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Abstract

One of the most widely known topological index is the Wiener index. The Wiener Index Conjecture
states that all positive integer numbers except a finite set are the Wiener indices of some trees.
We explore the Wiener indices of the binary trees. We present efficient algorithms for generating
the Wiener indices of the binary trees. Based on experiments we strengthen the conjecture for the
class of the binary trees.
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1 Introduction

Molecules and molecular compounds are often
modeled by molecular graphs. Topological in-
dices of molecular graphs are one of the old-
est and most widely used descriptors in quan-
titative structure activity relationships: Quan-
titative structure activity relationships (QSAR)
is a popular computational biology paradigm in
modern drug design [3, 11]. One of the most
widely known topological descriptor [6, 9] is
the Wiener index named after chemist Harold
Wiener [13] who devised it and studied it 57
years ago. The Wiener index of a graph G(V,E)
is defined as

(1) W (G) =
∑

u,v∈V

d(u, v),

where d(u, v) is the distance between vertices u
and v.

A majority of the chemical applications of
the Wiener index deal with chemical compounds
that have acyclic organic molecules (see [8, 12]
for details). The molecular graphs of these com-
pounds are trees [7], see an example of a chem-

ical compound in Fig. 1. Therefore most of
the prior work on the Wiener indices deals with
trees, relating the structure of various trees to
their Wiener indices (asymptotic bounds on the
Wiener indices of certain families of trees, ex-
pected Wiener indices of random trees etc.). For
these reasons, we concentrate on the Wiener in-
dices of trees as well (see Dobrynin et al. [4] for
a recent survey).

9

9

9

9

99

21

24

16

Figure 1: Carbon skeleton of 3-Ethyl-2,2,4-
trimethylpentane. Its Wiener index 87, is the
sum of the edge weights.
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If your paper deviates significantly from these
specifications, our Publishing House may not be
able to include your paper in the Proceedings.
When citing references in the text of the ab-
stract, type the corresponding number in square
brackets as shown at the end of this sentence [1].

Several papers address the question: What
positive integer numbers can be Wiener indices
of graphs of a certain type? The question is an-
swered for general graphs and bipartite graphs
[4]. The question is still open for trees.

Conjecture 1 [Wiener Index Conjec-
ture [5, 10]] Except for some finite set, every
positive integer is the Wiener index of a tree.

Lepović and Gutman [10] found the Wiener
indices up to 1206 by enumerating all non-
isomorphic trees of at most 20 vertices. They
conjectured that 159 is the largest non-Wiener
index of a tree. Goldman et al. [5] verified the
conjecture for the Wiener indices up to 104. Re-
cently Bespamyatnikh et al. [1] found a class of
trees whose Wiener indices cover all numbers up
to 108. Although their algorithm is very fast, the
trees may have vertices of large degrees.

We define a d-tree, d = 2, 3 . . . as a rooted
tree such that every node has degree at most d.
Let Fd denote the family of all d-trees. Fd, d =
0, 1, 2 . . . is a growing family of trees since

F0 ⊂ F1 ⊂ F2 ⊂ . . .

Let Fd(n) denote the set of d-trees of size n.
Let W (Fd) and W (Fd(n)) denote the set of the
Wiener indices of the trees in Fd and Fd(n), re-
spectively. The family F2 contains trees that
are paths. The Wiener index of a path with n
vertices is

(
n+1

3

)
. Therefore the Wiener indices

of trees of F2 cannot justify Conjecture 1. The
question we address in this paper is the follow-
ing. Is there an integer d such that the Wiener
indices of trees of Fd can justify Conjecture 1?
Our results suggest that such a number exists
and, even more, that d = 3 is very likely to be
the smallest degree of trees whose Wiener indices
cover all sufficiently large integers.

We study the class of binary trees F3. There
are only two non-isomorphic binary trees of size
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Figure 2: Two trees of F3(4) and their Wiener
indices.

4 depicted in Fig. 2. We present efficient al-
gorithms for computing the Wiener indices of
Fd(n). We implemented the algorithms and
found all Wiener indices W (F3) up to 150000.
Our experiments allow us to suggest the follow-
ing.

Conjecture 2 Except for some finite set, every
positive integer is the Wiener index of a binary
tree.

2 Preliminaries

Canfield et al. [2] applied a recursive approach
for calculating the Wiener index of a tree. For
a rooted tree T , we denoted by l(T ) the sum of
the distances from the root vroot of T to all its
vertices, l(T ) =

∑
v∈T d(vroot, v).

vroot

v1

T1

. . .

v2
vk

T2 Tk

Figure 3: Recursive computation of the Wiener
index.

Theorem 3 (Canfield et al. [2]) Let T be a
tree of size n with the root vroot and let vi, 1 ≤
i ≤ k be the vertices adjacent to vroot. Let
Ti, 1 ≤ i ≤ k be the subtree of T rooted at vi.
Let ni be the size of Ti, 1 ≤ i ≤ k, see Fig. 3.
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Then

W (T ) = n(n− 1)

+
k∑

i=1

[W (Ti) + (n− ni)l(Ti)− n2
i ](2)

l(T ) = n− 1 +
k∑

i=1

l(Ti).(3)

For an edge e of a tree T , let w(e) = n1(e)n2(e)
denote its weight where n1(e) and n2(e) are the
sizes of two trees left after the removal of e, see
Fig. 1 for example. The following formula was
discovered by Wiener [13]

(4) W (G) =
∑
e∈T

n1(e)n2(e).

The formula for the Wiener index using edge
weights is useful in practice when the Wiener
index is calculated by hand. Figures 1 and 2
illustrate the edge weights in the graphs.

3 Algorithms and Experiments

Our algorithms for enumerating the Wiener in-
dices are based on the algorithms by Goldman
et al. [5] and Bespamyatnikh et al. [1]. These al-
gorithms apply the dynamic programming tech-
nique.

Let T be a rooted binary tree. We encode
it by the triple (n, l, w) where n is the size of
T , l is l(T ) and w = W (T ). We compute lists
L(n), n = 1, 2, . . . , N that store pairs (l, w) for
all binary trees of size n. We store the pairs in
L(n) in the lexico-graphical order. This allows
us to find a triple (n, l, w) in O(log M) time using
the binary search where M is the total size of the
lists L(n).

The algorithm computes the list L(n) as fol-
lows. For every pair n1, n2 such that n1 ≤ n2 and
n1 + n2 = n− 1, the algorithm checks every pair
(l1, w1) ∈ L(n1) and every pair (l2, w2) ∈ L(n2).
The resulting pair (l, w) can be found by Equa-
tion (2) and (3). The pseudo-code of the algo-
rithm is shown in Appendix.

We implemented the above algorithm and run
it for n ≤ 30 only since the sizes of the lists

L(n) grow rapidly. Nevertheless, the largest non-
Wiener index we found is 405. To conclude this
we also compute the smallest Wiener index of
the list L(30) which is larger than 1000. The
list of non-Wiener indices up to 405 is shown in
Table 1.

This leads to the following conjecture.

Conjecture 4 Except for 128 integer numbers
shown in Table 1, every positive integer is the
Wiener index of a binary tree.

We modified the algorithm to be able to verify
Conjecture 4 for large numbers. The idea is that
we want to store not all pairs (l, w) in L(n) so
that the larger Wiener indices can be discovered.
We developed several constraints that restrict
the stored pairs (l, w). One of the constraints is
the bound on the number of pairs (l, w) for the
same value w. The constraints allow us to ex-
plore larger numbers. The best bound we found
is 150000. In other words every number between
406 and 150000 is the Wiener index of a binary
tree. This large interval supports Conjecture 4.
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A Appendix: The algorithm

Algorithm 1 WienerIndicesOfBinaryTrees
Require: An integer N , the maximum value of n.
Ensure: The lists L(n) where 1 ≤ n ≤ N .

An integer M , the maximum value of W(Fd(n)) over all 1 ≤ n ≤ N .
The boolean list W [0...M ] whose i-th value is 1 if i is in the lists L(n)1 ≤ n ≤ N ; 0 otherwise.

1: L(0) = {0, 0} and L(1) = {0, 0} {Initialization}
2: for i = 1 to sizeofW [] do
3: W [i] = 0
4: end for
5: for n = 2 to N do
6: L(n) = ∅
7: for n1 = 0 to b(n− 1)/2c do
8: n2 = n− n1 − 1
9: for each (l1, w1) ∈ L(n1) and each (l2, w2) ∈ L(n2) do

10: l = l1 + l2 + n− 1
11: w = w1 + l1 + n1 + w2 + l2 + n2 + l1n2 + l2n1 + 2n1n2

12: if (l, w) /∈ L(n) then
13: insert (l, w) in L(n)
14: W [w] = 1
15: M = M + 1
16: end if
17: end for
18: end for
19: end for
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