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Abstract: - One of the most important goals in computational molecular biology is allocating repeated patterns 
in nucleic or protein sequences, and identifying structural or functional motifs that are common to a set of such 
sequences. In this paper we describe a new approach to detect the repetitions of fixed length in Biological 
Sequences using a Genetic Algorithm. The method involves evolving a population of patterns in an 
evolutionary manner and gradually improving the fitness of the population as measured by an objective 
function, which measures the approximate repetitions of the patterns in the given sequence. The general 
attraction of the approach is the ability to detect repeated schemas, thus inferring motifs of fixed length from 
biological sequences. 
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1   Introduction 
Biological Sequences, such as DNA and Protein 
sequences, can be seen as long texts over specific 
alphabets, encoding the genetic code of living 
beings. Searching specific sub-sequences over those 
texts appears as a fundamental operation for 
problems such as assembling the DNA chain from 
the pieces obtained by experiments, looking for 
given DNA chains, or determining how different 
two genetic sequences are.  

Other problems in Molecular Biology involve 
structure matching or searching for unknown 
repeated patterns, often called “motifs”. For various 
problems in molecular biology, in particular the 
study of gene expression and regulation, it is 
important to be able to infer repeated motifs or 
structured patterns and answer many biological 
questions, like for example what elements in 
sequence and structure are involved in the regulation 
and expression of genes through their recognition. 
The analysis of the distribution of repeated patterns 
permits biologists to determine whether there exists 
an underlying structure and correlation at a local or 
global genetic level. 

In this work we address the problem of detecting 
repeated patterns in biological sequences using a 
Genetic Algorithm. Genetic Algorithms have been 
applied so far in the Multiple Molecular Sequence 
Alignment problem in order to identify similarities 
among sequences [1]. Our method involves evolving 
a population of patterns in an evolutionary manner 
and gradually improving the fitness of the 
population as measured by an objective function, 
which measures the approximate repetitions of the 
patterns in the given sequence. The general 
attraction of the approach is the ability to detect 
repeated schemas, thus inferring motifs of fixed 
length from biological sequences. 

The structure of the paper is as follows. In 
Section 2 we give the basic theoretical background 
of our methodology and all the basic definitions 
used in the rest of the paper, in Section 3 we present 
the methodology and a brief time complexity 
analysis, while in Section 4 we give experimental 
results. Finally in Section 5 we conclude and discuss 
our future work and research interest in open 
problems of the area. 
 
 



2   Background 
In the relevant literature, a variety of algorithms for 
finding identical repetitions in DNA and protein 
sequences have been presented. In particular in [2], 
[3], [4] authors have presented efficient methods for 
finding identical repetitions in biosequences. In our 
method we use a Genetic Algorithm to efficiently 
compute the repetitions of fixed length in a 
biological sequence.  

Genetic algorithms are stochastic approaches for 
efficient and robust searching. The GA methodology 
was invented by Holland [5] in order to study the 
natural adaptation phenomena and to incorporate the 
mechanisms of natural adaptation into computer 
systems, inspired by natural evolution methods [6], 
[7]. GAs, together with Evolution Strategies, 
Evolutionary Programming (EP), presented by Fogel 
et al. [8] and finally Genetic Programming (GP), 
proposed by Koza [9], form the field of 
Evolutionary Computation.  

In Evolutionary Computation, a probabilistic 
algorithm maintains a population of individuals in 
every iteration k. Each one individual is a potential 
solution of the problem under consideration. With 
respect to the nature of the problem to be solved 
each individual is evaluated by an appropriate 
fitness function. Based on the fitness of the 
individuals a selection procedure, which mimics 
natural selection, is applied to form a new 
population (iteration k + 1). Some members of the 
new population undergo genetics-inspired 
transformations to form new solutions.  

