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MÉXICO 

 
Abstract:—The statements for two inverse eigenvalues problems for the compact positive self-adjoined operator 
are given. A numerical methods of its solution, based on the Descriptive Regularization, is proposed. A concrete 
realization of the proposed general scheme is realized as algorithm for reconstruction of the eigenvalues in the 
coherent-mode structure of the illumination field, using measurements of its radiometric characteristics. The algo-
rithm is realized as software for MatLab system and illustrated with numerical experiments on simulated exam-
ples. 
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1  Formulation of the problems 
Let A  be the compact positive self-adjoined operator 
acting in the Hilbert space H . The direct spectral 
problem for  this operator consists in constructing ei-
genvalues  nλ  and eigenelements  nϕ  that satisfy the 
following equations: 
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It is well known [1] that solution of this problem exists 
and is presented as enumerable set of the orthogonal 
elements nϕ and positive eigenvalues : 0 ...nλ <  

1 .... 1n nλ λ+< < < < λ  converging to zero.  
Let  },{ nn ϕλ=Λ

Λ
 means the complete spectral 

structure set. The set   uniquely determines  the op-
erator A , because for any element u its image Au can 
be obtain due to the decomposition  
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        We suppose that, in general, the operator A  is 
unknown. Let us consider the next statements of the 
inverse eigenvalues problems.   
Problem 1 (Inverse eigenvalues problem).  Let the 
eigenelements  nϕ are known and  the values of  func-

tionals mifl ii ,...,1,)( ==Λ are given. It is necessary 
to reconstruct the eigenvalues  nλ , n=1, 2, … 
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        Sometimes the eigenelements nϕ  for the operator 
A  are unknown, but we know the eigenelements nψ  
for the “main part” of this operator. This situation ap-
pears also, if the real operator  is an approximation 
of some exact operator, the eigenelements for which 
are known. For such cases we introduce the “alterna-
tive spectral set” , where elements }

nψ are orthonormal, and we hope that 
≈A nψ . 

 Problem 2 (Inverse alternative eigenvalues prob-
lem).  Let the alternative eigenelements nψ are known 
and values of functionals l mf i ,...,1) i, == are 
given. It is necessary to reconstruct the “alternative 
eigenvalues” , n=1, 2, … 
       Stated problems are ill-posed [2], and their solu-
tions must be considered as generalized solutions in the 
frame of some regularization scheme, which uses addi-
tional information about the set of desired incognitos 
values. We will use such additional information as 
belonging of eigenvalues  { } to some compact set K 
in Euclidian Space of infinite dimension.  
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2    Numerical Regularization Method  2
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have a form mil i ,...,1),( =Λ  

 It is important to note that the quantities in the left-
hand sides of equation (6) may be measured in physi-
cal experiment. In terms introduced above, functionals 

 are values of the function J in the nodes of a red on 
variable s. Operator B for the radiant intensity 

iL
J  is 

, where 2|)(|) nn F ϕϕ =(B F  is the Fourier transform. 
The compact set K  may be chosen as a set of positive 
vectors with monotone decreasing components or 
known convexity of the components.  
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where , i=1,2,… are lineal functionals, B is a given 
operator acting from H to H.  
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We propose the following numerical method for 
solution of Problem 1:  to find among all real numbers 
{ }1 , ..., Ma a K∈ such M numbers MnKn ,...,1, =∈λ    
that minimize the mean-square functional  

        For the considered optical problem the aim of the 
reconstruction is to approximate the cross-spectral 
density function that is determined by the exact for-
mula  
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For solution of Problem 2 the proposing numerical 

method is:  to find among all real numbers 
such  { } Ka n ∈

 
using formula  

M numbers MnKn ,...,1, =∈µ    that minimize the 
mean-square functional  ∑
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if  the eigenfunctions nϕ  are known, or, on the con-
trary, on the base of the formula with alternative spec-
tral set 
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problem of quadratic programming (4) (so as (5)) has 
the unique solution.    
      The presence of convention in minimization as-
cribe these methods to the class of Descriptive Regu-
larization methods [3]. There are some effective algo-
rithms to solve such problems [3]. But justification of 
the approximation quality of proposed methods in each 
concrete case (for the concrete operator B and func-
tionals ) is rather difficult and requires a special 
investigation. We will apply bellow the proposed 
methods for solution of one optical problem and dem-
onstrate the approximation quality by numerical ex-
periments. 
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4  Numerical experiments 
We constructed a numerical algorithm for solution of 
Problems 1 and 2. For the numerical experiments we 
choose the example with   
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and known eigenvalues  nλ  and eigenfunctions  nϕ  
[5]. Detailed formulas for nλ , nϕ  and construction of 
alternative eigenfunctions nψ  are presented in [4].  

 
 
3 Application to solution of one optical 
problem          In computer simulation we used the radiant inten-

sity J , changing in (6) infinite series for finite sum of 
N first members and calculating  its values in m points 

In [4] it is posed the problem of reconstructing the 
coherent-mode structure of an optic field from meas-
urements of radiant intensity  



as  . The set K  we choose as a set of 
positive convex vectors.  

mif i ,...,1, =

      We realised the constructed algorithms as a soft-
ware in MatLab, using a function quadratic of this 
system for quadratic programming [6]. In Fig. 1 and 
Fig. 2 we present the examples of solution of Problem 
1 for N=40, M=20, m=51. In Fig. 3 -  the example of 
the solution of Problem 2.  

These examples illustrate a good approximation 
properties of proposed algorithms. 

 

     
                                                                                     
Fig. 1. Solution of  Problem 1:  + exact nλ ;-- nλ . 
 
 

 
 

Fig. 2.  Solution of Problem 1:  above – exact  W ,  
bellow - reconstructed W . 

 
 

Fig. 3.  Solution of Problem 2:  above – exact  W ,  
bellow - reconstructed W~ . 

 
5  Conclusion  
A numerical methods for solution of the inverse eigen-
values problem is proposed and applied for the recon-
struction of optical field. 
        Authors acknowledge to the VIEP BUAP (Project 
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