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Abstract:  The fuel cost minimization problem on steady-state natural gas pipeline networks system is addressed. 
From the optimization perspective, this problem is modeled as a (non-convex) nonlinear program (NLP), where we 
consider two types of decision continuous variables: mass flow rate through each arc and pressure value at each 
node. The proposed method consists of two phases. In phase 1, a set of feasible flows is found by a reduction 
technique, which makes use of a pre-processing procedure. Then, in phase 2, an optimal set of pressures is found 
(for the given flow) by applying a non-sequential dynamic programming technique. This method avoids the many 
numerical difficulties inherent to this very complex while treated with classical nonlinear programming techniques. 
We work with several different types of topologies, many of those being cyclic structures. A computational study 
reveals the effectiveness of the proposed procedure when tested over a wide variety of problem instances. 
 
Key-words:  Operations research, natural gas, pipeline networks, nonlinear programming, non-sequential dynamic 
programming. 
 
1   Introduction 
A natural gas transmission network optimization 
problem is addressed.  It is a well-know fact, from the 
practical perspective, the tremendous economic 
impact that even a marginal improvement in network 
operation can have.  Hence, the problem of finding 
out how to optimally operate the compressors driving 
the gas in a pipeline network becomes significantly 
important. 

From the optimization perspective, this problem is 
modeled as a (non-convex) nonlinear program (NLP), 
where we consider two types of continuous decision 
variables: mass flow rate through each arc and 
pressure value at each node. 

The state of the art on research about this problem 
reveals a few important facts. First, there are two 
fundamental types of network topologies: non-cyclic 
and cyclic. The former is a type that has received most 
of the attention during the past 30 years. Several 
solutions methodologies have been developed; most 
of them based on dynamic programming (see [6] for a 
survey). In contrast, cyclic topologies are a lot harder 
to solve. Work on this area is practically nonexistent. 

In this work, we present an efficient procedure for 
handling cyclic structures. The procedure consists of 
two phases. First a set of feasible flows is found by a 
reduction technique and then an optimal set of 
pressure values (for the pre-specified flow) is found 
by applying a non-sequential dynamic programming 
(NDP) algorithm. This is motivated by the work of 
Carter [2]. The algorithm delivers global optimal 
solutions (within a given domain discretization size). 
This procedure avoids the many numerical difficulties 
inherent to this very complex problem when treated 
with classical nonlinear programming (NLP) 
techniques. Preliminary computational experience 
including both non-cyclic and cyclic topologies is 
presented.  The results show the effectiveness of the 
proposed procedure. 

The rest of the paper is organized as follows. In 
Section 2, we introduce and describe the NLP model. 
In Section 3, we present a summary of related work. 
The description of the algorithm is presented in 
Section 4. We conclude with the computational 
evaluation both on non-cyclic and cyclic networks, 
and conclusions in Section 5 and 6, respectively. 



2   Mathematical Framework 
2.1   Assumptions 
In the present paper, we make the following modeling 
assumptions. 
• We assume that the problem is in steady state. This 

is, our model will provide solution for systems that 
have been operating for a relative large amount of 
time. Transient analysis would require increasing the 
number of variables and the complexity of this 
problem, and is a fact one of the biggest research 
challenges in this area. 

• The network is balanced. This means that the sum of 
all the net flows in each node of the network is equal 
to zero. In other words, the total supply flow is 
driven completely to the total demand flow without 
loss. Each arc in the network has a pre-specified 
direction. 

• Each parameter is known (i.e., a deterministic model 
is assumed). 

 
2.2   The NLP Model 
Parameters: 
V: Set of all nodes in the network 
Vs: Set of supply nodes (Vs ⊆ V) 
Vd: Set of demand nodes (Vd ⊆ V) 
Ap: Set of pipeline arcs 
Ac:  Set of compressor station arcs 
A: Set of all arcs in the network; A = Ap ∪ Ac 
Uij: Arc capacity of pipeline (i,j); (i,j) ∈ Ap 
Rij: Resistance of pipeline (i,j); (i,j) ∈ Ap 
Pi

L,Pi
U: Lower and upper node pressure limits; iεV 

Bi: Net mass flow rate at node i;  i∈N. 
             Bi>0 if i∈Vs, Bi<0 if i∈Vd, Bi=0 otherwise 
 
