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Abstract— It is proposed a new approach for solution of the boundary problems for wide class of partial differen-
tial equations of mathematical physics, which includes the Laplace, Poisson and Helmholtz equations and para-
bolic equations. The approach is based on the discovered by author Local Ray Property and leads to new General 
Ray (GR) Method that uses the explicit analytical formulas with inverse Radon transformation. It is realized by 
fast algorithms and MATLAB software, which quality is demonstrated by numerical experiments. 
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1.  Introduction 2.  Boundary problems for elliptic 
equations There are two main approaches for solving 

boundary problem for partial differential equations in 
analytical form: Fourier decomposition and the Green 
function method. The numerical algorithms are based 
on the Finite Differences method, Finite Elements 
(Finite Volume) method and the Boundary Integral 
Equation method.  All methods and algorithms con-
structed on the bases of these approaches have some 
difficulties in realization for the complex geometrical 
form of the domain .  The Green function method is 
the explicit one [1], but for arbitrary coefficients of 
equations   it is difficult to construct the Green func-
tion even for the simple geometry ofΩ . Numerical 
approaches lead to solving systems of linear algebraic 
equations [2] that require a lot of computer time and 
memory. Hence, the development of new fast algo-
rithms for solution of the considering problems is 
very actual. 

Ω

Here we consider the Dirichlet or Neumann boundary 
problems of solving the elliptic equation: 
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with respect to the function  inside the plane 
domain 

( yxu , )
Ω  with a boundary Γ .  Here or 

 are given functions for 
),( yxf

),( yxg Γ∈yx, , k is a real 
number, ( ) 0, >yxε . If k=0 , ( yx, )ψ =0,  we have the 
Laplace equation written in the divergent form. The 
case ( )y,xψ  ≠ 0 corresponds to Poisson equation. For  
k ≠ 0 we have the Helmholtz equation.  We consider here a new approach on the base of 

the Local Ray Property (LRP), obtained by the author 
in [3], [4] for the stationary waves field. LRP leads to 
the explicit analytical formulas (GR-method) and fast 
algorithms, proposed firstly in [3] and founded nu-
merically in [4] for the Dirichlet boundary problem 
with an arbitrary simply connected star domain Ω  
and continue contourΓ . Here this idea is applied to 
solution of more general equations and boundary 
conditions. 

The problem (1) describes the distribution of the 
“potential” function ( )yx,u  for any field of stationary 
waves, which can be interpreted as electrostatic, elas-
tic or optic field [1], [2]. 
 
 
3.  Boundary problem for parabolic 
equations 

 Let us consider the boundary problem for the para-
bolic equation:  
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               (2) 
Boundary conditions lead to the corresponding local 
boundary conditions for ( )τu  in points 10 ,ττ . We will 
designate the solution of the local problem (3) or (4) 
with such boundary conditions as ( )τu .  For standard 
domains as a circle, rectangular or Ω   it is simple to 
calculate 10 ,ττ  so as functions ( ),,0 ϕpu  ( ),,1 ϕpu  on 
the boundary functions , f g , or , , , and 
then obtain solution  

0f 1−f 1+f
( )τu  in explicit analytical form, 

using well known standard formulas for solution of 
ordinary differential equations. 

 
The specific element of this traditional statement is 
unbounded character of the domain  and a corre-
sponding boundary  in range of variables t and x: 

=

Ω
Γ

Ω Ω ≡ [0, ∞)x[-1,1]. We will suppose the finiteness 
of the solution in the domain Ω . 
 
