
Developing Internet Computing Applications using Web Services
Srihari Muthyala and Jiang B. Liu

Computer Science & Information Systems Department
Bradley University
Peoria, IL 61615

U.S.A.

Abstract: Service-oriented computing has many advantages over the proprietary distributed
object-oriented computing on the Internet. Business can provide the functionalities on different
platforms in terms of web services to the clients, where the web services model is modular, self-
describing, self-contained applications that are accessible over the Internet. In this paper, we will
discuss our experience of implementing the Internet computing using web services on IBM
WebSphere and Microsoft .Net platforms.

Key-Words: Internet computing, service-oriented computing, web services

1. Introduction
 Internet computing enables large-scale
aggregation and sharing of computational, data
and other resources across institutional
boundaries. It seeks to exploit PCs and
workstations to create powerful distributed
computing systems with global applications using
the ever-expanding resources of the Internet.
Today many companies have already made most
of their information systems available to all of
their divisions and departments, or even their
customers or partners on the Web. Thus, there is
an increasing demand for technologies that
support the connecting or sharing of resources and
data in a very flexible and standardized manner.
 Over the last few years, the software industry
has changed dramatically. Rather than purchasing
or licensing software to install on a workstation or
a PC, users now prefer to access services over the
Internet. The trend moves software away from
monolithic, fat-client-hosted and maintained
applications toward a new development model
that is often called "Web services." Before Web
services, Internet computing and e-commerce
were based on client/server computing model in
which many clients talk to many servers through
the net [1-3]. Communicating partners have to go
through certain prearrangement in terms of what
common object model they have to use or what
common communication protocol they have to
agree upon in order to share resources. The

exchanges of information are through enterprise
application integration (EAI). Developers need to
create one-time, proprietary solutions for system
integration [4]. A new, often makeshift solution
had to be developed each time two companies
wanted to share resources. Moreover the two
companies need know each other’s platform in
order to exchange information.
 There are many technologies developed since
then for supporting the Internet computing. Java
J2EE and .Net are two such dominant ones [5-6].
In both the platforms, Web services have emerged
as the promising next generation of Web-based
technology for computing and exchanging
information. Web Services is “a revolutionizing
enterprise computing” [7-8]. They allow any piece
of software to communicate with a standardized
XML messaging system on any different
platforms. The introduction of Extensible Markup
Language (XML) was an important step to
simplifying the application integration process.
XML enables developers to separate the content
of data exposed over the Web from its
presentation. Furthermore, the web services model
is modular, self-describing, self-contained
applications that are accessible over the Internet.
This shift towards a service-oriented approach
will not only standardize interaction, but also
allows for more flexibility in the distributed
process. Moreover it increases Internet resources
and various remote methods to invoke available

resources. A service-oriented architecture thus has
to focus on how services are described and
organized to support their dynamic, automated
discovery and use. In this paper, we will discuss
our experience of implementing the Internet
computing using web services.

2. Web Services Essentials
 Web services are the various resources
available on Internet, which can be identified by
searching in Internet registries. Any software
application methods can be converted into web
services with minor changes. There exists lot of
tools to convert the existing EJBs, JAVA objects,
and C++ objects into various web services. Web
Services makes it easier to call objects or
applications in different environments. Web
Services is an adaptive evolution of distributed
and Internet computing. The advantages of Web
Services are the simplicity and flexibility involved
as compared with the technologies like EJB,
DCOM, and CORBA component-base computing
model.
 Web Services allow any piece of software to
communicate with a standardized XML
messaging system. The combination of Web
services security, Web services management, and
the standards for transactional integrity will allow
the construction of long running, secure, shared
Web services.

2.1 XML
 The introduction of Extensible Markup
Language (XML) was an important step to
simplifying the application integration process.
XML enables developers to separate the content
of data exposed over the Web from its
presentation. A predefined markup language like
HTML defines a way to describe information in
one specific class of documents. XML, on the
other hand, lets you define your own customized
markup languages for different kinds of
documents. This means that data can be easily
exchanged, not only among humans through
Internet browsers, but also among computers.
XML lies at the core of web services, and
provides a common language for describing
Remote Procedure Calls, web services, and web
service directories.

