
A Non-Sequential Dynamic Programming
Approach for Natural Gas Network Optimization

CONRADO BORRAZ-SÁNCHEZ

ROGER Z. RÍOS-MERCADO

Graduate Program in Systems Engineering
Universidad Autónoma de Nuevo León

AP 111-F, Cd. Universitaria
San Nicolás de los Garza, NL 66450

MEXICO

Abstract: The fuel cost minimization problem on steady-state natural gas pipeline networks system is addressed.
From the optimization perspective, this problem is modeled as a (non-convex) nonlinear program (NLP), where we
consider two types of decision continuous variables: mass flow rate through each arc and pressure value at each
node. The proposed method consists of two phases. In phase 1, a set of feasible flows is found by a reduction
technique, which makes use of a pre-processing procedure. Then, in phase 2, an optimal set of pressures is found
(for the given flow) by applying a non-sequential dynamic programming technique. This method avoids the many
numerical difficulties inherent to this very complex while treated with classical nonlinear programming techniques.
We work with several different types of topologies, many of those being cyclic structures. A computational study
reveals the effectiveness of the proposed procedure when tested over a wide variety of problem instances.

Key-words: Operations research, natural gas, pipeline networks, nonlinear programming, non-sequential dynamic
programming.

1 Introduction
A natural gas transmission network optimization
problem is addressed. It is a well-know fact, from the
practical perspective, the tremendous economic
impact that even a marginal improvement in network
operation can have. Hence, the problem of finding
out how to optimally operate the compressors driving
the gas in a pipeline network becomes significantly
important.

From the optimization perspective, this problem is
modeled as a (non-convex) nonlinear program (NLP),
where we consider two types of continuous decision
variables: mass flow rate through each arc and
pressure value at each node.

The state of the art on research about this problem
reveals a few important facts. First, there are two
fundamental types of network topologies: non-cyclic
and cyclic. The former is a type that has received most
of the attention during the past 30 years. Several
solutions methodologies have been developed; most
of them based on dynamic programming (see [6] for a
survey). In contrast, cyclic topologies are a lot harder
to solve. Work on this area is practically nonexistent.

In this work, we present an efficient procedure for
handling cyclic structures. The procedure consists of
two phases. First a set of feasible flows is found by a
reduction technique and then an optimal set of
pressure values (for the pre-specified flow) is found
by applying a non-sequential dynamic programming
(NDP) algorithm. This is motivated by the work of
Carter [2]. The algorithm delivers global optimal
solutions (within a given domain discretization size).
This procedure avoids the many numerical difficulties
inherent to this very complex problem when treated
with classical nonlinear programming (NLP)
techniques. Preliminary computational experience
including both non-cyclic and cyclic topologies is
presented. The results show the effectiveness of the
proposed procedure.

The rest of the paper is organized as follows. In
Section 2, we introduce and describe the NLP model.
In Section 3, we present a summary of related work.
The description of the algorithm is presented in
Section 4. We conclude with the computational
evaluation both on non-cyclic and cyclic networks,
and conclusions in Section 5 and 6, respectively.

2 Mathematical Framework
2.1 Assumptions
In the present paper, we make the following modeling
assumptions.
• We assume that the problem is in steady state. This

is, our model will provide solution for systems that
have been operating for a relative large amount of
time. Transient analysis would require increasing the
number of variables and the complexity of this
problem, and is a fact one of the biggest research
challenges in this area.

• The network is balanced. This means that the sum of
all the net flows in each node of the network is equal
to zero. In other words, the total supply flow is
driven completely to the total demand flow without
loss. Each arc in the network has a pre-specified
direction.

• Each parameter is known (i.e., a deterministic model
is assumed).

