
A Generic Infrastructure for Object Streaming
And Mobile Agents on ProActive

DAVID PINTO, ADRIANA BERISTAIN & MARGARITA MARQUEZ

Faculty of Computer Science
Benemérita Universidad Autónoma de Puebla

14 Sur & Blvd.Valsequillo CU
PUEBLA, PUE., MEXICO

Abstract: - We propose a parallel and distributed component framework for building applications that use mobile
agents and object streaming. This generic infrastructure is based on ProActive, a middleware (programming
model and environment) for object-oriented parallel, mobile, and distributed computing. We have extended
ProActive by implementing a hierarchical and dynamic component model for both cases. Future applications
will be able to take advantage of this generic infrastructure in order to develop complex applications based on
ProActive, and that use mobile agents and/or object streaming.

Key Words: - Parallel Computing, Distributed Computing, Mobile Agents, Object Streaming.

1 Introduction
The objective of this research is to propose new
architecture for the automation, identification and
integration of reusable software components, and for
mobile agents and object streaming in particular.

Designing generic infrastructures is a very widely
studied research topic in the computer science
community. For instance, Concordia [1], a new
framework for developing and executing mobile
agents, offers a full-feature middleware infra-
structure for the development and management of
network-efficient mobile agent application for
accessing information anytime, anywhere, and on
both wire-based and wireless devices. Concordia has
been implemented in Java to ensure unimpeded
interoperability and platform independence among
developed agent applications. Another approach for
the infrastructure of mobile agents is given in [2], an
HTTP-based infrastructure for mobile agents that
has very important features. This approach allows
agents to move among hosts, in order to
communicate with other agents. It also supports
agents written using diverse languages, and
furthermore permits the agent’s programmers to
implement a variety of interaction schemes based on
a general mechanism for agent communication. The
agent infrastructure uses the Hypertext Transfer
Protocol (HTTP) for agent transfer and
communication; by taking advantage of this widely
accepted, platform-independent mechanism, the
agent infrastructure makes it easy both for providers
to offer agent-based services and for users to access
them. The Aglet from IBM [3] is another approach

to mobile agent infrastructures; in this case, the aglet
represents the next step forward in the evolution of
executable Internet content, (according to IBM). In
this approach, a program code is introduced that can
be carried along with its state information. Aglets
are Java objects than can move from one Internet
host to another. An aglet executed on one host can
suddenly halt its execution, dispatch itself to a
remote host, and resume its execution there. When
the aglet moves, it takes along its program code as
well as its data.

On the other hand, the development of generic
infrastructures for object streaming has also been
proposed. Although basically intended for
multimedia streaming similar to that proposed in [4],
another approach has been developed by HP [5],
whose main objective is to investigate Internet
object streaming systems. In some cases, like in [6],
the use of object streaming is motivated by some
particular applications, as in the case of augmented
reality.

The importance of developing generic infra-
structures is evident in the above-mentioned
approaches. It is necessary for researchers in parallel
and distributed computing areas to develop generic
infrastructures, in order to facilitate the development
of future distributed and parallel applications. The
idea behind these approaches is to therefore identify,
design and create reusable software components that
can fit within a set of criteria, in this case for mobile
agents and object streaming.
The generic infrastructure proposed in this paper is

http://proactive.cs.buap.mx/

based on ProActive, a middleware (programming
model and environment) for object oriented
programming and parallel, concurrent and
distributed computing. We have extended ProActive
by implementing a hierarchical and dynamic
component model for mobile agents and object
streaming. The following is a description of
ProActive, as well as some of its special features.

ProActive is based on a well-studied programming
model, and is a Java library for parallel, distributed,
and concurrent computing that also features mobility
and security in a uniform framework [7]. With a
reduced set of simple primitives, ProActive provides
a comprehensive API which allows for simplifying
the programming of applications distributed on local
area networks (LAN), on workstation clusters, or on
Internet grids.

The library is based on an active object pattern that
contains the following characteristics:
• A remotely accessible object
• A thread as an asynchronous activity
• An actor with its own script
• A server of incoming requests
• A mobile and potentially secure agent
ProActive is only made of standard Java classes, and
requires neither changes to the Java Virtual
Machine, nor preprocessing or compiler modifi-
cation; programmers simply write standard Java
code [8]. Based on a simple meta-object protocol,
the library is itself extendable, permitting system
adaptations and optimizations. ProActive currently
uses the RMI Java standard library as a portable
transport layer.