These transformations are either unary (mutation 
type), which create new individuals by small 
alterations in a single individual, or higher order 
(crossover type), which create new individuals by 
combining and exchanging, subparts of two (or in 
general, more) individuals. After the application of 
these transformation operators each individual of the 
new population is tested in order to evaluate the 
fitness of the solution it represents. After a 
reasonable number of generations the program 
converges to individuals that are optimal or near 
optimal (sub-optimal) solutions of the problem 
under consideration. Despite the simplicity of its 
implementation rules (selection, mutation and 
crossover), evolution is a powerful method of 
searching among an enormous number of 
possibilities for desired solutions. It is a massively 
parallel search method, which allows to the fittest 
(i.e. the optimal or near-optimal) solutions of each 
generation to survive, to be reproduced and finally 
to converge.  

In the following paragraphs we give the basic 
definitions used in the rest of the paper.  
 
 
 
2.1 Basic Definitions 
Let Σ be a finite alphabet, which consists of a set of 
characters (or symbols). The cardinality of an 
alphabet, denoted by |Σ|, expresses the number of 
distinct characters in the alphabet. In the case of 
DNA sequences the alphabet consists of four 
nucleotides: ΣDNA = {a,c,g,t}, while in the case of 
protein sequences, the alphabet consists of twenty 
amino acids. 

DNA and protein sequences can be seen as long 
texts over specific alphabets representing the genetic 
code of living beings. A string or word is a sequence 
of zero or more characters drawn from an alphabet. 
The set of all non-empty words over the alphabet Σ 
is denoted by Σ+. A word w of length n is 
represented by: 

w[1..n] = w[1]w[2] …,w[n], 
where w[i] ∈ Σ, for 1≤i≤n, and n = |w| is the length 
of w. The empty word is the empty sequence (of 
zero length) and is denoted by ε; A factor f of length 
p is said to occur at position i in the word w if          
f =w[i,…, i+p-1]. In other words f is a substring of 
length p occurring at position i in word w. A word 
has a repetition when it has at least two consecutive 
equal factors.  

In our approach every member or individual of 
the population is considered a factor f of length ℓ, 
where ℓ is an input variable to our algorithm, which 
represents the size of the repeated patterns under 
investigation.  
 
 
2.2 The Suffix Tree 
The Suffix Tree is a fundamental data structure 
supporting a wide variety of efficient string 
searching algorithms. In particular, the Suffix Tree is 
well known to allow efficient and simple solutions to 
many problems concerning the identification and 
location either of a set of patterns or repeated 
substrings (contiguous or not) in a given sequence. 
The reader can find an extended literature on such 
applications in [12].  

In our algorithm we use the Suffix Tree of the 
input sequence to locate the occurrences of the 
repeated patterns. The pattern matching problem is 
solved by traversing the Suffix Tree in a top-down 
procedure and reporting the positions where a 
pattern p occurs in S. Starting from the root we are 
descending the tree following the edge dictated by 



the characters of the pattern. If we have a mismatch 
at any point then there is no occurrence of the 
pattern in the input sequence. On the contrary, if all 
the characters of the pattern are consumed then we 
report all the leafs (positions of the sequence) 
spanning from the point of the ST where the 
matching ended.  

Thus, for the reporting from the point that the 
matching has ended, we traverse (e.g. depth first 
search) the sub-tree and we report all the positions 
we discover on the leafs. If k leafs are spanned then 
the above procedure will take O(k) time because the 
tree is at least binary thus having O(k) internal 
nodes. Thus the pattern matching problem is linear 
to the size of the patterns. 

 
 

3 Methodology 
In this section we present the genetic algorithm 
developed and the proposed methodology. The 
population we consider in the GA consists of a 
population of p words of length ℓ. For each 
particular run, the populations size p (i.e. the number 
of individuals) of each generation, as well as the 
length ℓ of each one word of the population is kept 
constant. After establishing a population of words 
the population is randomly initialized. When the 
initialization procedure is completed all words of the 
population are random strings drawn from the ΣDNA 
alphabet. The fitness ƒ of each particular word is 
evaluated considering as fitness (or evaluation) 
function the number of approximate occurrences 
(repetitions) of the word in the input sequence. 
Therefore: 

ƒ(word) = matching characters/ length of word 
The overall structure of the method is shown in 
Figure 1.  
 