2.2 The NLP Model
Parameters:
V: Set of all nodes in the network
Vs: Set of supply nodes (Vs ⊆ V)
Vd: Set of demand nodes (Vd ⊆ V)
Ap: Set of pipeline arcs
Ac: Set of compressor station arcs
A: Set of all arcs in the network; A = Ap ∪ Ac
Uij: Arc capacity of pipeline (i,j); (i,j) ∈ Ap
Rij: Resistance of pipeline (i,j); (i,j) ∈ Ap
Pi

L,Pi
U: Lower and upper node pressure limits; iεV

Bi: Net mass flow rate at node i; i∈N.
 Bi>0 if i∈Vs, Bi<0 if i∈Vd, Bi=0 otherwise

Variables: xij: Mass flow rate in arc (i,j);); (i,j) ∈ A

 pi: Pressure at node i; i ∈ V

Formulation:

Minimize ∑(i,j) ∈Ac g(i,j) (xij, pi, pj) (1)

Subject to
 ∑{j | (i,j) ∈A} xij - ∑{j|(i,j) ∈A} xji = Bi i ∈ V (2)
 xij ≤ Uij (i,j) ∈ Ap (3)
 pi

2 - pj
2 = Rij xij

2 (i,j) ∈ Ap (4)
 pi

L ≤ pi ≤ pi
U i ∈ V (5)

 (xij, pi ,pj) ∈ Dij (i,j) ∈ Ac (6)
 xij, pi ≥ 0 (7)

The objective function (1) is the sum of the fuel
consumption at each compressor station in the
network. Constraints (2)-(3) are the typical network
flow constraints representing node mass balance and
arc capacity, respectively, where ∑iεV Bi = 0.
Constraint (4) represents the gas flow dynamics in
each pipeline of the network assuming steady state.
Constraints (5) denote the pressure limits in each
node. Constraint (6) represents the non-convex
feasible operating domain for compressor station (i,j).
More details on the nature of g(i,j) and Dij can be
found in Wu et al. [10].

3 Literature Review
Dynamic Programming (DP) was invented by Richard
Bellman [1] in 1957. DP for network optimization
was originally applied to gun-barrel systems since the
late 1960s. It was one of the most useful techniques
due both to its quick computational behavior and its
insensitivity to non-linearity on sequential systems.

DP was first applied to gas pipeline optimization
by Wong and Larson [9] in 1968. They applied the
method to fuel cost minimization in a single, straight-
line system, and used a recursive formulation.

The first attempt at optimizing a branching
structure in the pipeline industry using DP was by
Zimmer [11] in 1975. A similar approach was
described by Lall and Percell [5] in 1990, who
allowed one diverging branch in their system.

In the late 1980s, hybrid DP enumeration
annealing methods for optimizing more general
branched and looped networks were proposed.
Although these were very successful at optimizing
pipelines the hybrid nature of the methods sometimes
caused long run times or reduced accuracy in solving
the discretized problem.

In 1989, Gilmour, Luongo, and Schroeder [4]
published a hierarchical approach that allowed both
loops and branches of arbitrary complexity. This was
a great advance in terms of finally addressing the
issue of real-world pipeline configurations. The only
disadvantage was that their technique was no longer
pure DP. Basically, DP was used to optimally
describe the pieces of the pipeline that were arranged
in a sequential manner. This typically reduced a
system to a much smaller combinatory problem, but
one without any possibility of a recursive DP solution.
If this reduced problem was sufficiently small, it was
solved exactly via enumeration; otherwise it was

solved inexactly using simulated annealing. This
hierarchical approach works very well for many
complex pipelines, but for others the computational
cost can be very high.

Up until the early 1990s, dynamic programming
could only optimize non-cyclic systems, so it has been
of limited use for pipeline companies with such
diverse systems. Often such companies would only
consider small subsets of their pipelines when
performing optimization. After such studies were
performed, they could sometimes patch together the
results for the different subsets manually.

The hierarchical approach depends on using
specified, known flow values throughout the system.
However, if the inlet and outlet flows are allowed to
vary rather than being pre-specified by the user, or if
internal flow splits are variable, one can apply another
optimization algorithm before DP in the hierarchy to
search for an optimum over these variables as well.