 
4.  Local Ray Property (LRP)  
Application of the LRP to the considering problems 
means to construct an analogue of equations (1), (2) 
describing the distribution of the function ( )yxu , and 

 along of general “Local Rays", which are pre-
sented by some straight line l  with parameterization 
due a parameter 

( xtu , )

τ  : ,  ϕcos= px τϕ sin−

ϕτϕ cossin += py , in the case of the elliptic equa-
tion, or with parameterization: ϕτϕ sincos −= px ,  

ϕτϕ cossin += pt  in the case of the parabolic 
equation. Here p

]

 is a length of the perpendicular, 
passed from the centre of coordinates to the line ,  l

[ πϕ ,0∈  is the angle between the axis x and this per-
pendicular. Using this parameterization, we shall 
define functions u  (and u  for the equation 
(2)), 

(x,

( )yx,

)y ( )xt,

ε  , , , ),( yxf )y,(xg ( )yx,ψ  at ( ) lyx ∈, for 
fixed p, ϕ  as functions ( )τu , ( )τε , ( )τf , ( )τg , ( )τψ  of 
variable τ . We suppose that the domain Ω  is a con-
vex one and define for every fixed  and p ϕ  func-
tions ( ) ),(, 00 τϕ upu =  ( ) ),( 1,1 τϕ upu =  for parame-
ters 10 ,ττ ,  which correspond to the points of the 
intersection of the line  and boundary of the domain.  l

 
Formulation of LRP:  

the adequate local description of the solution u  on 
any straight line  (Local Ray) can be presented  by 
the function 

l
( )τu , so that the final global formula for 

the solution of equations (1) and (2) is true 

( ) Ω∈∫= − ),(],[),(
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0

1 ηξττηξ
τ

τ
duRu ,         (5) 

where  is inverse Radon transform,  1−R ),( ηξ =(x, y) 
for the solution of elliptic equation (1), ),( ηξ =(t, x) 
for the solution of parabolic equation (2). 
      Formula (5) gives explicit solution for a consid-
ered class of boundary problems for arbitrary simply 
connected star domain Ω  and continue contourΓ . 
We will concretise bellow formula (5) for particular 
cases of equations and demonstrate its validity by 
numerical examples.  
 
5.  Case of the Laplace equation with 
variable coefficients 
For k=0 , ( )yx,ψ =0, we obtain the mentioned ana-
logue of equation (1) on the line  for every fixed  
and 

l p
ϕ  the next ordinary differential equation 

To formulate the Local Ray Property (LRP) let us 
consider the ordinary differential equation:  

  
( ) ( )( ) 0'' =ττ ττε u .         (6) ( ) ( )( ) ( )
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 We introduce functions 
 

( ) ( ) ( )

).(),(;)(),(

;)(;/1

10100

0

1

0

1

0

τϕξξϕ

ξξγττετγ

τ

τ

τ

τ

kpKdkpK

dk

=∫=

∫==

  (7) 

as the local analogy of the equation (1), and corre-
sponding analogy of the equation (2):  
 



Then, integrating twice equation (6), we obtain for 
solution of the Dirichlet problem the next formula 
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Formula (8) presents the explicit GR-method for con-
sidering case. For the case ( ) 1, =yxε  we have more 
simple formula 
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Proposed method does not require solving any 

equations, because the Radon transform can be in-
versed by explicit fast formulas. Thus, constructed by 
author algorithm and corresponding computer soft-
ware, which realize GR–method, are sufficiently fast, 
which is justified numerically in [4] for the case of 
Dirichlet boundary problem for Laplace equation with 
constant coefficients.  
 
  
6.  Reduction the case of arbitrary sim-
ply connected star domain to the unit 
circle  
In [4] it was proposed a reduction of the Dirichlet 
problem for the Laplace equation for an arbitrary 
simply connected star domain  and continue con-
tour  to the same problem on the unit circle. We 
make some change of variables, using equation for 
the curve Γ , which leads to the same problem with 
the standard  as the unit circumference. The men-
tioned transformation of coordinates does not require 
solution of any equations, does not include any bulky 
manipulation with complex variables.  Hence, this 
transformation is realised by very fast algorithm, 
which is justified in [4] by numerical experiments for 
the sufficiently complex functions and domains.  

Ω
Γ

Γ

We have generalized also the developed ap-
proach for the considering here class of boundary 
problems for elliptic equations (1). We can reduce 
such problems to the similar ones on the unit circle, 
using corresponding modifications of the coefficient  
k , functions , ),( yxg ( yx, )ψ . Therefore we will pre-
sent bellow the formulas and numerical examples of 
solution of the  considering elliptic problems for the 
case of the unit circle. It is sufficiently to choose pa-
rameters 10 ,ττ  for the unit circumference by formulas 

, then calculate functions 2/12
1,0 )1( p−= mτ
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Fig. 1. 

