
Approximation of the Coherent-mode Structure of an Optical Field 
According to the Results of Physical Experiment 

 
ANDREY S. OSTROVSKY, ALEXANDRE I. GREBENNIKOV, EDGAR HERNÁNDEZ-GARCÍA 

Facultad de Ciencias Físico Matemáticas 
Benemérita Universidad Autónoma de Puebla 

A. P. 1152, 70000, Puebla, Pue. 
MEXICO 

 
 

Abstract: The problem of reconstructing the coherent-mode structure of an optical field with unknown cross-
spectral density function is solved by means of optimal approximating the measured radiant intensity. An 
alternative field is defined with the coherent-mode structure calculated for the chosen orthonormal basis. An 
effciency of the proposed technique is illustrated with the results of a numerical simulation experiment. 
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1 Introduction 
As is well known, the transverse cross-spectral 
density function W  of an optical field may be 
represented by the Mercer expansion [1]: 
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where nλ  and ( )xnϕ  are, respectively, the 
eigenvalues and the eigenfunctions of the Fredholm 
integral equation 
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Each of summands in Eq. (1) represents the cross-
spectral density function of a field that is completely 
coherent in the space-frequency domain and obeys 
the same propagation law as the cross-spectral 
density  does. Hence, it may be associated 
with the perfectly coherent mode of field oscillation, 
and the infinite set of coherent modes 
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may be referred to as the coherent-mode structure of 
the field. The latter is an essential tool in describing 
the processes and systems in optics. Recently we 
employed the concept of the coherent-mode structure 
for representation of generalized radiometric 
characteristics [2], for representation and generation 
of propagation invariant optical fields [3,4], and for 

representation of partially coherent optical systems 
[5,6]. However, the practical value of this tool is 
essentially restricted for the following two reasons. 
Firstly, in practice, the analytical expression for 
cross-spectral density function W , as a rule, 
is unknown, and hence, the Fredholm equation (2) 
cannot be solved in the closed form. Secondly, even 
when the cross-spectral density function may be 
approximated by a definite analytical function  such a 
solution may be obtained only for a very limited 
number of field models. Clearly, an alternative 
approach to calculating the coherent-mode structure 
of the field, which does not involve the solution of 
the Fredholm equation (2), is desired. In this paper, 
we propose such an approach based on approximation 
of the coherent mode structure according to the 
results of the physical experiment. 
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2 Radiant intensity and alternative 

coherent-mode structure of the field 
As it was shown in Ref [2], the radiant intensity of 
the field may be expressed in terms of the coherent-
mode structure as follows: 

( ) ( )∑
∞

=

Φ





=

0

22
2

cos
2 n

nn
kJ ss λθ
π

, (4) 

where 
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In Eqs. (4) and (5) k is the wave number, s is the unit 
vector which points into the half-space , 0>z θ  is 



the angle between s and the z axis.  It is important to 
stress here that quantity defined by Eq. (4) may be 
directly measured in physical experiment. 

Now, let us introduce a function 
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where mµ  are some real positive variables bounded 
from above and ( )xmψ  are some continuous 
functions which form an orthonormal set. This 
function, according to its construction, is square 
integrable, Hermitian and nonnegative definite, and 
hence, may be considered as the cross-spectral 
density function of some alternative field in the plane 

. Each of summands in Eq. (6) may be 
associated with the coherent mode of oscillation. 
Hence, the finite set 
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may be referred to as the coherent-mode structure of 
the alternative field or, for brevity, the alternative 
coherent-mode structure. Changing formally nλ  and 

( )xnϕ  in Eqs. (4) and (5) for mµ  and ( )xmψ , 
respectively, one may obtain the following finite-sum 
expressions for the radiant intensity: 
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where 
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Once the quantity J of the original field has been 

measured for discrete points  and discrete 

directions , its good approximation may be 
obtained by solving the following problem of the 
conditional optimization: 
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The optimal solution ( )optmµ  may be obtained 

numerically by well known methods of quadratic 
programming. Substituting the obtained solution into 
Eq. (6), one may find the function W  that 
is an approximation of the cross-spectral density 
function  in the chosen basis of the 

coherent-mode functions 
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( )xmψ . Hence, the 
alternative coherent-mode structure (7) with 

( )optmm µµ =  may be accepted as a finite 

approximation of the coherent mode structure of the 
original field. 
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3 Numerical simulation 
To demonstrate the justifiability of the proposed 
technique we realized the numerical simulation 
experiment in which we calculated the alternative 
coherent-mode structure of the field with the known 
cross-spectral density function and the coherent-mode 
structure obtained as an exact solution of the 
Fredholm equation (2). In the experiment, as an 
original field, we considered the one-dimensional 
Gaussian Schell-model secondary source which is 
characterized by a cross-spectral density function of 
the form 
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where  is the spectral intensity of the source at  the 
center,  is the rms width of the intensity 
distribution across the source, and γσ  is the rms 
width of the complex degree of coherence of the 
source. The coherent-mode structure of such a source 
is defined as follows [7]: 
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It may be readily shown that for this source 
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The problem of approximating the coherent-mode 
structure of the field with unknown cross-spectral 
density function has been formulated as the problem 
of finding the coherent-mode structure of an 
alternative  field defined in the chosen orthonormal 
basis. It has been shown that such a problem may be 
solved by means of optimal approximating the 
physically measured radiant intensity of the original 
field according to one calculated in terms of an 
alternative  coherent-mode structure. An efficiency of 
the proposed technique has been illustrated with the 
results of the numerical simulation experiment. We 
consider that the proposed technique reveals the new 
promising means in practical application of the 
coherent-mode representation of processes and 
systems in optics. 

To calculate the radiant intensity ( )θJ , we 
truncated the summation in Eq. (4) with the effective 
number of coherent modes defined by Starikov [8] as 
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In our experiment we chose γσσ I =10 (the case of 
truly partially coherent source) and hence, N ≈20. 

As the alternative mode functions we used the 
Hermitians functions 
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