4 Description of Algorithm
Consider a steady-state natural gas transmission
network with N compressor stations and a set of
feasible flow rates. In general, there will be upper and
lower limits on the pressure settings (decision
variables). Rather than considering any possible
pressure between the upper and lower limits, in this
paper we will consider only a discrete set of k possible
pressures. For instance, if our allowable pressures are
between 600 and 800 PSIG, and ∆p=10, we would
consider only pressures at ten pound increments: 600,
610, 620, …, 800.

Each compressor station will have a range of
attainable operating conditions based on such
limitations as max horsepower constraints, physical
limits on individual compressor, and so on. If the
compressor station can operate at specified inlet and
outlet pressures, we assume that we can compute a
cost for this operational setting, and that the total cost
of operating the system is the sum of the cost of
operating compressor station m, im is the integer
decision variable at the suction side of the station, and
jm is the integer decision variable at the discharge side
of the station.

In this part, we present a search algorithm (Fig. 1)
for finding an optimal solution for the fuel cost
minimization problem being addressed. This
algorithm consists of two phases. The first procedure
(Phase 1) makes use of a preprocessing technique to

find a set feasible flow on the net. Our procedure for
constructing the feasible flows, utilizes a reduction
technique. Details can be found in [7].

SEARCH ALGORITHM

begin

INPUT: {Properties of natural gas pipeline network system}
G=(V,A), where A={Ad, Ac}.
B(i) sources value ∀iεV

PHASE 1: {Find feasible flows}
 Reduced_Network_PROCEDURE-1

PHASE 2: {Find optimal pressures}
 Non_Sequential_DP_PROCEDURE-2

end

Figure 1. Algorithm for global optimal solutions (for fixed flows).

The second procedure (Phase 2) makes use a Non-
sequential DP Algorithm to find optimal pressures at
each node on the network (as originally proposed by
Carter [2]). Rather than attempting to formulate DP as
a recursive algorithm, in this approach we simply look
at a system, grab two connected compressor, and
replace them by a “virtual” composite element that
behaves just like its components operating in an
optimal manner. These elements can be selected from
anywhere in the system, so the idea of “recursion” is
really not a good description for this process. The
process continues, reducing the number of elements in
the problem by one each time, until the system is
reduced no further. Typically, that occurs when there
is exactly one virtual element left, which completely
characterizes the optimal behavior of the entire
pipeline network. The best pipeline operation can then
be found by just searching one simple table for the
lowest occurring value.

for i=1:n1
 for j=1:n2
 CAB(i,j)=min k { CA(i,k) + CB (k,j) }
 end
end

A B

I K J

Figure 2. Combining two sequential compressor stations into a one
optimal composite.

Only three types of simple composition operations

are necessary to reduce a system. Let CA be a table
costs for operating a compressor station A for its
various inputs and outputs, and let CB be similarly
defined for compressor station B.

Fig. 2 shows how to combine two sequential
elements A and B into one optimal composite. Here
element A goes from segment I to segment K, element
B goes from segment K to segment J, and the
composite element goes from segment I to segment J.
The composite element then has its own cost table
CAB. If only this transformation is allowed, the
resulting method is essentially the same as the
hierarchical method of Luongo [4].

Fig. 3 shows how to combine a “dangling” element B
into an adjacent element A. Here element A goes from
segment I to segment J, element B goes from segment
J to segment K, and the composite element goes from
segment I to segment J. Segment K can not be
attached to any element other than B; hence the
terminology “dangling element”.

Fig. 4 shows how to combine two parallel
compressor stations A and B into one optimal
composite. Here element A goes from segment I to
segment J, element B goes from segment I to segment
J, and the composite element goes from segment I to
segment J.