 The XML main focus is on building up
business vocabulary language, defining
documents, and gaining industry consensus for
B2B applications. The big push was to bring the
Web into an enterprise and make data accessible
via a browser. All of those transactions require
trust and security, making it mission-critical to
devise common XML mechanisms for
authenticating merchants, buyers, and suppliers to
each other, and for digitally signing and
encrypting XML documents like contracts and
payment transactions. XML opens the door to
interoperable information.

2.2 SOAP
 Simple Object Access Protocol (SOAP), a key
component of Web Services, is the latest of the
protocols that allow different applications to
interoperate. Although remote objects can give a
program almost unlimited power over the Internet,
but most firewalls block non-HTTP requests.
SOAP, an XML-based protocol, gets around this
limitation to provide intraprocess communication
across machines. Moreover it uses XML and is
therefore text-based protocol, easy to parse and
read. Thus improves the information exchange
over web. It is rapidly becoming the standard
protocol for accessing a Web Service, and
accessing the service is key.

2.3 WSDL
 Web Services Description Language (WSDL)
is an XML vocabulary for describing a Web
Service. A WSDL document describes what
functionality a Web Service offers, how it
communicates, and where it is accessible. WSDL
provides a structured mechanism to describe the
operations a Web Service that it can perform, the
formats of the messages that it can process, the
protocols that it supports, and the access point of
an instance of the Web Service that it can define.
 SOAP development tools can use a WSDL
description to automatically generate a SOAP
interface. A WSDL description defines a service
as a collection of network endpoints or ports.
Each port is defined abstractly as a port type,
which supports a collection of operations. Each
operation processes a particular set of messages.
A binding maps a port type to a specific protocol
and data format. A port instantiates a port type
and binding at a specific network address. A

WSDL description is an XML document that
contains a set of definitions.

2.4 UDDI
 The Universal Description, Discovery and
Integration) (UDDI) provides a mechanism to
register and categorize Web Services that you
offer and to locate Web Services that you would
like to consume. UDDI is itself a Web Service.
Just as businesses list their products and services
in a telephone directory, Web service brokers use
this specification to register services that service
requesters can then discover and invoke. Web-
based applications interact with a UDDI registry
using SOAP messages.
 Before Web services can really take root, the
UDDI registry, an important catalyst in the
evolution of Web services, must be set up.
Without UDDI, or other types of Web services
directories, Web services could be hard to find.

2.5 Benefits of web services
 Web services have been accepted by all
organizations and businesses. It is playing a very
important role in enterprise computing and
information exchanging.

1. Web services are self-contained
 On the client side, no additional software is
required. A programming language with XML
and HTTP client support is enough to get you
started. On the server side, merely a Web server
and a SOAP server are required. It is possible to
Web services enable an existing application
without writing a single line of code.
2. Web services are self-describing
 Neither the client nor the server knows or cares
about anything besides the format and content of
request and response messages (loosely coupled
application integration). The definitions of the
message format travels with the message; no
external metadata repositories or code generation
tool are required.
3. Web services can be published, located, and
invoked across the Web
 This technology uses established lightweight
Internet standards such as HTTP. It leverages the
existing infrastructure. Some additional standards
that are required to do so include SOAP, WSDL,
and UDDI.
4. Web services are easily accessible