Variables:  xij: Mass flow rate in arc (i,j); ); (i,j) ∈ A 

      pi: Pressure at node i; i ∈ V 
 
Formulation: 
 
Minimize  ∑(i,j) ∈Ac  g(i,j) (xij, pi, pj) (1) 
 
Subject to 
 ∑{j | (i,j) ∈A} xij - ∑{j|(i,j) ∈A} xji = Bi i ∈ V     (2) 
 xij ≤ Uij (i,j) ∈ Ap (3) 
 pi

2 - pj
2 = Rij xij

2 (i,j) ∈ Ap (4) 
 pi

L ≤ pi ≤ pi
U i ∈ V      (5) 

 (xij, pi ,pj) ∈ Dij (i,j) ∈ Ac (6) 
 xij, pi ≥ 0  (7) 
 

The objective function (1) is the sum of the fuel 
consumption at each compressor station in the 
network. Constraints (2)-(3) are the typical network 
flow constraints representing node mass balance and 
arc capacity, respectively, where ∑iεV Bi = 0. 
Constraint (4) represents the gas flow dynamics in 
each pipeline of the network assuming steady state. 
Constraints (5) denote the pressure limits in each 
node. Constraint (6) represents the non-convex 
feasible operating domain for compressor station (i,j). 
More details on the nature of g(i,j) and Dij  can be 
found in Wu et al. [10]. 
 
 
3   Literature Review 
Dynamic Programming (DP) was invented by Richard 
Bellman [1] in 1957. DP for network optimization 
was originally applied to gun-barrel systems since the 
late 1960s. It was one of the most useful techniques 
due both to its quick computational behavior and its 
insensitivity to non-linearity on sequential systems. 

DP was first applied to gas pipeline optimization 
by Wong and Larson [9] in 1968. They applied the 
method to fuel cost minimization in a single, straight-
line system, and used a recursive formulation. 

The first attempt at optimizing a branching 
structure in the pipeline industry using DP was by 
Zimmer [11] in 1975. A similar approach was 
described by Lall and Percell [5] in 1990, who 
allowed one diverging branch in their system. 

In the late 1980s, hybrid DP enumeration 
annealing methods for optimizing more general 
branched and looped networks were proposed. 
Although these were very successful at optimizing 
pipelines the hybrid nature of the methods sometimes 
caused long run times or reduced accuracy in solving 
the discretized problem. 

In 1989, Gilmour, Luongo, and Schroeder [4] 
published a hierarchical approach that allowed both 
loops and branches of arbitrary complexity. This was 
a great advance in terms of finally addressing the 
issue of real-world pipeline configurations. The only 
disadvantage was that their technique was no longer 
pure DP. Basically, DP was used to optimally 
describe the pieces of the pipeline that were arranged 
in a sequential manner. This typically reduced a 
system to a much smaller combinatory problem, but 
one without any possibility of a recursive DP solution. 
If this reduced problem was sufficiently small, it was 
solved exactly via enumeration; otherwise it was 



solved inexactly using simulated annealing. This 
hierarchical approach works very well for many 
complex pipelines, but for others the computational 
cost can be very high. 

Up until the early 1990s, dynamic programming 
could only optimize non-cyclic systems, so it has been 
of limited use for pipeline companies with such 
diverse systems. Often such companies would only 
consider small subsets of their pipelines when 
performing optimization. After such studies were 
performed, they could sometimes patch together the 
results for the different subsets manually. 

The hierarchical approach depends on using 
specified, known flow values throughout the system. 
However, if the inlet and outlet flows are allowed to 
vary rather than being pre-specified by the user, or if 
internal flow splits are variable, one can apply another 
optimization algorithm before DP in the hierarchy to 
search for an optimum over these variables as well. 
 
 
4   Description of Algorithm 
Consider a steady-state natural gas transmission 
network with N compressor stations and a set of 
feasible flow rates. In general, there will be upper and 
lower limits on the pressure settings (decision 
variables). Rather than considering any possible 
pressure between the upper and lower limits, in this 
paper we will consider only a discrete set of k possible 
pressures. For instance, if our allowable pressures are 
between 600 and 800 PSIG, and ∆p=10, we would 
consider only pressures at ten pound increments: 600, 
610, 620, …, 800. 