 
 
 
 
 

F
le
ite
sp

crossover, pm and pC respectively, as well as the elitism 
parameter are user-defined. 

 
To go from one generation to the next, children 

are derived from parents that are chosen by some 
kind of natural selection. To create a child, an 
operator is selected that can be a crossover (mixing 
the contents of the two parents) or a mutation 
(modifying a single parent). Each operator has a 
probability of being chosen. 

The algorithm is divided in two stages. The first 
one is the evolutionary phase where the new 
population of individuals/words is generated and the 
searching phase where each individual is evaluated 
by counting its number and exact positions of 
occurrences using the Suffix Tree data structure. 

 
 

3.1 Evolutionary phase 
When individuals’ fitness evaluation is terminated, 
the selection procedure is applied in order to select 
the words for reproduction and the generation of the 
new population. Elitism is also applied during the 
selection phase. Elitism ensures that a user-defined 
number of the best individuals of each generation 
will be copied into the succeeding generation.  

When the total number of words for reproduction 
is selected, the crossover and mutation operators are 
applied. The crossover operator randomly chooses 
two words. If a random number is less than, or 
equals to a given crossover probability (or crossover 
rate) pc, then a locus of diversion of the words is 
randomly selected, splitting each one of them in two 
subparts. Then, two offspring are created by cross 
changing these subparts. Else (i.e., in the case that 
the random number is greater than pc) clones of the 
two individuals are copied unchanged to the new 
population. On the new offspring the mutation 
operation is applied.  

The mutation operator acts on each single 
character of a word. A random number is selected 
and if it is less than, or equals to a given mutation 
probability (or mutation rate) pm the character under 
consideration is replaced by another character of the 
ΣDNA alphabet that is randomly selected with the 
condition to differ from the original character. With 
the completion of the crossover and the mutation 
procedures the new generation is formed and a new 
evolution circle may begin. As termination condition 
of the GA procedures described above is the 
 
 
 
 
 
 

FIND REPETITIONS (X, ℓ, p, n, pm, pc, elitism) 
Initialize population of words 
WHILE n ≥ 1, DO 
Evaluate-Fitness: compute the repetitions of each
word of the population; 
Produce Next Generation: compute the next
generation; 

If elitism = 0, perform elitism; 
If pm ≤ const, perform mutation; 
If pc  ≤  const, perform uniform crossover;
Report individuals in descending order 
 
igure 1. The algorithm computes all repetitions of 
ngth ℓ for the input sequence X. The number of 
rations n as well as the size of the population p is 
ecified by the user. The probabilities of mutation and 

evolution for a certain number of generations 
specified by the user. When the GA comes to an end, 
the resulted words are reported in a descending order 
with respect to their fitness. Since the fitness of each 
word represents the number of occurrences found in 



the input sequence, these results are easily readable. 
 
  

3.2 Searching phase  
In the searching phase we use the Suffix Tree data 
structure in order to compute the number of 
occurrences and positions of every repeated word. 
 
  
3.3 Time Complexity Analysis  
In this sub section we present a brief time 
complexity analysis of our algorithm. As already 
described our algorithm operates in two phases: 
searching and evolution. During the searching 
phase, repeated patterns with high frequency are 
identified. In the evolution phase repeated motifs 
are progressively mutated or crossed until all the 
existing, repeated patterns have been identified. In 
the computational analysis we will use the following 
notation: 
p: the size of the population in each generation 
ℓ: the length of each individual/word  
n: the number of iterations/ generations 
|X|: the length of the input sequence 
The total time complexity is: 

n* (p*ℓ + p* logp) + |X|. 
According to the above analysis, the time 

complexity of our algorithm is linear to the size |X| 
of the input biological sequence and thus it is more 
efficient than other approaches of the relative 
literature. The time complexity also depends on the 
size of the population p, the length ℓ of each pattern 
and the specified number of generations/ iterations n 
of the algorithm. 