 Web services are distributed over the Internet.
Web services make use of existing, ubiquitous
transport protocols like HTTP, leveraging existing
infrastructure and allowing information to be
requested and received in real time. Current IT
infrastructure for addressing, security and
performance can be applied to Web services
applications as well.
5. Web services are language-independent and
interoperable
 Client and server can be implemented in
different environments. Existing code does not
have to be changed in order to be Web service
enabled. Web services permit the use of a vast
array of clients—Java, C++, .NET, JavaScript,
Perl, and so on.
6. Web services are inherently open and standard-
based
 XML and HTTP are the major technical
foundation for Web services. A large part of the
Web service technology has been built using
open-source projects. Therefore, vendor
independence and interoperability are realistic
goals this time.
7. Web services are dynamic
 Dynamic e-business can become reality using
Web services because, with UDDI and WSDL,
the Web service description and discovery can be
automated.
8. Web services build on proven mature
technology
 There are a lot of commonalities, as well as a
few fundamental differences to other distributed
computing frameworks. For example, the
transport protocol is text based and not binary.
9. Web services are loosely coupled
 Traditionally, application design has depended
on tight interconnections at both ends. Web
services require a simpler level of coordination
that allows a more flexible re-configuration for an
integration of the services in question.
10. Web services provide the ability to wrap
existing applications
 Already existing stand-alone applications can
easily be integrated into the service-oriented
architecture by implementing a Web service as an
interface.

3. Develop a ShoppingCart Web
Service Application
 We have implemented a web service of a
common e-commerce application Shopping Cart
to explore the service-oriented computing. This
implementation is based on a Java EJB built using
IBM WebSphere studio. Various methods in
ShoppingCartManger object are exposed as web
service. The WebSphere application developer
generates the following WSDL files when the
ShoppingCartManager class was converted into a
web service:
• ShoppingCartManager.wsdl
This file describes all the parameters used in this
service and each methods input and output
responses.
• ShoppingCartManagerBinding.wsdl
This file contains service interface; the service
interface describes the abstract type interface and
its protocol binding.
• ShoppingCartManagerService.wsdl
This file contains service implementation, which
describes services access information.

ShoppingCartManagerManager.wsdl
<?xml version="1.0" encoding="UTF-8"?>
<definitions
name="ShoppingCartManagerService"
targetNamespace="http://myservices.com.wsdl/S
hoppingCartManagerService/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:binding="http://myservices.com.wsdl/Sho
ppingCartManagerBinding/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/s
oap/"
xmlns:tns="http://myservices.com.wsdl/Shoppin
gCartManagerService/">
<import
location="ShoppingCartManagerBinding.wsdl"
namespace="http://myservices.com.wsdl/Shoppi
ngCartManagerBinding/"/>
 <service
name="ShoppingCartManagerService">
 <port
binding="binding:ShoppingCartManagerBinding
" name="ShoppingCartManagerPort">
 <soap:address
location="http://localhost:9081/ShoppingCart/ser
vlet/rpcrouter"/>
</port></service></definitions>

After publishing the above web service, users can
access the above wsdl file and generated
ShoppingCart client to access the shopping cart
methods. There are many tools which convert the
wsdl file into proxy file, client GUI and even
provide testing environment such as WebSphere
studio and Virtual Studio .NET).

.NET Test Client

Web Sphere Studio Test Client

4. Web Services across Different
Platforms
 Interoperability is one of the main promises of
Web services. Web services are designed to be

independent of the underlying operating system
and programming language. One of the most
pressing challenges of Internet computing is the
effective integration of heterogeneous information
sources. Web service interoperability goals are to
provide seamless and automatic connections from
one software application to another. SOAP,
WSDL, and UDDI protocols define a self-
describing way to discover and call a method in a
software application regardless of location or
platform. Data is marshaled into XML request and
response documents and moved between software
packages using HTTP or message-based
protocols. Thus it improves the data exchanging
over web (heterogeneous).
 Web services represent an evolving set of
standards that will enable diverse and occasionally
obstreperous applications to more easily discover
each other and seamlessly exchange data via the
Internet. For instance, programs written in Java
and running on Solaris can find and call code
written in C# that run on Windows XP, or
programs written in Perl that run on Linux,
without any concern about the details of how that
service is implemented.