Each compressor station will have a range of 
attainable operating conditions based on such 
limitations as max horsepower constraints, physical 
limits on individual compressor, and so on. If the 
compressor station can operate at specified inlet and 
outlet pressures, we assume that we can compute a 
cost for this operational setting, and that the total cost 
of operating the system is the sum of the cost of 
operating compressor station m, im is the integer 
decision variable at the suction side of the station, and 
jm is the integer decision variable at the discharge side 
of the station. 

In this part, we present a search algorithm (Fig. 1) 
for finding an optimal solution for the fuel cost 
minimization problem being addressed. This 
algorithm consists of two phases. The first procedure 
(Phase 1) makes use of a preprocessing technique to 

find a set feasible flow on the net. Our procedure for 
constructing the feasible flows, utilizes a reduction 
technique. Details can be found in [7]. 

 

 

SEARCH ALGORITHM 
 

begin 
 

INPUT:     {Properties of natural gas pipeline network system} 
G=(V,A), where A={Ad, Ac}. 
B(i) sources value ∀iεV  

PHASE 1:   {Find feasible flows} 
               Reduced_Network_PROCEDURE-1 

PHASE 2: {Find optimal pressures} 
               Non_Sequential_DP_PROCEDURE-2 

end 

Figure 1. Algorithm for global optimal solutions (for fixed flows). 

The second procedure (Phase 2) makes use a Non-
sequential DP Algorithm to find optimal pressures at 
each node on the network (as originally proposed by 
Carter [2]). Rather than attempting to formulate DP as 
a recursive algorithm, in this approach we simply look 
at a system, grab two connected compressor, and 
replace them by a “virtual” composite element that 
behaves just like its components operating in an 
optimal manner. These elements can be selected from 
anywhere in the system, so the idea of “recursion” is 
really not a good description for this process. The 
process continues, reducing the number of elements in 
the problem by one each time, until the system is 
reduced no further. Typically, that occurs when there 
is exactly one virtual element left, which completely 
characterizes the optimal behavior of the entire 
pipeline network. The best pipeline operation can then 
be found by just searching one simple table for the 
lowest occurring value. 

 

 

 
 
 
 
 

for i=1:n1 
      for j=1:n2 
           CAB(i,j)=min k { CA(i,k) + CB (k,j) } 
      end 
end 

A B 

I K J

Figure 2. Combining two sequential compressor stations into a one 
optimal composite. 

Only three types of simple composition operations 



are necessary to reduce a system. Let CA be a table 
costs for operating a compressor station A for its 
various inputs and outputs, and let CB be similarly 
defined for compressor station B. 

Fig. 2 shows how to combine two sequential 
elements A and B into one optimal composite. Here 
element A goes from segment I to segment K, element 
B goes from segment K to segment J, and the 
composite element goes from segment I to segment J. 
The composite element then has its own cost table 
CAB. If only this transformation is allowed, the 
resulting method is essentially the same as the 
hierarchical method of Luongo [4]. 
 

 
Fig. 3 shows how to combine a “dangling” element B 
into an adjacent element A. Here element A goes from 
segment I to segment J, element B goes from segment 
J to segment K, and the composite element goes from 
segment I to segment J. Segment K can not be 
attached to any element other than B; hence the 
terminology “dangling element”. 

Fig. 4 shows how to combine two parallel 
compressor stations A and B into one optimal 
composite. Here element A goes from segment I to 
segment J, element B goes from segment I to segment 
J, and the composite element goes from segment I to 
segment J. 

These operations can be applied to a complex 
network to eventually reduce it to a single composite 
equivalent. Note that some of the composition 
operations will, of course, be recursively applied to 
composite elements. Also, an appropriate data 
structure must be used to allow the reconstruction of 
the actual optimal pressure settings of the original 

system once the optimal objective has been read off 
the final composite table. 

 

 

 
 
 
 
 
 
 
 

for i=1:n1 
      for j=1:n2 
           CAB(i,j)=CA(i,j) + CB (i,j) 
      end 
end 

A

I J

B 

 
 
 
 
 
 
 
 
 

for j=1:n2 
      for i=1:n1 
           CAnew(i,j)=CA(i,j) + min k CB (j,k) 
      end 
end 

B 
A K Figure 4. Combining two parallel compressor stations A and B into 

one optimal composite. 

