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Abstract: -Authentication of identity is rapidly becoming an important issue. Signature verification is a promising 
biometric authentication method for resolving this issue. This paper proposes a new on-line signature verification 
algorithm that utilizes only pen position trajectories. The algorithm is an improvement in our previous work [9]. In 
preliminary experiments, the equal error rate (EER) was 1.26%, which outperforms our previous result by about 
0.3%. 
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1   Introduction 
Personal identity verification has many applications, 
including electrical commerce, access to computer 
terminals and buildings, and credit card verification. 
Algorithms for personal authentication can be roughly 
classified into four categories depending on whether 
they are static or dynamic, biometric or physical, or 
knowledge-based, as illustrated in Fig. 1. 
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Fig.1 Authentication methods 

 
Methods that utilize the characteristic of fingerprints, 
irises, DNA, or faces are considered static and 
biometric. Dynamic biometric methods include voice 
and on-line signatures. Schemes that use passwords 
are static and knowledge-based, whereas methods 
using magnetic cards and IC cards are static and 
physical. 
There are at least two reasons that on-line pen-input 
signature verification is a promising scheme for 

personal authentication. First, signatures have a long 
history and are already built in among many countries. 
Second, the pen input environment has rapidly 
become a popular platform with the advent of 
pen-input devices such as PDAs and tablet PCs. 

On-line signature verification has been studied for 
more than twenty years. Earlier studies are well 
summarized in [7, 11]. The on-line signature 
verification systems attempts to determine whether the 
input signature is a genuine signature (a signature 
written by the registered person) or forged signature (a 
signature written by an imposter) by using information 
derived from the on-line signature features. Thus the 
on-line signature verification problem is a two-class 
classification problem that is difficult for two main 
reasons related to the learning data. First, only a few 
data sets are available for learning. Only three to five 
data sets are generally available for on-line signature 
verification. Second, only the data sets belonging to 
one class are available. Data sets from both classes are 
generally available for a two-class classification 
problem. However signature verification systems must 
operate using data sets from only one class (genuine 
signatures) for learning since the systems do not have 
any advance information related to the forgery data 
that will be input by an imposter. This makes the 
on-line signature verification problem more difficult. 
Some algorithms that use forgery signature data sets 
for learning were recently proposed [6, 10]. These 
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 algorithms perform well if good forgery data sets are 
provided, but there is a problem with obtaining good 
forgery data sets. We propose in this paper an 
algorithm for on-line signature verification using a 
discrete Hidden Markov Model (HMM) that 
incorporates only pen position trajectories with no 
forgery data sets are required for learning.  We use 
only the pen position trajectories because we can 
obtain them from almost all pen-input devices. 
Therefore, our algorithm can be applied to all 
pen-input devices. A preliminary experiment was 
performed with a database consisting of 1848 genuine 
signatures and 3170 skilled forgery from fourteen 
individuals. There are four types of forgery: (A) 
Random forgery, in which the imposter has no access 
to the genuine signature, (B) Simple forgery, in which 
imposter knows the name of the person whose 
signature is to be authenticated, (C) Simulated forgery, 
in which imposter has a genuine off-line signature and 
can trace it, (D) Skilled forgery, in which imposter can 
view and train on the genuine signature. Type (D) 
forgery is a difficult situation to address. The 
preliminary experiment was performed using type (D) 
data for the forger.  The experiment result indicates 
that the EER was 1.26%.   
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Fig. 2 Overall algorithm 

 

 

 

 

Fig. 3 Typical raw data 
 

Basically there are five features: pen position 
, pen pressure , pen azimuth )(),( tytx )(tp )(tφ , and 

pen altitude )(tϕ , but the features that are used for the 
algorithms are differ among algorithms. The 
algorithms reported in [2, 3, 6, 10, 13] use all of the 
features, [16] uses pen position and pen pressure 
features, and [1, 4, and 15] use pen position and pen 
up/down (binary pen pressure) features. The algorithm 
in [9] uses only pen position features, and the 
algorithm in [8] uses the features that are derived from 
specific devices. Naturally the algorithms that use 
more features perform better. However the availability 
of these features depends on the device. Only pen 
position  and binary pen pressure features 
are available from many pen-input devices.  

)(), ty(tx

This paper is organized as follows: Section 2 
describes the algorithm of on-line signature 
verification, and Section 3 presents the experiment 
results.  
 
 

2   The Algorithm 
The overall algorithm is depicted in Fig.2. It consists 
of two stages, the learning stage and verification stage. 
There are five sub-algorithms: 

1) Preprocessing 
2) HMM Generation 
3) Performance Index Calculation We use only the following pen position features in this 

paper. 4) Threshold, and  
5) Verification. 

( ) TtRtytx ,,2,1,)(),( 2 L=∈    (2)  
2.1 Preprocessing We make the coordinate transformation as follows: 
There are three preprocessing steps in our algorithm: 
(i) Coordinate transformation, (ii) Quantization, and 
(iii) Data smoothing. 22
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and define θ ′ by 2.1.1 Coordinate transformation 

Typical raw data (shown in Fig. 3) taken from the 
digitizer is as follows: ( )
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{ }jkb : Output emission probability where  • 

( )jjk qtQktOPb === )(|)(  2.2.2 Quantization 
We considered V , which represents the quantized 
angle information defined by the following equation to 
formulate the problem in terms of the discrete HMM. 