ProActive features the following:
• Asynchronous calls: Typed Messages (Request
and Reply)
• Automatic future-based synchronizations: wait-

by-necessity
• Migration, mobile agents (compatible with Swing

and AWT)
• Remote creation of remote objects
• Reuse polymorphism between standard objects

and remote objects
• Group communications with dynamic group

management
• Libraries for sophisticated synchronizations,

collaborative applications
• Transparent, dynamic code-loading (up and

down)
• Seamless management of the RMI Registry and

Jini.

Although ProActive is now a powerful library for
parallel, distributed and concurrent computing, it
lacks a generic infrastructure for mobile agents and
object streaming. Identifying, designing and creating
such components is the focus of this research. In
addition, this proposal will extend the library,
thereby giving it more versatility and application. It
will furthermore facilitate the development of
distributed and parallel applications, especially for
those which require the use of mobile agents and/or
object streaming.

2 Generic Infrastructure

A generic infrastructure is basically a minimum set
of primitives necessary to develop applications in
any field. In order to program mobile agents and/or
object streaming applications, it is mandatory to
have a set of instructions that allow programmers to
focus on the problem at hand rather than on
implementation details. The following two sections
explain the set of primitives needed for mobile agent
and object streaming infrastructure. In both cases,
we identify the components of the architecture, the
functionality of each component and discuss the
interaction among the components.

3 Mobile Agents
3.1 Introduction

Mobile agents constitute a new approach to the
architecture and implementation of distributed
systems. A mobile agent is a program with a
persistent identity that can both move around a
network and communicate with its environment and
other agents [9]. Possible applications for mobile
agents include network management, information
retrieval, distributed simulation, remote device
control, active documents and mobile computing.

Mobile agents have the following characteristics:
• Autonomous or semi-autonomous.
• Guided to execute tasks.
• Are sent like objects.
• Asynchronous.
• Able to communicate.
• Can operate without connection.
• Can suspend their execution.
• Able to be duplicated.
• React to changes in their environment
In order to relate the previous features to our
ProActive model, we must first consider the features
of the active object [5]: transparent localization,

controlling activity and handling synchronization.
The combination of both concepts facilitates the
creation of a mobile agent by means of an active
object [10].

In order to be useful, an agent needs to interact with
its host and other agents. The information contained
in an agent should be offered and/or negotiated with
other agents during the exchange of services. Agents
should also be able to move inside heterogeneous
computer networks. This is possible only if a
common work characteristic such as a standardized
agent infrastructure exists for agent operations
throughout the entire network.

Given the above-mentioned, we propose an
interactive mobile agent infrastructure that manages
the creation, manipulation and monitoring of generic
mobile agents. The objective is to allow the
programmer to choose the agent's behavior, and to
then have the infrastructure serve as a support in that
same agent’s creation, manipulation and monitoring.

3.2 Generic Infrastructure for Mobile Agents
 In this subsection we identify the components needed
for our infrastructure of mobile agents. Furthermore,
we describe the functionality of each component, as
well as the way they interact with each other.

First, we have identified a set of components for a
generic mobile agent infrastructure. These
components have been modeled by a UML diagram
in Figure 2, and are as follows:

 Two main entities were identified:
 Agent: This entity is a pattern for programming an
agent with a particular activity (see Figure 1).
 Agents' server: This entity is the one in charge of the
agent's handling, from the creation until the end,
obtaining the agent's result.

 During the design process, the following components
for the agents’ server were identified:

1. GiaController.
2. GiaLaunchAgent.
3. GiaInforAgent.
4. GiaResultAgent.

 The description of these components is carried out as
follows:
 Initially the GiaController is activated, whose
process carries out the following activities:
• Initiate an agent.
• Obtaining the agent's information (state, position).

• Obtaining the results obtained by the agent.
• Suspending and renewing the execution of an

agent.
• Viewing the list of activated agents.

Figure 1. Agent Class.

Figure 2. Generic Mobile Agent Infrastructure.

• GiaLaunchAgent is the component responsible
for obtaining the necessary data for initiating an
agent with a given itinerary (established within
the class, in order to determine a new itinerary
and the necessary parameters according to the
agent's type).

• GiaInforAgent is the component that provides
information about the state and the generated
agent's position to the GiaControler.