 
Here we present at Fig. 1 one new result for solu-

tion of the Dirichlet boundary problem for Laplace 
equation on the standard region as “cross”.  

 
 

7.  Case of Neumann boundary problem 
for Laplace equation 
For the solution of the Neumann boundary problem 
we present here the formula, corresponding to the 
domain as unit circle and : 
 

] +c,  (10) 

where c is arbitrary constant, functions 
,  correspond to the Neumann 

boundary condition function  in (1), calculated 



in the boundary points 10 ,ττ . The unique solution can 
be obtained from function (10) by additional interpo-
lation condition in one point on the boundary. 
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8. Case of the Poisson equation 
The Dirichlet boundary problem for the Poisson equa-
tion corresponds to k=0 , ( y, ≠0. The main for-
mula for its solution is the next one: 

)
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where   )(2 tψ   ,   (3ψ  are the second and the third  
primitive functions of the ) .  

 
 
9. Case of the Helmholtz equation 
For  k ≠ 0 we have the Helmholtz equation. We put 
for simplicity of the explication ( ) 1, =yxε . For the no 
resonance case, when  

)2)1()( 2 mprkk ≠−≡ ϕ , =0,±1, ±2,…, 
the solution of the Dirichlet problem is given by for-
mula: 

m
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The resonance case is just under the author investiga-
tion. 

 
 
10. Case of the Parabolic Equation 
The main formula for the solution is the next one: 
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11. Results of numerical experiments 
We have constructed the algorithmic and program 
realization of  GR–method for considering types of 
problems in MATLAB system.  We used the uniform 

discretization of variables ],1,1[−∈p ],0[ πϕ ∈ , so 
as variables x, y , with n nodes. To calculate the in-
verse Radon transform for discrete data we con-
structed the original modification of iradon program 
from MATLAB package. We made testes on mathe-
matically simulated model examples with known 
exact functions ( )yx,u , ( )yx,ε , , , )y ,(xg,(xf )y
( )yx,ψ .  

Let us define as ( )yxun ,  the approximations ob-
tained by formulas (8) - (13)  for discreet case. We 
introduce the discrete relative medium estimations rm 
to demonstrate the quality of approximation: 
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Some results for solution the Dirichlet boundary 
problem for the Laplace equation on the unite circle 
for ( ) )cos(/1, yxyx +=ε , n = 101 are presented in Fig. 
2.  

One model example of solution by proposed al-
gorithm of the Neumann problem for the Laplace 
equation is presented in Fig. 3. Numerical results for 
the Dirichlet problem for Poisson equation are pre-
sented in Fig. 4, 5.  

For the Helmholtz equation one result of the nu-
merical solution of model examples for k= 0.1 2  is 
presented in Fig. 6.  

 

 
 

Fig. 2. n=101; ( ) )cos(/1, yxyx +=ε ; 
rm = 0.0452; reconstruction time t= 2.6870 sec. 



  

  
  

Fig. 5. n=50, rm =  0.1403,  Fig. 3. Solution of the Neumann problem. 
reconstruction time t= 0.750.  

  

  
  

Fig. 6. Solution of the Helmholtz equation. Fig. 4,  n=50; rm = 0.0265;  
     reconstruction time t= 0.8120 sec. 



Some examples of solution of the parabolic equations 
are presented in Fig. 7 – 9. 

 
 Fig. 9. 

Fig. 7.     
  
12. Conclusion and acknowledge   

 

The new approach and GR-method for the solution of 
the boundary Dirichlet and Neumann problems for the 
elliptic and parabolic differential equations is pro-
posed. The approximation and rapidity property of 
constructed algorithms are justified by numerical 
experiments. Developed approach can be applied to 
boundary problems for more general, including mul-
tidimensional, equations.   Author acknowledges to 
VIEP BUAP for the partial support of the investiga-
tion. 
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