4.1 Example depicts the exchanging
information between .NET web service and
J2EE web service Client
 In this example, the Java J2EE application uses
a Microsoft .NET web service to extract database
table information using DB2 database where
.NET web service exposes a method which returns
the list of usernames and their encrypted
passwords as a DataSet data structure (Figure 1).

Figure 1: .NET web service that returns a DataSet
to J2EE client

The WebServiceClient (java proxy) is generated
using an exact location of .NET web service wsdl

file. e.g.
http://12.221.232.23/DBWebService1/Service1.
asmx?WSDL
The above will return XML formatted information
regarding users and encrypted passwords, later it
is easy to parse XML message as per requirement.

4.2 Example depicts a heterogeneous
system using web services
 There are many applications that can help save
money and keep employees and customers
connected using web services. An example below
depicts how various businesses interact with each
other for information exchange using web services
(Figure 2). If a client requested a data from server
and data is scattered over Internet among various
business entities then there must be a provision to
contact all business and gather required
information. This is very tedious job and
consumes lot of time and resources. Moreover it
requires knowledge about all business platforms.
But with the web services it can be very easy to
utilize the resources over Internet. As shown in
Figure 2 Business 1 can utilize both .NET and
J2EE web services without knowing about both
BUSINESS 2 and BUSINESS 3 implementations.
Thus Businesses can mix and match Web services
with any devices in any network with minimal
programming.

5. Conclusion
 Web Services implement a set of technologies
(XML, SOAP, WSDL, and UDDI) that allow
users to develop, catalog, and publish business
services for delivery and use on the Web. The
universal agreement of the technical community
on the SOAP specification, based on XML and
remote procedure calls (PRCs), provides the
backbone of Web Services technology; as now
users can access business functionality through
system communication regardless of platform,
object model, or programming language. The
UDDI registry serves as Internet business yellow
pages, providing access to published Web
Services by potentially anyone with a browser.
WSDL serves as an XML vocabulary for
describing the Web Services interface, defining
the published service operations, and defining the
service location and binding details. Lastly, Web

.NET
TableNames
Web Service

J2EE
Client

Proxy SOAP

Invocation

UDDI Registry

WSDL Document

DB2

Services use the ubiquitous protocols of the Web,
mainly HTTP and e-mail (SMTP), to ensure
universal access and delivery. Our implementation
of the web services indicated that they are the
most powerful technologies for delivering web-
based computing on the Internet across different
platforms. It will have a great impact on the
enterprise application integration towards service-
oriented computing paradigm.

References

[1] S. Asbury and S. R. Weiner, Developing java
Enterprise Applications, Wiley, 2001.
[2] Jiang B. Liu, “Web based Enterprise
Computing Development using J2EE,” Industrial
Information Technology Handbook, CRC Press,
to be published in March 2004.

[3] Jiang B. Liu, “Multi-tiered Internet Computing
using Java Technologies,”
Proceedings of IECON 27th Annual Conference of
the IEEE Industrial Electronics Society, pp 1789-
1793, Denver, Colorado, December 2001.
[4] I. Charlesworth and T. Jones, “The EAI and
Web Services Report,” EAI Journal, Vol. 5, No. 3,
pp 11-18, March 2003.
[5] H. M. Deitel et al., Java Web Services for
Experienced Programmers, Deitel Developer
Series, Prentice Hall, 2003.
[6] Microsoft .Net Developer Training Set,
MSDN, 2001.
[7] M.P. Papazoglou and D. Georgakopoulos,
“Service-Oriented Computing,” Communications
of ACM, Vol. 46, No. 10, pp 24-29, Oct. 2003.
[8] Jian Yang, “Web Service Componentization,”
Communications of ACM, Vol. 46, No. 10, pp 35-
40, Oct. 2003

Figure 2: A business application across different
platforms using web services.

 DB2

. NET
Web Service
 BUSINESS 2

 J2EE
Web Service
BUSINESS 3

MySQL

DATA1

DATA2

BUSINESS 1
J2EE Application
DATA1+DATA2
+DATA3

Client request
for DATA

DATA

Oracle

DATA3