These operations can be applied to a complex
network to eventually reduce it to a single composite
equivalent. Note that some of the composition
operations will, of course, be recursively applied to
composite elements. Also, an appropriate data
structure must be used to allow the reconstruction of
the actual optimal pressure settings of the original

system once the optimal objective has been read off
the final composite table.

for i=1:n1
 for j=1:n2
 CAB(i,j)=CA(i,j) + CB (i,j)
 end
end

A

I J

B

for j=1:n2
 for i=1:n1
 CAnew(i,j)=CA(i,j) + min k CB (j,k)
 end
end

B
A K Figure 4. Combining two parallel compressor stations A and B into

one optimal composite.

I J
5 Computational Results
In order to assess the effectiveness of the proposed
procedure, we apply the search NDP algorithm under
different scenarios with different kinds of topologies.
There are many types of topologies: (a) simple or gun-
barrel, (b) tree, and (c) cyclic. Our evaluation is based
on a database developed by Villalobos-Morales et al.
[8]. Figure 3. Combining a “dangling” element B into an adjacent element A.

 Topology Topology
 net-c-6c2 net-c-8c3

 Topology
 net-c-19c7

Figure 5. Examples of topologies type c used.

For example, in Fig. 5, a striped node (shown with an
ingoing arrow next to it) represents a supply point, a
black node (shown with an outgoing arrow next to it)
represents a demand point, and a white node is a
transshipment node. A single directed arc joining two
nodes represents a pipeline, and a directed arc with a
black trapezoid represents a compressor.

Our procedure was coded in C++, and run on a
Sun Ultra 10 under Solaris 7. Computational
evaluation was based for different mesh sizes (∆p=20,
5, 1). The computational results on gun barrel
networks are shown in Table 1. The instances tested
are shown in the first column; the following columns
show the CPU time (sec) and objective function value
for each of the mesh sizes testes. Similarly,
computational results on tree and cyclic networks are
shown in Tables 2 and 3, respectively.

∆p = 20 PSIG ∆p = 5 PSIG ∆p = 1 PSIG

Topology CPU
Time
(sec)

Objective
Value

CPU
Time
(sec)

Objective
Value

CPU
Time
(sec)

Objective
Value

net-a-5c1-C4 0.04 280,225.42 0.05 164,914.28 0.77 162,561.73
net-a-6c2-C1 0.07 2,305,101.07 0.17 1,925,665.87 6.48 1,802,876.73
net-a-6c2-C2 0.07 2,305,101.07 0.19 1,925,665.87 6.43 1,802,876.73
net-a-6c2-C3 0.04 1,065,709.48 0.29 399,126.31 15.03 343,249.56
net-a-6c2-C4 0.04 1,497,610.99 0.24 1,342,521.56 9.99 944,518.83
net-a-6c2-C5 0.05 3,650,144.05 0.51 3,259,430.33 21.77 3,044,941.55
net-a-6c2-C6 0.06 5,012,502.38 0.23 4,210,341.74 9.04 3,822,415.39
net-a-6c2-C7 0.03 1,269,300.15 0.16 694,097.81 3.39 559,114.25
net-a-6c2-C8 0.07 2,702,943.75 0.22 1,674,900.94 6.94 1,546,357.70
net-a-6c2-C9 0.01 5,043,312.43 0.07 4,066,445.48 1.77 4,012,593.03
net-a-8c3-C4 0.11 2,998,721.59 0.79 1,701,982.12 20.07 1,322,802.05
Topologies with special structures
net-a-19c7-C4 0.07 4,652,595.76 0.91 3,340,853.26 39.31 3,046,053.04
net-a-12c1-C4 0.02 1,201,292.38 0.08 1,165,912.02 1.14 1,164,170.98
net-a-12c3-C4 0.05 4,085,543.14 0.49 3,334,569.62 24.31 3,213,108.46
net-a-18c1-C4 0.06 1,009,457.57 0.27 764,997.59 5.46 710,859.90
net-a-20c2-C4 0.06 3,018,255.30 0.70 2,261,313.45 40.64 2,099,562.45

Table 1. Computational results on gun-barrel networks.