Private SimpleObjectMigration()
Private example()
Public moveTo()
Public showlds()
Public runActivity()
Public showResult()

SimpleObjectMigration
sleep
hi
logger
name

Agent
hostname
logger
name
nodename

Private Agent()
Private clean()
Private endActivity()
Public getName()
Public getNodeName()
Public initActivity()
Public moveTo()
Public runActivity()

<interface>
RunActive

<interface>
EndActive

<interface>
InitActive

<interface>
Serializable

GiaControler Agent
agentListl
args

Private Agent() display
myStrategyManager

Private GiaControler()
Private clean()
Private finish()
Public rebuild()
Public receiveMessage()
Public resume()
Public runActivity()
Public stop()

GiaInforAgent GiaResultAgent GuiaLaunchAgent
agentListl agentListl agentListl
args args args
display display display

Private GiaInforAgent()
Private clean()
Public getLocationState()
Public rebuild()
Public receiveMessage()
Public runActivity()
Public showInform()

Private GiaLauchAgent()
Private GiaLauchAgent()
Private clean()
Private getClass()
Private getParameter()
Public modifyItinerary()
Public rebuild()
Public receiveMessage()
Public runActivity()

Private GiaResultAgent()
Private clean()
Public rebuild()
Public receiveMessage()
Public runActivity()
Public showResult()

• GiaResultAgent is the component responsible for
providing the results that the agent has obtained
after the execution to the GiaControler.

• The Agent interacts with the above-mentioned
components before providing information of their
state, position and the results obtained.

The modeling of the components is presented in
UML, by means of a class diagram shown in Figures
1 and 2.

The characteristics involved in the current
development for the generic ProActive agent are the
following:
• Operation without connection.
• Suspension of execution.
• Ability to be duplicated.
• Reaction to changes in their environ-

ment.

4 Object Streaming
4.1 Introduction
A stream of objects is an orderly sequence of objects
that has a source (input stream) and a destination
(output stream). The stream provides a uniform
interface of objects in such a way that the
programmer is unaware of the type of data contained
in the stream. The stream is merely treated as an
object, which thereby gives it the qualities of an
object.

4.2 Generic Infrastructure for Object
Streaming
The transmission-reception of a stream is a technique
that is becoming more and more important in the area
of networks, and particularly in multimedia. HTTP is
an example of a protocol with stream, which allows
the viewing of text before the images are totally
transmitted. Up until now, the streams that java
provides, as well as the shipment of a stream, are
technically at a relatively low level of abstraction,
mainly at the net protocol level (for example, RTP
[11], or Real Time Transport Protocol, and RTSP
[12], or Real Time Stream Protocol).
Nowadays, a deep necessity exists for defining
models and techniques for object streaming with a
high level of programming abstraction with object-
oriented languages, particularly in Java. The main
idea is to maintain the object streaming at a high level
of abstraction, thus avoiding having programmers
worry about implementation details related to this
stream. A generic infrastructure should be generated
in such a way that would allow the appropriate

methods to be easily summoned, and that would
obtain a transparent stream of objects in a parallel and
distributed environment.

In this paper we propose a generic infrastructure with
ProActive that has as its main objective the
transmission of objects in a stream, without loss of
objects and control of the stream by the user. The
goal of this approach is to improve the effectiveness
of objects-distributed programming, and to permit the
user to have total control of the objects inside the
same stream.

In ProActive, the active objects are fundamental, so it
is important to dedicate a part of this document to
discuss them. In this way, it is possible to design a set
of basic primitives for object streaming. Programmers
will be able to make use of these elements, which in
fact are basic units of activity and distribution, to
build parallel, distributed, and concurrent applications
using ProActive. The modeling of this stream is made
by the use of active objects. An active object [5]
contains its own thread, and a thread will execute
only methods invoked in the same one by other active
and passive objects from the subsystem to which the
active object belongs. With ProActive the
programmer doesn't need to manipulate the object
threads explicitly, contrary to the standard Java. The
active objects can be created in any of the hosts
involved in the computation. Once an active object is
created, its activity (the fact that it has its own thread)
and its localization (local or remote) are perfectly
transparent. In fact, any active object can be
manipulated as if it were a passive instance of the
same class. The previously indicated generic
infrastructure is designed with the help of active
objects. It uses a model client-server, of which three
active objects are used for the client's side:
• ClientAO: In charge of sending the transfer

petitions to the server.
• ViewControlAO: Interacts with the user via a

graphic interface.
• TransferAO: Receives the transfer of the object

made by the server.