I J  
5 Computational Results 
In order to assess the effectiveness of the proposed 
procedure, we apply the search NDP algorithm under 
different scenarios with different kinds of topologies. 
There are many types of topologies: (a) simple or gun-
barrel, (b) tree, and (c) cyclic. Our evaluation is based 
on a database developed by Villalobos-Morales et al. 
[8].  Figure 3. Combining a “dangling” element B into an adjacent element A. 

 

 

             Topology   Topology 
              net-c-6c2   net-c-8c3 
 
 
 
 
 
 
          Topology 
             net-c-19c7 
 
 
 
 
 
 
 

Figure 5. Examples of topologies type c used. 



For example, in Fig. 5, a striped node (shown with an 
ingoing arrow next to it) represents a supply point, a 
black node (shown with an outgoing arrow next to it) 
represents a demand point, and a white node is a 
transshipment node. A single directed arc joining two 
nodes represents a pipeline, and a directed arc with a 
black trapezoid represents a compressor. 

Our procedure was coded in C++, and run on a 
Sun Ultra 10 under Solaris 7.  Computational 
evaluation was based for different mesh sizes (∆p=20, 
5, 1). The computational results on gun barrel 
networks are shown in Table 1. The instances tested 
are shown in the first column; the following columns 
show the CPU time (sec) and objective function value 
for each of the mesh sizes testes. Similarly, 
computational results on tree and cyclic networks are 
shown in Tables 2 and 3, respectively.  
 

∆p = 20 PSIG ∆p = 5 PSIG ∆p = 1 PSIG 

Topology CPU 
Time 
(sec) 

Objective 
Value 

CPU 
Time 
(sec) 

Objective 
Value 

CPU 
Time 
(sec) 

Objective 
Value 

net-a-5c1-C4 0.04 280,225.42 0.05 164,914.28 0.77 162,561.73 
net-a-6c2-C1 0.07 2,305,101.07 0.17 1,925,665.87 6.48 1,802,876.73 
net-a-6c2-C2 0.07 2,305,101.07 0.19 1,925,665.87 6.43 1,802,876.73 
net-a-6c2-C3 0.04 1,065,709.48 0.29 399,126.31 15.03 343,249.56 
net-a-6c2-C4 0.04 1,497,610.99 0.24 1,342,521.56 9.99 944,518.83 
net-a-6c2-C5 0.05 3,650,144.05 0.51 3,259,430.33 21.77 3,044,941.55 
net-a-6c2-C6 0.06 5,012,502.38 0.23 4,210,341.74 9.04 3,822,415.39 
net-a-6c2-C7 0.03 1,269,300.15 0.16 694,097.81 3.39 559,114.25 
net-a-6c2-C8 0.07 2,702,943.75 0.22 1,674,900.94 6.94 1,546,357.70 
net-a-6c2-C9 0.01 5,043,312.43 0.07 4,066,445.48 1.77 4,012,593.03 
net-a-8c3-C4 0.11 2,998,721.59 0.79 1,701,982.12 20.07 1,322,802.05 
Topologies with special structures 
net-a-19c7-C4 0.07 4,652,595.76 0.91 3,340,853.26 39.31 3,046,053.04 
net-a-12c1-C4 0.02 1,201,292.38 0.08 1,165,912.02 1.14 1,164,170.98 
net-a-12c3-C4 0.05 4,085,543.14 0.49 3,334,569.62 24.31 3,213,108.46 
net-a-18c1-C4 0.06 1,009,457.57 0.27 764,997.59 5.46 710,859.90 
net-a-20c2-C4 0.06 3,018,255.30 0.70 2,261,313.45 40.64 2,099,562.45 

 
Table 1. Computational results on gun-barrel networks. 