)(t
{ }iπ : Initial state probabilities where  • 

( )
( )

Ln
n

tV
L

n
L

n
LL

L,2,1

,1
)( )12(

2
)32(

2

2
3

2

=
+−≤′≤+−
−≥′+−<′





= −− ππππ

ππππ

θ
θθ

 (5) 

( )ii qQP == )1(π  

Learning in HMM amounts to an estimation of 
parameters { }ija , { }jkb , { }iπ , and N , whereas 
verification computes the likelihood given a test 
signature and template HMM and attempts to make a 
determination. We will use the left to right model to 
tune HMM to our present problem. 

Pen position (  is transformed into the L 
discretized angles in Fig. 4. Thus that data (2) is now a 
sequence of the discrete symbols: 

)
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{ LtVtO ,,2,1)()( L∈=    (6) 2.2.1 State clarification 

The number of the states in an HMM application is 
one of the most difficult parameters to estimate [12]. 
Therefore, the number of states in [15] was changed 
from two to nine, and [10] fixed it as four. We first 
attempted to associate a clear meaning to the states 
with the data sets for leaning given in our algorithm.  
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 We make a division between O and , if 
 in given data sets, i.e., if the angle 

values change. Doing this enable us to divide the data 
into N groups. We then assume the groups as states 
and define N as the number of states. Each state 
consists of n  symbols that have the same V . 
However, the algorithms is an HMM since it has 
nontrivial 
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Fig. 4: Quantized directions (L=16) 

 
2.1.3. Data smoothing 
We transform the data after quantization by 
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2.2.2 Learning { } { }iija π,  

 Some algorithms have been proposed to estimate the 
parameters. The Baum-Welch algorithm is a 
well-known met od that estimates the HMM 
parameters 

h
{ }ija , { }jkb  and { }iπ  with a fixed N [10, 

15]. The algorithm in [5] uses a segmental k-means 
iterative procedure and the algorithm in [2] applies 
Viterbi approximation. We use a simpler and faster 
algorithm to estimate the parameters, by defining 

2.2. HMM Generation 
HMM is a general doubly stochastic structure that is 
applicable to a broad class of problems in which time 
evolution is important [12, 14]. Every general 
discipline must be tailored before being applied to a 
specific type of problem, which is a basic engineering 
function, HMM is no exception. The general 
framework of HMM must be carefully tuned to the 
on-line signature verification problem. An HMM is 
formally described by the following: 
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{ }ija : State transition probabilities where 
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2.4 Threshold Smoothing is performed to avoid overfitting. 
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Each model in our algorithm has a threshold value. 
The threshold value of the m-th model is calculated in 
the following manner: 

The initial state probability is set as  

{ 0,,0,1 L= }π     (13) 
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2.2.3 Learning { }kjb        (18) 

where is the performance index of the n-th 
registered signature in place of the test signature 
calculated in (17). 

mnΘEach signature data in our algorithm generates one 
HMM. Again, care must be exercised to learn output 
emission probabilities in order to circumvent 
overfitting.  

2.5 Verification 
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 (14) We calculate the performance indices by (17) when 
the test signature is given and compare them with 
threshold values. We then determine whether the test 
signature was written by the registered person as 
follows: 

Here. )( vZ σ is the normalization constant.  
 
2.3 Performance Index Calculation 

testD  is a genuine signature if  ∑ ≥Θ
m

mmtest Gf ),( , λThe purpose of signature verification is to determine 
whether a given test signature was written by the 
registered person, using learning data sets obtained in 
advance. 

testD  is a forged signature if  ∑ <Θ
m

mmtest Gf ),( , λ

where G is the empirical value and  
The given learning data sets  
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 consist of M signature trajectories from a registered 
person. We generate the associated HMMs using the 
above algorithm. Note that each learning data D in 
the above HMM generation generates one HMM . 
Thus, we can have m pieces of HMMs.  

m

H m

3 Experiment 

 We interested in the model likelihood when the test 
signature is given: 
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This section reports our preliminary experiment using 
the algorithm described above. Fourteen individuals 
participated in the experiment. The data was obtained 
for a period of three months. There were 1848 genuine 
signatures and 3170 skilled forgery. Table 1 lists the 
details of our database. Forgery data was not used for 
HMM learning in this experiment, it was used for the 
test only.  

Figure 6 reveals the total average verification error as 
a function of parameter c  described above, in which 
the EER is 1.26%. The EER will naturally improve if 

 and are adjusted for each individual.  

2
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where represents the hidden state at time t. )(tQ
This paper proposes performance index derived from 
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Many algorithms have been proposed and their 
experimental results reported. However, each 
algorithm is evaluated using a private database since 
there is no public database. Exact comparisons with 
other algorithms are therefore difficult. The results of 
this proposed algorithm outperforms our previous 
work [9], conducted using the same database. 
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