∆p = 20 PSIG ∆p = 5 PSIG ∆p = 1 PSIG

Topology CPU
Time
(sec)

Objective
Value

CPU
Time
(sec)

Objective
Value

CPU
Time
(sec)

Objective
Value

net-b-10c3-C1 0.08 5,151,874.09 1.20 4,926,640.97 60.07 4,294,872.70
net-b-10c3-C2 0.10 5,151,874.09 1.13 4,926,640.97 57.12 4,294,872.70
net-b-10c3-C4 0.11 9,558,262.12 0.5 7, 861,105.38 20.54 7,216,523.11
net-b-10c3-C5 0.08 6,323,834.73 1.00 5,651,798.53 42.58 5,191,111.05
net-b-11c4-C4 0.22 10,803,366.07 1.99 9,201,821.43 91.11 8,972,057.94
net-b-12c4-C2 0.04 3,132,246.81 0.37 2,917,123.65 2.43 2,854,285.65
net-b-12c4-C3 0.05 11,516,568.35 0.14 10,832,946.19 3.38 10,597,128.61
net-b-12c4-C4 0.05 2,984,542.04 0.30 2,684,886.41 9.77 2,258,057.33
net-b-15c6-C4 0.21 8,234,564.12 1.74 6,342,045.90 70.69 5,282,939.80
net-b-41c14-C1 0.30 28,952,769.30 2.94 24,198,619.10 161.3 22,223,410.34
net-b-41c14-C2 0.23 28,952,769.30 2.98 24,198,619.10 161.12 22,223,410.34
net-b-41c14-C3 0.20 37,244,143.96 2.10 34,386,871.29 114.71 32,475,771.12
net-b-41c14-C4 0.67 36,476,126.38 2.65 31,298,741.09 129.24 30,809,127.04

Table 2. Computational results on tree networks.

As we can see, the mesh size becomes an

important factor in terms of accuracy of solution. We
must point out that results for non-cyclic instances
(Table 1 and 2) are global optimal, whereas results for
the cyclic instances (Table 3) are “optimal” for the

given flow. CPU times are very reasonable. For
example, the test requiring more effort (∆p=1) never
exceeded three minutes.

∆p = 20 PSIG ∆p = 5 PSIG ∆p = 1 PSIG

Topology CPU
 Time
(sec)

Objective
Value

CPU
 Time
(sec)

Objective
Value

CPU
Time
(sec)

Objective
Value

net-c-6c2-C1 0.03 2,279,711.77 0.16 1,884,060.48 3.24 1,852,252.53
net-c-6c2-C2 0.01 2,279,711.77 0.18 1,884,060.48 3.29 1,852,252.53
net-c-6c2-C3 0.02 1,200,668.26 0.20 1,041,265.76 4.07 1,020,842.29
net-c-6c2-C4 0.04 972,369.09 0.19 744,261.08 3.95 653,675.58
net-c-6c2-C5 0.02 2,999,798.61 0.19 2,803,372.66 3.36 2,716,611.07
net-c-6c2-C6 0.02 4,342,711.79 0.19 3,561,310.69 3.55 3,442,838.76
net-c-6c2-C7 0.001 1,082,391.42 0.18 850,674.93 2.95 788,218.02
net-c-6c2-C8 0.04 1,853,866.09 0.15 1,468,605.58 3.33 1,405,443.48
net-c-6c2-C9 0.03 1,499,524.36 0.17 1,294,408.69 2.95 1,243,179.03