 
 

∆p = 20 PSIG ∆p = 5 PSIG ∆p = 1 PSIG 

Topology CPU 
Time 
(sec) 

Objective 
Value 

CPU 
Time 
(sec) 

Objective 
Value 

CPU 
Time 
(sec) 

Objective 
Value 

net-b-10c3-C1 0.08 5,151,874.09 1.20 4,926,640.97 60.07 4,294,872.70 
net-b-10c3-C2 0.10 5,151,874.09 1.13 4,926,640.97 57.12 4,294,872.70 
net-b-10c3-C4 0.11 9,558,262.12 0.5 7, 861,105.38 20.54 7,216,523.11 
net-b-10c3-C5 0.08 6,323,834.73 1.00 5,651,798.53 42.58 5,191,111.05 
net-b-11c4-C4 0.22 10,803,366.07 1.99 9,201,821.43 91.11 8,972,057.94 
net-b-12c4-C2 0.04 3,132,246.81 0.37 2,917,123.65 2.43 2,854,285.65 
net-b-12c4-C3 0.05 11,516,568.35 0.14 10,832,946.19 3.38 10,597,128.61 
net-b-12c4-C4 0.05 2,984,542.04 0.30 2,684,886.41 9.77 2,258,057.33 
net-b-15c6-C4 0.21 8,234,564.12 1.74 6,342,045.90 70.69 5,282,939.80 
net-b-41c14-C1 0.30 28,952,769.30 2.94 24,198,619.10 161.3 22,223,410.34 
net-b-41c14-C2 0.23 28,952,769.30 2.98 24,198,619.10 161.12 22,223,410.34 
net-b-41c14-C3 0.20 37,244,143.96 2.10 34,386,871.29 114.71 32,475,771.12 
net-b-41c14-C4 0.67 36,476,126.38 2.65 31,298,741.09 129.24 30,809,127.04 

 
Table 2. Computational results on tree networks. 

 
As we can see, the mesh size becomes an 

important factor in terms of accuracy of solution.  We 
must point out that results for non-cyclic instances 
(Table 1 and 2) are global optimal, whereas results for 
the cyclic instances (Table 3) are “optimal” for the 

given flow.  CPU times are very reasonable.  For 
example, the test requiring more effort (∆p=1) never 
exceeded three minutes. 
 

∆p = 20 PSIG ∆p = 5 PSIG ∆p = 1 PSIG 

Topology CPU 
 Time 
(sec) 

Objective 
Value 

CPU 
 Time 
(sec) 

Objective 
Value 

CPU  
Time 
(sec) 

Objective 
Value 

net-c-6c2-C1 0.03 2,279,711.77 0.16 1,884,060.48 3.24 1,852,252.53 
net-c-6c2-C2 0.01 2,279,711.77 0.18 1,884,060.48 3.29 1,852,252.53 
net-c-6c2-C3 0.02 1,200,668.26 0.20 1,041,265.76 4.07 1,020,842.29 
net-c-6c2-C4 0.04 972,369.09 0.19 744,261.08 3.95 653,675.58 
net-c-6c2-C5 0.02 2,999,798.61 0.19 2,803,372.66 3.36 2,716,611.07 
net-c-6c2-C6 0.02 4,342,711.79 0.19 3,561,310.69 3.55 3,442,838.76 
net-c-6c2-C7 0.001 1,082,391.42 0.18 850,674.93 2.95 788,218.02 
net-c-6c2-C8 0.04 1,853,866.09 0.15 1,468,605.58 3.33 1,405,443.48 
net-c-6c2-C9 0.03 1,499,524.36 0.17 1,294,408.69 2.95 1,243,179.03 

net-c-10c3-C1 0.06 6,022,631.39 0.41 4,629,404.41 16.01 4,267,949.79 
net-c-10c3-C2 0.04 6,022,631.39 0.38 4,629,404.41 15.32 4,267,949.79 
net-c-10c3-C3 0.09 5,123,605.66 0.72 4,081,328.16 30.25 3,978,465.67 
net-c-10c3-C4 0.05 6,076,776.75 0.31 4,652,223.35 7.31 4,360,146.30 
net-c-10c3-C5 0.07 7,510,579.28 0.62 7,145,875.03 19.59 6,624,644.75 
net-c-10c3-C6 0.11 11,908,871.1 0.61 10,996,571.93 15.51 10,766,001.9 
net-c-10c3-C8 0.08 6,257,129.08 0.29 5,265,444.54 6.04 5,181,127.14 
net-c-10c3-C9 0.12 4,223,456.43 0.48 3,315,770.23 11.17 3,281,774.65 
net-c-15c5-C2 0.16 7,456,824.23 0.37 6,093,101.33 10.22 5,789,941.01 
net-c-15c5-C4 0.18 3,143,098.87 0.45 2,612,943.12 18.43 2,154,914.02 
net-c-19c7-C4 0.27 21,983,920.4 1.17 20,659,013.54 35.4 20,119,966.2 

 
Table 3. Computational results on cyclic networks. 

 
Finally, Table 4 shows the excellent behavior of 

the NDP algorithm against a GRG method [3] on 
cyclic networks. The instances tested are shown in the 
first column; immediately, the status (where, GS, LS, 
and IS mean global optimal, local optimal, and 
infeasible solution, respectively), CPU Time (sec) and 
the best objective value found are presented for each 
method in the analysis.  First, the NDP was able to 
deliver solutions to all instances tested, whereas GRG 
failed for ten of these.  NDP outperformed the GRG in 
terms of solution quality. 
 

NDP Algorithm GRG Method 

Topology 
Status 

CPU 
 Time 
(sec) 

Objective 
Value Status 

CPU 
 Time 
(sec) 

Objective 
Value 

net-c-6c2-C1 GS 3.24 1,852,252.53 LS 0.82 2,312,548.24 
net-c-6c2-C2 GS 3.29 1,852,252.53 LS 0.82 2,312,548.24 
net-c-6c2-C3 GS 4.07 1,020,842.29 LS 0.67 1,751,520.99 
net-c-6c2-C4 GS 3.95 653,675.58 LS 1.01 1,393,061.12 
net-c-6c2-C5 GS 3.36 2,716,611.07 LS 1.12 3,099,415.46 
net-c-6c2-C6 GS 3.55 3,442,838.76 IS   
net-c-6c2-C7 GS 2.95 788,218.02 LS 0.57 988,998.79 
net-c-6c2-C8 GS 3.33 1,405,443.48 LS 0.35 1,706,693.05 
net-c-6c2-C9 GS 2.95 1,243,179.03 IS   

net-c-10c3-C1 GS 16.01 4,267,949.79 IS   
net-c-10c3-C2 GS 15.32 4,267,949.79 IS   
net-c-10c3-C3 GS 30.25 3,978,465.67 IS   
net-c-10c3-C4 GS 7.31 4,360,146.30 LS 1.03 5,610,932.12 
net-c-10c3-C5 GS 19.59 6,624,644.75 IS   
net-c-10c3-C6 GS 15.51 10,766,001.9 IS   
net-c-10c3-C8 GS 6.04 5,181,127.14 IS   
net-c-10c3-C9 GS 10.72 3,281,774.65 IS   
net-c-15c5-C2 GS 10.22 5,789,941.01 LS 0.4 6,313,810.78 
net-c-15c5-C4 GS 18.43 2,154,914.02 LS 0.18 3,555,353.60 
net-c-19c7-C4 GS 35.4 20,119,966.2 IS   

 
Table 4. Behavior of the NDP algorithm against a GRG method. 

 
 



6   Conclusions 
Our computational results showed empirically how 
the problem structure can be efficiently exploited by 
taking advantage of a non-sequential dynamic 
programming technique.  When using the finest 
discretization size, the computational effort never 
exceeded 3 minutes. 

A central issue regarding the NDP algorithm 
applied to natural gas transmission network 
optimization is on how its performance, when 
compared with other methods on cyclic topologies, 
such as the GRG method, had more success on 
topologies that contains more compressor stations. 
Finally, the NDP Algorithm has been applied to 
several test instances representing dozens of different 
pipeline systems over a broad variety of flow 
conditions, with uniformly good results. So, this 
search algorithm not only found better solutions, but 
also reduced the resources (computational time) used 
by the computer. This represents a significant 
contribution, especially when dealing with cyclic 
structures where previous approaches had failed. 

We must point out that results for non-cyclic 
instances are indeed global optimal, whereas results 
for the cyclic instances are “optimal” for the given 
flow.  So, one current research trend is to develop a 
method to efficiently modify the flow values.  The use 
of meta-heuristics such as GRASP or Tabu Search, 
whose internal mechanism for escaping local optima 
seems very attractive. 
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