 
 

4 Experimental Results 
In this section we present experiments on real data 
using the above-described GA. A C++ program has 
been written to implement the technique. It is 
available on request from the authors.  In order to 
test our method we used as input data biological 
sequences (such as genome sequences) downloaded 
from the European Bioinformatics Institute- EBI 
Database (http://srs.ebi.ac.uk). 

Our method efficiently discovers the fittest atom 
per generation, i.e. the atom with the maximum 
number of occurrences, while moreover the 
algorithm reports all the atoms with high frequency 
per generation.  

In Figure 2 it is shown the evolution of the mean 
fitness value of the GA for the same example. In 
Figure 3 we present the evolution of the mean fitness 
value of the GA for patterns of length ℓ = 32. These 

lengths were randomly chosen only for purpose of 
demonstration. The algorithm finds the most 
frequent patterns for any length ℓ ≤ |X|/2 (if the 
pattern equals to  |X|/2 it can appear at most twice in 
the input sequence). 
 

0 10 20 30 40 50 60 70 80 90 100
2450

2500

2550

2600

2650

2700

2750

2800

GENERATION

M
E

A
N

  F
IT

N
E

S
S

 
Figure 2. Evolution of the mean fitness value per 
generation for patterns of length ℓ =8. 
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Figure 3. Evolution of the mean fitness value per 
generation for patterns of length ℓ =32. 
 
5  Future Work 
As previously analysed our method involves 
evolving a population of patterns in an evolutionary 
manner and gradually improves the fitness of the 
population as measured by an objective function. 
The general attraction of the approach is the ability 
to detect repeated schemas, thus inferring motifs of 
fixed length from biological sequences. 

Our future work is two fold. The first one 
concerns the modification of the algorithm by 
assigning a credit to the operators of mutation and 
crossover. When creating a “child-pattern”, the 
choice of mutation or crossover (as expressed by the 
respective probabilities) is just as important as the 
choice of the “parents-patterns”. Therefore it makes 
sense to allow operators to compete for usage, just as 
parents do for survival, in order to make sure that the 



most useful operator is likely to be used. Thus, each 
time a new individual is generated, if it yields some 
improvement over its parents, the operator that was 
directly responsible for its creation gets the largest 
part of the credit and so in the new generation we 
can dynamically change the probability of the 
mutation or crossover operator. This can reduce the 
time complexity needed to compute the mutation and 
crossover operation for the population in each 
generation. 

The second research direction concerns the 
addition of one operator responsible for inserting 
gaps inside repeated patterns thus giving the 
possibility of inferring structured patterns from the 
input biological sequence.  

Moreover an interesting problem arises from 
having “don’t care symbols” in the input sequence. 
A “don’t care” symbol (denoted as * or $), has the 
property of matching any symbol of a given alphabet 
or another *, as well. For example the pattern p = 
AC*AT can match the string s = A*G*T. In this case 
the initial population will consist of patterns with 
“don’t care symbols” or in other terms schemas. 
Using the same methodology we can compute the 
repetitions of such a sequence with “don’t care” 
characters, as introduced in [14 ].  

 
  

6  Conclusions  
Detection of repeated patterns (as presented in 

the above paragraphs) has nowadays become a 
specific research field whose applications in 
molecular biology are of high impact. In fact, due to 
the huge amount of data entering genomic databases, 
there is an urgent need for tools that can help 
molecular biologist to interpret this data. In fact, a 
typical way to start analyzing new sequences is to 
group them into families that are assumed to be 
biologically related because they present similar 
function or structure, or because they are 
evolutionary related.  

Compared to other techniques our algorithm is 
linear to the length of the input sequence and has the 
advantage of allowing the user to specify the exact 
length of the repetitions the biologist looks for. 
Taking into consideration the easy parallelisation of 
Genetic Algorithms we believe our method can be 
used in many practical applications.  

Finally we believe that Genetic Algorithms can 
be successfully used as a practical way to solve 
many computationally difficult problems in the 
areas of Sequence Search and Alignment. They are 
intellectually satisfying in their simplicity and the 
way they attempt to mimic biological evolution. 
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