net-c-10c3-C1 0.06 6,022,631.39 0.41 4,629,404.41 16.01 4,267,949.79
net-c-10c3-C2 0.04 6,022,631.39 0.38 4,629,404.41 15.32 4,267,949.79
net-c-10c3-C3 0.09 5,123,605.66 0.72 4,081,328.16 30.25 3,978,465.67
net-c-10c3-C4 0.05 6,076,776.75 0.31 4,652,223.35 7.31 4,360,146.30
net-c-10c3-C5 0.07 7,510,579.28 0.62 7,145,875.03 19.59 6,624,644.75
net-c-10c3-C6 0.11 11,908,871.1 0.61 10,996,571.93 15.51 10,766,001.9
net-c-10c3-C8 0.08 6,257,129.08 0.29 5,265,444.54 6.04 5,181,127.14
net-c-10c3-C9 0.12 4,223,456.43 0.48 3,315,770.23 11.17 3,281,774.65
net-c-15c5-C2 0.16 7,456,824.23 0.37 6,093,101.33 10.22 5,789,941.01
net-c-15c5-C4 0.18 3,143,098.87 0.45 2,612,943.12 18.43 2,154,914.02
net-c-19c7-C4 0.27 21,983,920.4 1.17 20,659,013.54 35.4 20,119,966.2

Table 3. Computational results on cyclic networks.

Finally, Table 4 shows the excellent behavior of

the NDP algorithm against a GRG method [3] on
cyclic networks. The instances tested are shown in the
first column; immediately, the status (where, GS, LS,
and IS mean global optimal, local optimal, and
infeasible solution, respectively), CPU Time (sec) and
the best objective value found are presented for each
method in the analysis. First, the NDP was able to
deliver solutions to all instances tested, whereas GRG
failed for ten of these. NDP outperformed the GRG in
terms of solution quality.

NDP Algorithm GRG Method

Topology
Status

CPU
 Time
(sec)

Objective
Value Status

CPU
 Time
(sec)

Objective
Value

net-c-6c2-C1 GS 3.24 1,852,252.53 LS 0.82 2,312,548.24
net-c-6c2-C2 GS 3.29 1,852,252.53 LS 0.82 2,312,548.24
net-c-6c2-C3 GS 4.07 1,020,842.29 LS 0.67 1,751,520.99
net-c-6c2-C4 GS 3.95 653,675.58 LS 1.01 1,393,061.12
net-c-6c2-C5 GS 3.36 2,716,611.07 LS 1.12 3,099,415.46
net-c-6c2-C6 GS 3.55 3,442,838.76 IS
net-c-6c2-C7 GS 2.95 788,218.02 LS 0.57 988,998.79
net-c-6c2-C8 GS 3.33 1,405,443.48 LS 0.35 1,706,693.05
net-c-6c2-C9 GS 2.95 1,243,179.03 IS

net-c-10c3-C1 GS 16.01 4,267,949.79 IS
net-c-10c3-C2 GS 15.32 4,267,949.79 IS
net-c-10c3-C3 GS 30.25 3,978,465.67 IS
net-c-10c3-C4 GS 7.31 4,360,146.30 LS 1.03 5,610,932.12
net-c-10c3-C5 GS 19.59 6,624,644.75 IS
net-c-10c3-C6 GS 15.51 10,766,001.9 IS
net-c-10c3-C8 GS 6.04 5,181,127.14 IS
net-c-10c3-C9 GS 10.72 3,281,774.65 IS
net-c-15c5-C2 GS 10.22 5,789,941.01 LS 0.4 6,313,810.78
net-c-15c5-C4 GS 18.43 2,154,914.02 LS 0.18 3,555,353.60
net-c-19c7-C4 GS 35.4 20,119,966.2 IS

Table 4. Behavior of the NDP algorithm against a GRG method.

6 Conclusions
Our computational results showed empirically how
the problem structure can be efficiently exploited by
taking advantage of a non-sequential dynamic
programming technique. When using the finest
discretization size, the computational effort never
exceeded 3 minutes.