The server also has three active objects:
• ServerAO: In charge of receiving the client's

petitions and assisting each request.
• TransferAO_Server: In charge of carrying out

the connection between hosts in order to execute
the stream. This object is very important since it
has the task of controlling the stream. The user
can decide at any given moment whether to carry
out transfer changes, change the IP or Port
destination, change transfer priorities, or to carry

out actions such as canceling or definitely
finishing the transfer. For many of these actions, it
will be necessary to close the stream, the
connection or maybe both, since
TransferAO_Server is the object in charge of
executing them.

• ViewControlAO_Server: Responsible for
verifying that the actions mentioned above will be
shown to the user.

The architecture of this proposal can be seen in
Figure 3. The software components designs are in
UML and are shown in Figure 4.

Figure 3. Infrastructure Architecture.

Figure 4. Classes Diagram.

 The advantages of designing this infrastructure are
the following:
• Interleaving & LOD’s (Link Out of Delay)

synchronization.
• Remote control of transfers.
• Parallel transfers with groups.

5 Conclusion
A generic infrastructure has been presented for
mobile agents and object streaming on ProActive. We

defined the components of each infrastructure and
their functionality, as well as the way that they
interact together. The developed infrastructure has
extended the library of parallel, distributed,
concurrent computation developed in INRIA
(ProActive). The use of active objects has been
recaptured for the implementation of both platforms;
taking this development as a basis, programmers of
parallel, distributed and concurrent applications
which make use of mobile agents and/or object
streams, will be able to focus their efforts on the
problem at hand rather than on the application
implementation. It is necessary to analyze the way an
agent will obtain all necessary features, especially in
sending the order to stop the execution of an agent
and to resume its execution at another host, while
maintaining all its data.

ProActive JVM

Distribution system

 INTERFACE INTERFACE

References:
[1] D.Wong, N. Paciorek, T.Walsh, Concordia: An ProActive JVM

Distribution system

ProActive JVM

Distribution system

 Infrastructure for collaborating mobile agents.
[2] A.Lingnau, O. Drobnik., An Infrastructure for
 mobile agents: requirements and architecture
[3] IBM Tokyo Researh Lab, Aglets: Mobile Java
 Agents, URL=http:/www.ibm.co.jp/trl/projects/aglets.
[4] Duc A. Tran, Kien A. Hua and Tai Do, ZigZag:
 An efficient Peer-to-Peer scheme for Media
 Streaming, , Infocom 2003.
[5] HP Labs : Research : MMSL : Projects :
 Streaming Media Systems, URL=

http:// www.hpl.hp.com/research/mmsl/
projects/streaming.html.

[6] Tokunaga, E., Zee A., Object-Oriented
 Middleware Infrastructure for Distributed
 Augmented Reality, ISORC 2003.
[7] D. Caromel, Towards a Method of Object-
 Oriented Concurrent Programming,
 Communications of the ACM, Volume 36,
 Number 9, pp 90-102, September 1993.
[8] INRIA Sophia Antipolis, Manual de ProActive.
[9] W. Cockayne, M. Zyda, Mobile Agents,
 Mamming, 1998.
[10]F. Baude, D. Caromel ,F.Huet,J.Vayssiere
 Proceedings of HPCN Europe 2000.
[11]Henning Sinul Zrinne, Stephem L. Casner, Ron
 Frederick, Van Jacobson, A Transport Protocol
for Real Time Applications, Internet Engineering
 Task Force, 2001
[12]H. Shulzrinne, A.Rao, R. Lanphier, Real
 Streaming Protocol (RTSP), Columbia
 U./Netscape/Real Networks,1998.

private Port_Modification()

ClientAO
Object file
int priority
String state
public Stream()
public Information_Stream()
public State_Stream()
private Priority_Stream()
private Verify_VelocityTr nsfer() a
private Accept_Stream()

TransferAO ViewControlAO
Object file InetAddress dir ccion e

final int PUERTO
private Stop_Stream()

private Reconfig re() private Close_Stream()u
private Restart() private Restart_Stream()
private Reinitialize()
private Change_Priority ()
private Ip_Modification()

