared to other techniques our algorithm is linear to the length of the input sequence and has the advantage of allowing the user to specify the exact length of the repetitions the biologist looks for. Taking into consideration the easy parallelisation