A central issue regarding the NDP algorithm
applied to natural gas transmission network
optimization is on how its performance, when
compared with other methods on cyclic topologies,
such as the GRG method, had more success on
topologies that contains more compressor stations.
Finally, the NDP Algorithm has been applied to
several test instances representing dozens of different
pipeline systems over a broad variety of flow
conditions, with uniformly good results. So, this
search algorithm not only found better solutions, but
also reduced the resources (computational time) used
by the computer. This represents a significant
contribution, especially when dealing with cyclic
structures where previous approaches had failed.

We must point out that results for non-cyclic
instances are indeed global optimal, whereas results
for the cyclic instances are “optimal” for the given
flow. So, one current research trend is to develop a
method to efficiently modify the flow values. The use
of meta-heuristics such as GRASP or Tabu Search,
whose internal mechanism for escaping local optima
seems very attractive.

Acknowledgments: The research of the first author
was supported by a fellowship for graduate studies
from the Mexican National Council for Science and
Technology (CONACYT). The research of the
second author was supported by a research grant from
CONACYT (grant J33187-A), and Universidad
Autónoma de Nuevo León under its Scientific and
Technological Research Support Program (PAICYT
grants CA555-01 and CA763-02).

References:
[1] R. Bellman. Dynamic Programming. Princeton

University Press, Princeton, USA, 1957.
[2] R.G. Carter. Pipeline optimization: Dynamic

programming after 30 years. In Proceedings of
the PSIG Meeting, pages 1-19, Denver, USA,
October 1998.

[3] H.J. Flores-Villarreal and R.Z. Ríos-Mercado.
Computational experience with a GRG method

for minimizing fuel consumption on cyclic
natural gas networks. In N.E. Mastorakis, I.A.
Stathopulos, C. Manikopoulos, G.E. Antoniou,
V.M. Mladenov, and I.F. Gonos (editors),
Computational Methods in Circuits and Systems
Applications, pages 90-94. WSEAS Press,
Athens, Greece, 2003.

[4] B.J. Gilmour, C.A. Luongo, and D.W. Schroeder.
Optimization in natural gas transmission
networks: A tool to improve operational
efficiency. Technical report, Stoner Associates
Inc., April 1989. Presented at the 3rd SIAM
Conference on Optimization, 1989

[5] H.S. Lall and P.B. Percell. A dynamic
programming based gas pipeline optimizer. In A.
Bensoussan and J.L. Lions (editors), Analysis
and Optimization of Systems, pages 123-132,
Springer-Verlag, Berlin, Germany, 1990.

[6] R.Z. Ríos-Mercado. Natural gas pipeline
optimization. In P.M. Pardalos and M.G.C.
Resende (editors), Handbook of Applied
Optimization, chapter 18.8.3, pages 813-825.
Oxford University Press, New York, USA, 2002.

[7] R.Z. Ríos-Mercado, S. Wu, L. R. Scott, and E.A
Boyd. A reduction technique for natural gas
transmission network optimization problems.
Annals of Operations Research, 117(1-4):217-
234, 2002.

[8] Y. Villalobos-Morales, D. Cobos-Zaleta, H.J.
Flores-Villarreal, C. Borraz-Sánchez, and R.Z.
Ríos-Mercado. On NLP and MINLP
formulations and preprocessing for fuel cost
minimization of natural gas transmission
networks. In Proceedings of the 2003 NSF
Design, Service and Manufacturing Grantees and
Research Conference. Birmingham, Alabama,
USA, January 2003.

[9] P.J. Wong and R.E. Larson. Optimization of
natural gas pipeline systems via dynamic
programming. IEEE Transactions on Automatic
Control, AC-13(5):475-481, 1968.

[10] S. Wu, R.Z. Ríos-Mercado, E.A. Boyd, and L.R.
Scott. Model relaxations for the fuel cost
minimization of steady-state gas pipeline
networks. Mathematical and Computer
Modeling, 31(2-3):197-220, 2000.

[11] H.I. Zimmer. Calculating optimum pipeline
operations. Technical Report, El Paso Natural
Gas Company, 1975. Presented at the AGA
Transmission Conference, 1975.

	2.1 Assumptions
	�

